
Flexibly Fair Representation Learning by Disentanglement

A. Discriminator approximation of total
correlation

This section describes how density ratio estimation is imple-
mented to train the FFVAE encoder. We follow the approach
of Kim & Mnih (2018).

Generating Samples The binary classifier adversary
seeks to discriminate between

• [z, b] ⇠ q(z, b), “true” samples from the aggregate
posterior; and

• [z0, b0] ⇠ q(z)
Q

j q(bj), “fake” samples from the prod-
uct of the marginal over z and the marginals over each
bj .

At train time, after splitting the latent code [zi, bi] of the
i-example along the dimensions of b as [zi, bi0...b

i
j], the

minibatch index order for each subspace is then randomized,
simulating samples from the product of the marginals; these
dimension-shuffled samples retain the same marginal statis-
tics as “real” (unshuffled) samples, but with joint statistics
between the subspaces broken. The overall minibatch of
encoder outputs contains twice as many examples as the
original image minibatch, and comprises equal number of
“real” and “fake” samples.

As we describe below, the encoder output minibatch is used
as training data for the adversary, and the error is backprop-
agated to the encoder weights so the encoder can better fool
the adversary. If a strong adversary can do no better than
random chance, then the desired independence property has
been achieved.

Discriminator Approximation Here we summarize the
the approximation of the DKL(q(z, b)||q(z)

Q
j q(bj)) term

from equation 4. Let u 2 {0, 1} be an indicator variable
with u = 1 indicating [z, b] ⇠ q(z, b) comes from a mini-
batch of “real” encoder distributions, while u = 1 indicating
[z0, b0] ⇠ q(z)

Q
j(bj) is drawn from a “fake” minibatch of

shuffled samples, i.e., is drawn from the product of the
marginals of the aggregate posterior. The discriminator net-
work outputs the probability that vector [z, b] is a “real” sam-
ple, i.e., d(u|z, b) = Bernoulli(u|�(✓d(z, b)) where ✓d(z, b)
is the discriminator and � is the sigmoid function. If the
discriminator is well-trained to distinguish between “real”
and “fake” samples then we have

log d(u = 1|z, b)� log d(u = 0|z, b) ⇡

log q(z, b)� log q(z)
Y

j

q(bj). (5)

We can substitute this into the KL divergence as

DKL(q(z, b)||q(z)
Y

j

q(bj)) =

Eq(z,b)[log q(z, b)� log q(z)
Y

j

q(bj)] ⇡

Eq(z,b)[log d(u = 1|z, b)� log d(u = 0|z, b)]. (6)

Meanwhile the discriminator is trained by minimizing the
standard cross entropy loss

LDisc(d) = Ez,b⇠q(z,b)[log d(u = 1|z, b)]
+ Ez0,b0⇠q(z)

Q
j q(bj)[log(1� d(u = 0|z0, b0))],

(7)

w.r.t. the parameters of d(u|z, b). This ensures that the
discriminator output ✓d(z, b) is a calibrated approximation
of the log density log q(z,b)

q(z)
Q

j q(bj)
.

LDisc(d) and LFFVAE(p, q) (Equation 4) are then optimized
in a min-max fashion. In our experiments we found that
single-step alternating updates using optimizers with the
same settings sufficed for stable optimization.

B. DSpritesUnfair Generation
The original DSprites dataset has six ground truth factors of
variation (FOV):

• Color: white

• Shape: square, ellipse, heart

• Scale: 6 values linearly spaced in [0.5, 1]

• Orientation: 40 values in [0, 2⇡]

• XPosition: 32 values in [0, 1]

• YPosition: 32 values in [0, 1]

In the original dataset the joint distribution over all FOV
factorized; each FOV was considered independent. In
our dataset, we instead sample such that the FOVs Shape
and X-position correlate. We associate an index with
each possible value of each attribute, and then sample a
(Shape, X-position) pair with probability proportional to
(iS
nS

)qS + (iX
nX

)qX , where i, n, q are the indices, total num-
ber of options, and a real number for each of Shape and
X-position (S,X respectively). We use qS = 1, qX = 3.
All other attributes are sampled uniformly, as in the standard
version of DSprites.

We binarized the factors of variation by using the boolean
outputs of the following operations:

Flexibly Fair Representation Learning by Disentanglement

• Color � 1

• Shape � 1

• Scale � 3

• Rotation � 20

• XPosition � 16

• YPosition � 16

C. DSprites Architectures
The architectures for the convolutional encoder q(z, b|x),
decoder q(x|z, b), and FFVAE discriminator are specified
as follows.

import torch
from torch import nn

class Resize(torch.nn.Module):
def __init__(self, size):

super(Resize, self).__init__()
self.size = size

def forward(self, tensor):
return tensor.view(self.size)

class ConvEncoder(nn.Module):
def __init__(self, im_shape=[64, 64], latent_dim=10, n_chan=1):

super(ConvEncoder, self).__init__()

self.f = nn.Sequential(
Resize((-1,n_chan,im_shape[0],im_shape[1])),
nn.Conv2d(n_chan, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(32, 64, 4, 2, 1),
nn.ReLU(True),
nn.Conv2d(64, 64, 4, 2, 1),
nn.ReLU(True),
Resize((-1,1024)),
nn.Linear(1024, 128),
nn.ReLU(True),
nn.Linear(128, 2*latent_dim)
)

self.im_shape = im_shape
self.latent_dim = latent_dim

def forward(self, x):
mu_and_logvar = self.f(x)
mu = mu_and_logvar[:, :self.latent_dim]
logvar = mu_and_logvar[:, self.latent_dim:]
return mu, logvar

class ConvDecoder(nn.Module):
def __init__(self, im_shape=[64, 64], latent_dim=10, n_chan=1):

super(ConvDecoder, self).__init__()

self.g = nn.Sequential(
nn.Linear(latent_dim, 128),
nn.ReLU(True),
nn.Linear(128, 1024),
nn.ReLU(True),
Resize((-1,64,4,4)),
nn.ConvTranspose2d(64, 64, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(64, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, 32, 4, 2, 1),
nn.ReLU(True),
nn.ConvTranspose2d(32, n_chan, 4, 2, 1),
)

def forward(self, z):
x = self.g(z)
return x.squeeze()

class Discriminator(nn.Module):
def __init__(self, n):

super(Discriminator, self).__init__()
self.model = nn.Sequential(

nn.Linear(n, 1000),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1000, 1000),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1000, 1000),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1000, 1000),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1000, 1000),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(1000, 2),
)

selftmax = nn.Softmax(dim=1)

def forward(self, zb):
logits = self.model(zb)
probs = nn.Softmax(dim=1)(logits)
return logits, probs

D. DSpritesUnfair Training Details
All network parameters were optimized using the Adam
(Kingma & Ba, 2015), with learning rate 0.001. Architec-
tures are specified in Appendix C. Our encoders trained
3⇥105 iterations with minibatch size 64 (as in Kim & Mnih
(2018)). Our MLP classifier has two hidden layers with
128 units each, and is trained with patience of 5 epochs on
validation loss.

E. Mutual Information Gap
Evaluation Criteria Here we analyze the encoder mutual
information in the synthetic setting of the DSpritesUnfair
dataset, where we know the ground truth factors of variation.
In Fig. 6, we calculate the Mutual Information Gap (MIG)

(Chen et al., 2018) of FFVAE across various hyperparam-
eter settings. With J latent variables zj and K factors of
variation vk, MIG is defined as

1

K

KX

k=1

1

H(vk)
(MI(zjk ; vk)�max

j 6=jk
MI(zj ; vk)) (8)

where jk = argmax
j

MI(zj ; vk), MI(·; ·) denotes mutual

information, and K is the number of factors of variation.
Note that we can only compute this metric in the synthetic
setting where the ground truth factors of variation are known.
MIG measures the difference between the latent variables
which have the highest and second-highest MI with each
factor of variation, rewarding models which allocate one
latent variable to each factor of variation. We test our dis-
entanglement by training our models on a biased version
of DSprites, and testing on a balanced version (similar to
the “skewed” data in Chen et al. (2018)). This allows us to
separate out two sources of correlation — the correlation
existing across the data, and the correlation in the model’s
learned representation.

Results In Fig. 6a, we show that MIG increases with ↵,
providing more evidence that the supervised structure of
the FFVAE can create disentanglement. This improvement
holds across values of �, except for some training instability

Flexibly Fair Representation Learning by Disentanglement

(a) Color is �, brighter colours
�! higher values

(b) Colour is ↵, brighter colors
�! higher values

Figure 6. Mutual Information Gap (MIG) for various (↵, �) set-
tings of the FFVAE. In Fig. 6a, each line is a different value of
� 2 [10, 20, 30, 40, 50, 70, 100], with brighter colors indicating
larger values of �. In Fig. 6b, each line is a different value of
↵ 2 [300, 400, 1000], with brighter colors indicating larger val-
ues of ↵. Models trained on DspritesUnfair, MIG calculated on
Dsprites. Higher MIG is better. Black dashed line indicates mean
(with outliers excluded). ↵ = 0 is equivalent to the FactorVAE.

for the highest values of �. It is harder to assess the rela-
tionship between � and MIG, due to increased instability in
training when � is large and ↵ is small. However, in Fig. 6b,
we look only at ↵ � 300, and note that in this range, MIG
improves as � increases. See Appendix E for more details.

(a) Colour is ↵ (b) Colour is �

Figure 7. Mutual Information Gap (MIG) for various (↵, �) set-
tings of the FFVAE. In Fig. 7a, each line is a different value of
↵ 2 [0, 50, 100, 150, 200], with brighter colours indicating larger
values of ↵. In Fig. 7b, all combinations with ↵, � > 0 are shown.
Models trained on DspritesUnfair, MIG calculated on Dsprites.
Higher MIG is better. Black dashed line indicates mean (outliers
excluded). ↵ = 0 is equivalent to the FactorVAE.

In Fig. 7a, we show that for low values of ↵, increasing �

leads to worse MIG, likely due to increased training insta-
bility. This is in contrast to Fig. 6b, which suggests that for
high enough ↵, increasing � can improve MIG. This leads
us to believe that ↵ and � have a complex relationship with
respect to disentanglement and MIG.

To better understand the relationship between these two
hyperparameters, we examine how MIG varies with the
ratio �

↵ in Fig. 7b. In We find that in general, a higher ratio
yields lower MIG, but that the highest MIGs are around
log �

↵ = �2, with a slight tailing off for smaller ratios.
This indicates there is a dependent relationship between the

values of � and ↵.

Discussion What does it mean for our model to demon-
strate disentanglement on test data drawn from a new dis-
tribution? For interpretation, we can look to the causal
inference literature, where one goal is to produce models
that are robust to certain interventions in the data generating
process (Rothenhusler et al., 2018). We can interpret Figure
6 as evidence that our learned representations are (at least
partially) invariant to interventions on a. This property re-
lates to counterfactual fairness, which requires that models
be robust with respect to counterfactuals along a (Kusner
et al., 2017).

