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Supplementary Material
Gauge Equivariant Convolutional Networks and the Icosahedral CNN

1. Recommended reading
For more information on manifolds, fiber bundles, connec-
tions, parallel transport, the exponential map, etc., we highly
recommend the lectures by Schuller (2016), as well as the
book Nakahara (2003) which explain these concepts very
clearly and at a useful level of abstraction.

For further study, we recommend (Sharpe, 1997;
Shoshichi Kobayashi, 1963; Husemöller, 1994; Steenrod,
1951; Wendl, 2008; Crane, 2014).

2. Mathematical Theory & Physics Analogy
From the perspective of the theory of principal fiber bundles,
our work can be understood as follows. A fiber bundle E is
a space consisting of a base space B (the manifold M in our
paper), with at each point p ∈ B a space Fp called the fiber
at p. The bundle is defined in terms of a projection map
π : E → B, which determines the fibers as Fp = π−1(p).
A principal bundle is a fiber bundle where the fiber F carries
a transitive and free right action of a group G (the structure
group).

One can think of the fiber Fp of a principal bundle as a
(generalized) space of frames at p. Due to the free and
transitive action of G on Fp, we have that Fp is isomoprhic
to G as a G-space, meaning that it looks like G except that
it does not have a distinguished origin or identity element
as G does (i.e. there is no natural choice of frame).

A gauge transformation is then defined as a principal bundle
automorphism, i.e. a map from P → P that maps fibers
to fibers in a G-equivariant manner. Sometimes the auto-
morphism is required to fix the base space, i.e. project
down to the identity map via π. Such a B-automorphism
will map each fiber onto itself, so it restricts to a G-space
automorphism on each fiber.

Given a principal bundle P and a vector space V with rep-
resentation ρ of G, we can construct the associated bundle
P ×ρ V , whose elements are the equivalence classes of the
following equivalence relation on P × V :

(p, v) ∼ (pg, ρ(g−1)v). (1)

The associated bundle is a fiber bundle over the same base
space as P , with fiber isomorphic to V .

A (matter) field is described as a section of the associated

bundle A, i.e. a map σ : B → A that satisfies π ◦ σ = 1B .
Locally, one can describe a section as a functionB → V (as
we do in the paper), but globally this is not possible unless
the bundle is trivial.

The group of automorphisms of P (gauge transformations)
acts on the space of fields (sections of the associated bundle).
It is this group that we wish to be equivariant to.

From this mathematical perspective, our work amounts to re-
placing the principalG bundle1 H → H/G used in the work
on regular and steerable G-CNNs of Cohen et al. (2018a;c),
by another principal G bundle, namely the frame bundle
of M . Hence, this general theory can describe in a unified
way the most prominent and geometrically natural methods
of geometrical deep learning (Masci et al., 2015; Boscaini
et al., 2016), as well as all G-CNNs on homogeneous spaces.

Indeed, if we build a gauge equivariant CNN on a homo-
geneous space H/G (e.g. the sphereTo see this, note that
the left action of H on itself (the total space of the prin-
cipal G bundle) can be decomposed into an action on the
base space H/G (permuting the fibers), and an action on
the fibers (cosets) that factors through G (see e.g. Sec. 2.1
of (Cohen et al., 2018c)). The action on the base space
preserves the local neighbourhoods from which we com-
pute filter responses, and equivariance to the action of G is
ensured by the kernel constraint. Since G-CNNs (Cohen
et al., 2018a) and gauge equivariant CNNs employ the most
general equivariant map, we conclude that they are indeed
the same, for bundles H → H/G. Thus, “gauge theory is
all you need”. (We plan to expand this argument in a future
paper)

Most modern theories of physics are gauge theories, mean-
ing they are based on this mathematical framework. In such
theories, any construction is required to be gauge invariant
(i.e. the coefficients must be gauge equivariant), for other-
wise the predictions will depend on the way in which we
choose to represent physical quantities. This logic applies
not just to physics theories, but, as we have argued in the
paper, also to neural networks and other models used in
machine learning. Hence, it is only natural that the same
mathematical framework is applicable in both fields.

1It is more common to use the letter G for the supergroup
and H for the subgroup, but that leads to a principal H-bundle
G → G/H , which is inconsistent with the main text, where we
use a principal G bundle. So we swap H and G here.
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Supplementary Material: Gauge Equivariant CNNs

3. Deriving the kernel constraint
The gauge equivariant convolution is given by

(K ? f)(p) =

∫
Rd

K(v)ρin(gp←qv )f(qv)dv. (2)

Under a gauge transformation, we have:

v 7→ g−1p v, f(qv) 7→ ρin(g
−1
qv )f(qv),

wp 7→ wpgp, gp←qv 7→ g−1p gp←qvgqv .
(3)

It follows that qv is unchanged, because qv = expp wpv 7→
expp(wpgp)(g

−1
p v) = qv. Substituting the rest in the con-

volution equation, we find∫
Rd

K(g−1p v)ρin(g
−1
p gp←qvgqv )ρin(g

−1
qv )f(qv)dv

=

∫
Rd

K(g−1p v)ρin(g
−1
p )ρin(gp←qv )f(qv)dv

(4)

Now if K(g−1p v) = ρout(g
−1
p )K(v)ρin(gp) (i.e. K satisfies

the kernel constraint), then we get

(K ? f)(p) 7→ ρout(g
−1
p )(K ? f)(p), (5)

i.e. K ? f transforms as a ρout-field under gauge transforma-
tions.

4. Additional information on experiments
4.1. MNIST experiments

Our main model consists of 7 convolution layers and 3 linear
layers. The first layer is a scalar-to-regular gauge equivariant
convolution layer, and the following 6 layers are regular-
to-regular layers. These layers have 8, 16, 16, 24, 24, 32, 64
output channels, and stride 1, 2, 1, 2, 1, 2, 1, respectively.

In between convolution layers, we use batch normalization
(Ioffe & Szegedy, 2015) and ReLU nonlinearities. When
using batch normalization, we average over groups of 6
feature maps, to make sure the operation is equivariant. Any
pointwise nonlinearity (like ReLU) is equivariant, because
we use only trivial and regular representations realized by
permutation matrices.

After the convolution layers, we perform global pooling
over spatial and orientation channels, yielding an invariant
representation. We map these through 3 FC layers (with
64, 32, 10 channels) before applying softmax.

The other models are obtained from this one by replacing
the convolution layers by scalar-to-regular + orientation
pooling (S2R) or scalar-to-scalar (S2S) layers, or by dis-
abling G-padding (NP) and/or kernel expansion (NE), al-
ways adjusting the number of channels to keep the number
of parameters roughly the same.

The Spherical CNN (S2CNN) is obtained from the R2R
model by replacing the S2R and R2R layers by spherical and
SO(3) convolution layers, respectively, keeping the number
of channels and strides the same. The Spherical CNN uses
a different grid than the Icosahedral CNN, so we adapt the
resolution / bandwidth parameter B to roughly match the
resolution of the Icosahedral CNN. We use B = 26, to get
a spherical grid of size 2B × 2B = 52× 52. Note that this
grid has higher resolution at the poles, and lower resolution
near the equator, which explains why the S2CNN performs
a bit worse when trained on rotated data instead of digits
projected onto the north-pole. To implement strides, we
reduce the output bandwidth by 2 at each layer with stride.

The spherical convolution takes a scalar signal on the sphere
as input, and outputs scalar signals on SO(3), which is
analogous to a regular field over the sphere. SO(3) convo-
lutions are analogous to R2R layers. We note that this is a
stronger Spherical CNN architecture than the one used by
(Cohen et al., 2018b), which achieves only 96% accuracy
on spherical MNIST.

The models were trained for 60 epochs, or 1 epoch of the
60× augmented dataset (where each instance is transformed
by each icosahedron symmetry g ∈ I, or by a random
rotation g ∈ SO(3)).

4.2. Climate experiments

For the climate experiments, we used a U-net with regular-
to-regular convolutions. The first layer is a scalar-to-regular
convolution with 16 output channels. The downsampling
path consists of 5 regular-to-regular layers with stride 2, and
32, 64, 128, 256, 256 output channels. The downsampling
path takes as input a signal with resolution r = 5 (i.e. 10242
pixels), and outputs one at r = 0 (i.e. 12 pixels).

The decoder is the reverse of the encoder in terms of resolu-
tion and number of channels. Upsampling is performed by
bilinear interpolation (which is exactly equivariant), before
each convolution layer (which uses stride 1). As usual in
the U-net architecture, each layer in the upsampling path
takes as input the output of the previous layer, as well as the
output of the encoder path at the same resolution.

Each convolution layer is followed by equivariant batch-
norm and ReLU.

The model was trained for 15 epochs with batchsize 15.

4.3. 2D-3D-S experiments

For the 2D-3D-S experiments, we used a residual U-Net
with the following architecture.

The input layer is a scalar-to-regular layer with 8 channels,
followed by batchnorm and relu. Then we apply 4 residual
blocks with 16, 32, 64, 64 output channels, each of which
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Supplementary Material: Gauge Equivariant CNNs

uses stride=2. In the upsampling stream, we use 32, 16, 8,
8 channels, for the residual blocks, respectively. Each up-
sampling layer receives input from the corresponding down-
sampling layer, as well as the previous layer. Upsampling is
performed using bilinear interpolation, and downsampling
by hexagonal max pooling.

The input resolution is r = 5, which is downsampled to
r = 1 by the downsampling stream.

Each residual block consists of a convolution, batchnorm,
skipconnection, and ReLU.

5. Computational complexity analysis of
Spherical and Icosahedral CNNs

One of the primary motivations for the development of the
Icosahedral CNN is that it is faster and more scalable than
Spherical CNNs as originally proposed. The Spherical CNN
as implemented by (Cohen et al., 2018b) uses feature maps
on the sphere S2 and rotation group SO(3) (the latter of
which can be thought of a regular field on the sphere), sam-
pled on the SOFT grids defined by (Kostelec & Rockmore,
2007), which have shape 2B × 2B and 2B × 2B × 2B, re-
spectively (here B is the bandwidth / resolution parameter).
Specifically, the grid points are:

αj1 =
2πj1
2B

,

βk =
π(2k + 1)

4B
,

γj2 =
2πj2
2B

,

(6)

where (αj1 , βk) form a spherical grid and (αj1 , βk, γj2)
form an SO(3) grid (for j1, k, j2 = 0, . . . 2B − 1). These
grids have two downsides.

Firstly, because the SOFT grid consists of equal-lattitude
rings with a fixed number of points (2B), the spatial density
of points is inhomogeneous, with a higher concentration of
points near the poles. To get a sufficiently high sampling
near the equator, we are forced to oversample the poles,
and thus waste computational resources. For almost all
applications, a more homogeneous grid is more suitable.

The second downside of the SOFT grid on SO(3) is that the
spatial resolution (2B × 2B; α, β) and angular resolution
(2B; γ) are both coupled to the same resolution / bandwidth
parameter B. Thus, as we increase the resolution of the
spherical image, the number of rotations applied to each
filter is increased as well, which is undesirable.

The grid used in the Icosahedral CNN addresses both con-
cerns. It is spatially very homogeneous, and we apply the
filters in 6 orientations, regardless of spatial resolution.

The generalized FFT algorithm used by (Cohen et al., 2018a)

only works on the SOFT grid. Generalized FFTs for other
grids exist (Kunis & Potts, 2003), but are harder to im-
plement. Moreover, although the (generalized) FFT can
improve the asymptotic complexity of convolution for large
input signals, the FFT-based convolution actually has worse
complexity if we assume a fixed filter size. That is, the
SO(3) convolution (used in most layers of a typical Spher-
ical CNN) has complexity O(B3 logB) which compares
favorably to the naive O(B6) spatial implementation. How-
ever, if we use filters with a fixed (and usually small) size,
the complexity of a naive spatial implementation reduces
to O(B3), which is slightly better than the FFT-based im-
plementation. Furthermore, because the Icosahedral CNN
uses a fixed number of orientations per filter (i.e. 6), its
computational complexity is even better: it is linear in the
number of pixels of the grid, and so comparable to O(B2)
for the SOFT grid.

The difference in complexity is clearly visible in Figures 1
and 2, below. On the horizonal axis, we show the grid resolu-
tion r for the icosahedral gridHr (for the spherical CNN, we
a SOFT grid with roughly the same number of spatial points).
On the vertical axis, we show the amount of wallclock time
(averaged over 100 runs) and memory required to run an
SO(3) convolution (S2CNN) or a regular-to-regular gauge
equivariant convolution (IcoNet) at that resolution. Note
that since the number of grid pionts is exponential in r, and
we use a logarithmic vertical axis, the figures can be consid-
ered log-log plots. Both plots were generated by running a
single regular to regular convolution layer at the correspond-
ing resolution r with 12 input and output channels. For a
fair comparison with IcoCNNs we chose filter grid parame-
ters so3 near identity grid(n alpha=6, max beta=np.pi/16,
n beta=1, max gamma=2*np.pi, n gamma=6) for the spher-
ical convolution layer. To guarantee a full GPU utilization,
results were measured on an as large as possible batch size
per datapoint and subsequently normalized by that batch
size.

As can be seen in Figure 1, the computational cost of running
the S2CNN dramatically exceeds the cost of running the
IcoCNN, particularly at higher resolutions. We did not run
the spherical CNN beyond resolution r = 6, because the
network would not fit in GPU memory even when using
batch size 1.

As shown in Figure 2, the Spherical CNN at resolution r = 6
uses about 10GB of memory, whereas the Icosahedral CNN
uses only about 1GB. Since we used the maximum batch
size with subsequent normalization for each resolution the
reported memory consumption mainly reflects the memory
cost of the feature maps, not the constant memory cost of
the filter banks.

Aside from the theoretical asymptotic complexity, the actual
computational cost depends on important implementation
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Figure 1. Comparison of computational cost (in wallclock time) of
Icosahedral CNNs (IcoNet) and Spherical CNNs (S2CNN, (Cohen
et al., 2018b)), at increasing grid resolution r.

Figure 2. Comparison of memory usage of Icosahedral CNNs
(IcoNet) and Spherical CNNs (S2CNN, (Cohen et al., 2018b)),
at increasing grid resolution r.

details. Because the heavy lifting of the Icosahedral CNN
is all done by a single conv2d call, our method benefits
from the extensive optimization of, and hardware support
for this operation. By contrast, the generalized FFT used
in the original Spherical CNN uses a conventional FFT,
as well as matrix multiplcations with spectral matrices of
size 1, 3, 5, 7, . . . , 2L + 1 (the SO(3) spectrum is matrix-
valued, instead of the scalar valued spectrum for commu-
tative groups). Implementing this in a way that is fast in
practice is more challenging.

A final note on scalability. For some problems, such as the
analysis of high resolution global climate or weather data, it
is unlikely that even a single feature map will fit in memory
at once on current or near-term future hardware. Hence, it
may be useful to split large feature maps into local charts,

and process each one on a separate compute node. For the
final results to be globally consistent (so that each compute
node makes equivalent predictions for points in the overlap
of charts), gauge equivariance is indispensable.

6. Details on G-Padding
In a conventional CNN, one has to pad the input feature map
in order to compute an output of the same size. Although the
icosahedron itself does not have a boundary, the charts do,
and hence require padding before convolution. However, in
order to faithfully simulate convolution on the icosahedron
via convolution in the charts, the padding values need to be
copied from another chart instead of e.g. padding by zeros.
In doing so, a gauge transformation may be required.

To see why, note that the conv2d operation, which we use
to perform the convolution in the charts, implicitly assumes
that the signal is expressed relative to a fixed global gauge
in the plane, namely the frame defined by the x and y axes.
This is because the filters are shifted along the x and y
directions by conv2d, and as they are shifted they are not
rotated. So the meaning of “right” and “up” doesn’t change
as we move over the plane; the local gauge at each position
is aligned with the global x and y axes.

Hence, it is this global gauge that we must use inside the
charts shown in Figure 4 (right) of the main paper. It is
important to note that although all frames have the same
numerical expression e1 = (1, 0), e2 = (0, 1) relative to the
x and y axes, the corresponding frames on the icosahedron
itself are different for different charts. Since feature vectors
are represented by coefficients that have a meaning only
relative to a frame, they have a different numerical expres-
sion in different charts in which they are contained. The
numerical representations of a feature vector in two charts
are related by a gauge transformation.

To better understand the gauge transformation intuitively,
consider a pixel p on a colored edge in Fig. 4 of the main
paper, that lies in multiple charts. Now consider a vector
attached at this pixel (i.e. in TpM ), pointing along the
colored edge. Since the colored edge may have different
orientations when pictured in different charts, the vector
(which is aligned with this edge) will also point in different
directions in the charts, when the charts are placed on the
plane together as in Figure 4. More specifically, for the
choice of charts we have made, the difference in orientation
is always one “click”, i.e. a rotation by plus or minus 2π/6.
This is the gauge transformation gij(p), which describes the
transformation at p when switching between chart i and j.

The transformation gij(p) acts on the feature vector at p via
the matrix ρ(gij(p)), where ρ is the representation of G =
C6 associated with the feature space under consideration.
In this work we only consider two kinds of representations:



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Supplementary Material: Gauge Equivariant CNNs

scalar features with ρ(g) = 1, and regular features with ρ
equal to the regular representation:

ρ(2π/6) =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

 . (7)

That is, a cyclic permutation of 6 elements. Since 2π/6 is a
generator of C6, the value of ρ at the other group elements is
determined by this matrix: ρ(k · 2π/6) = ρ(2π/6)k. If the
feature vector consists of multiple scalar or regular features,
we would have a block-diagonal matrix ρ(gij(p)).

We implement G-padding by indexing operations on the
feature maps. For each position p to be padded, we pre-
compute gij(p), which can be +1 · 2π/6 or 0 or −1 · 2π/6.
We use these to precompute four indexing operations (for
the top, bottom, left and right side of the charts).
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