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A Gibbs Sampler

Our Gibbs sampler operates on the state space {(Tt,Mt)
T
t=1,W, π, σ, α, ψ}.

Metropolis-Hastings updates for {(Tt,Mt)
T
t=1, σ} are now standard; details can

be found in Kapelner and Bleich (2016).
We update (W,π) using a data-augmentation strategy similar to LDA. As-

sociate to each branch b in the ensemble a latent group indicator Zb such that
Zb ∼ Categorical(π) and the coordinate j in the decision rule [xj ≤ Cb] is
distributed as Categorical(ωg1, . . . , ωgP ) conditional on Zb = g. The full con-
ditional of Zb is given by Pr(Zb = g | −) ∝ πgωgj(b) where j(b) denotes
the coordinate currently used to split b. By conjugacy of the Dirichlet dis-
tribution to multinomial sampling, we also have the full conditionals πg ∼
Dirichlet(αλ1 +

∑
b I(Zb = 1), . . . , αλG +

∑
b I(Zb = G)) and

ωg ∼ Dirichlet

(
ψqg1 +

∑
b

I(Zb = g and j(b) = 1), . . . , ψqgP +
∑
b

I(Zb = g and j(b) = P )

)
.

This leads to the Gibbs sampler given in Algorithm 1

B Proof of Proposition 3.1

First, it is easy to check that E(sj) = O(G−1) so that Cov(sj , sk) = E(sjsk) +
O(G−2). Similarly, we have Var(sj) = E(s2j )+O(G−2). Next, let (A,B) denote
the variables selected by the first two branches of the ensembles, and let (C,D)
denote the groups selected by the first two branches in the ensemble. Through-
out, we will compute probabilities for (A,B,C,D) using the Pólya Urn scheme
for a finite-dimensional Dirichlet distribution (Blackwell and MacQueen, 1973;
Neal, 2000). First,

E(sjsk) = Pr(A = j, B = k) =
∑
g,h

Pr(A = j, B = k | C = g,D = h) Pr(C = g,D = h).
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Algorithm 1 One iteration of a Gibbs sampling algorithm which targets the
posterior distribution.

1: Update {(Tt,Mt)
T
t=1, σ} as described by Kapelner and Bleich (2016).

2: For each branch b in {Tt}Tt=1, sample Zb = g with probability

Pr(Zb = g | −) =
πg ωgj(b)∑G
k=1 πk ωkj(b)

.

3: Sample π ∼ Dirichlet(αλ1 +
∑

b I(Zb = 1), . . . , αλG +
∑

b I(Zb = G)).
4: For g = 1, . . . , G, sample

ωg ∼ Dirichlet

(
ψqg1 +

∑
b

I(Zb = g and j(b) = 1), . . . , ψqgP +
∑
b

I(Zb = g and j(b) = P )

)
.

When g 6= h in the above term the Pölya Urn scheme gives αqgjqhkλgλh/(α +
1) = O(G−2). Because each predictor lies in finitely many groups as G → ∞,
summing over g 6= h contributes only an O(G−2) term to E(sjsk). For g = h
we have the terms

ψqgjqgk
ψ + 1

· λg(αλg + 1)

α+ 1
=

ψ

(α+ 1)(ψ + 1)
qgjqgkλg +O(G−2).

Hence we have

Cov(sj , sk) =
ψ

G(ψ + 1)(α+ 1)

∑
g

qgjqgkλ̃g +O(G−2) =
ψq>j Λqk

G(ψ + 1)(α+ 1)
+O(G−2).

We perform a similar analysis for the second moment. We have

E(s2j ) =
∑
g,h

Pr(A = j, B = j | C = g,D = h) Pr(C = g,D = h).

As before, the terms with g 6= h can be shown to contribute O(G−2) to the
summation. Again applying the Pölya Urn scheme, the g = h terms are given
by

qgj(ψqgj + 1)

(ψ + 1)
· λg(αλg + 1)

α+ 1
=

λg
(ψ + 1)(α+ 1)

[ψq2gj + qgj ] +O(G−2).

Summing over g, and again noting that only a constant number of summation
terms are non-zero as G grows, gives

Var(sj) =
ψq>j Λqj + q>j Λ1

G(ψ + 1)(α+ 1)
+O(G−2).
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Method Hyperparameters Deviance

OG-BART

(1, 1) 620
(1, 10) 614
(10, 1) 591

(10, 10) 590

SBART
(1,−) 646

(10,−) 609

Table 1: Results for different hyperparameter settings. For OG-BART, the
setting (a, b) denotes that α ∼ Exp(a) and ψ = b For SBART, the setting (a,−)
denotes that α ∼ Exp(a); there is no analogous quantity ψ.

Hence the correlation is

Cor(sj , sk) =
ψq>j Λqk +O(G−1)√

ψq>j Λqj + q>j Λ1 +O(G−1)
√
ψq>k Λqk + q>k Λ1 +O(G−1)

.

Letting G→∞ establishes the result.

C Breast Cancer Results for Other Hyperpa-
rameter Values

We consider the breast cancer dataset for several additional priors for α and ψ.
For comparison, we also consider the SBART model with different choices of
hyperparameter α. We replicate the cross-validation experiment for the breast
cancer dataset to assess predictive performance. Results are given in Table 1.
We see that generally higher values of the hyperparameters result in better pre-
dictive performance. Better predictive performance is also obtained for SBART
with higher values of α, however its performance is still well below a similar
OG-BART model. We prefer the OG-BART model with α ∼ Exp(1) and ψ = 1
for analysis, as the models it produces are sparser, leading to simpler model
interpretation.

D Misspecified Groups and False Positives

In the simulation study, we observed a curious behavior: when the grouping
structure is misspecified and we have bi-level sparsity, the number of false posi-
tives decreased. We now illustrate that this behavior is to be expected. Consider
the normal means problem

Yi ∼ Normal(θi, 1),

θi ∼ Bernoulli(πgi),

πg ∼ Uniform(0, 1),
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π1 Correct Incorrect

0.3 (30, 54) (15, 17)
0.8 (80, 388) (117, 217)

Table 2: Results of normal means simulation. “Correct” denotes that the correct
grouping structure was used; “Incorrect” denotes that an incorrect grouping
structure was used. The result (30, 54), for example, indicates that there were
an average of 30 false positives and 54 true positives.

where g = (g1, . . . , gn) records the group that θi is in. Our goal is to detect
if θi = 0 (negative) or θi = 1 (positive). We consider n = 1000 and simulate
from this model with two equal-sized groups, the second of which is pure noise
(π2 ≡ 0). We consider a sparse-within-group setting with π1 = 0.3 and a dense-
within-group setting with π1 = 0.8. We classify θi as a positive if the posterior
probability of θi = 1 exceeds 0.5. We replicate this experiment 20 times for each
setting. To obtain a misspecified structure, we randomly assign each i to one of
the groups. We then fit the model using the JAGS software package.

Results are given in Table 2. We again see the behavior of an incorrect
group structure leading to fewer false positives. Intuitively, this occurs because
this model will estimate π1 ≈ π2 ≈ 0.15; so that all θi’s are equally penalized,
and this is sufficient to control false positives. On the other hand, a correctly
specified model will estimate π1 ≈ 0.3 and π2 ≈ 0; this applies a smaller penalty
to the noise θi’s in group 1, allowing them to enter into the model more easily.

The upshot of using a correct grouping structure is that we obtain far more
true positives, leading to a higher F1 score. This occurs regardless of the value
of π1.
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