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A. Technical Details
A.1. Remark on Proposition 1’s Bound

We point out that K and B are chosen so that (8) and (9) are both bounded by δ/2. Given τ , setting B = b2(τ −
λ)2n/ log(2/δ)c for λ ∈]0, τ [ yields a minimal constant for λ = τ/3. Interestingly, B involves a floor function, even if it is
not constrained by K. An interpretation is that building large blocks increases the risk of selecting extreme values, and thus
of deteriorating the performance.

A.2. Variance Computations

A.2.1. MORM

By virtue of Chebyshev’s inequality, one gets:
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A.2.2. MORU

Observe first that
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Recall that E[Ū1(h) | Sn] = Un(h), so that
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In addition, we have, for B ≥ 4,
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Let i 6= j, one may check that
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when k 6= j and k 6= i. Hence, observing that E[h(X1, X2)h(X1, X3)] = σ2
1(h) + θ2(h), we obtain:
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Combining (14), (15) and (16), we get:
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Ū1(h)

)
=

4σ2
1(h)

n
+

2σ2
2(h)

n(n− 1)
+

2(n−B)(n+B − 1)

n(n− 1)B(B − 1)

(
2σ2

1(h) + σ2
2 + θ2(h)

)
− (n−B)(4nB − 6n− 6B + 6)

n(n− 1)B(B − 1)
θ2(h) +

4(n−B)(nB − 2n− 2B + 2)

n(n− 1)B(B − 1)
(σ2

1(h) + θ2(h)),

Var
(
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Chebyshev inequality permits to conclude.

A.3. Remark on the Term log(2/δ) in the Rate Bounds

In all results related to randomized versions (namely Proposition 1 and Proposition 3), the term log(2/δ) appears, instead
of log(1/δ). We point out that this limitation can be easily overcome by means of a more careful analysis in (5) and (13).
Indeed, K and B have been chosen so that both exponential terms are equal to δ/2, but one could of course consider splitting
the two terms into (1− κ)δ and κδ for any κ ∈]0, 1[. This, way, choosing

K =

⌈
log

(
1

(1− κ)δ

)
/(2(1/2− τ)2)

⌉
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⌊
8τ2n/(9 log
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⌋
leads to log(1/κδ) instead.

A.4. Extension to Generalized U -statistics

As noticed in Remark 5, Propositions 2 and 3 have been established for U -statistics of degree 2, but remain valid for
generalized ones. For clarity, we recall the definition of generalized U -statistics. An excellent account of properties and
asymptotic theory of U-statistics can be found in Lee (1990).

Definition 1. Let T ≥ 1 and (d1, . . . , dT ) ∈ N∗T . Let X{1,...,nt} = (X
(t)
1 , . . . , X

(t)
nt ), 1 ≤ t ≤ T , be T independent

samples of sizes nt ≥ dt and composed of i.i.d. random variables taking their values in some measurable spaces Xt with
distribution Ft(dx) respectively. Let H : X d11 × . . .×X

dT
T → R be a measurable function, square integrable with respect to

the probability distribution µ = F⊗d11 ⊗ . . .⊗F⊗dTT . Assume in addition (without loss of generality) that H(x(1), . . . ,x(T ))

is symmetric within each block of argument x(t) valued in X dtt , 1 ≤ t ≤ T . The generalized (or T -sample) U -statistic of
degrees (d1, . . . , dT ) with kernel H is then defined as
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indexes 1 ≤ i1 < . . . < idt ≤ nt and n = (n1, . . . , nT ).

Within this framework, we aim at estimating θ(h) = E
[
H(X

(1)
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]
, and an analog of the

standard MoM estimator for generalized U -statistics can be defined as follows.

Definition 2. With the notation introduced in Definition 1, let 1 ≤ K ≤ mint nt/(dt + 1). Partition each sampleX(t) into
K blocks B(t)

1 , . . . , B
(t)
K of sizes bnt/Kc. Compute θ̂k the complete U -statistics based on B(1)

k , . . . , B
(T )
k for 1 ≤ k ≤ K.

The Median-of-Generalized-U -statistics if then given by θ̂MoGU = median(θ̂1, . . . , θ̂K).
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Please note that this estimator is very different from that considered in Minsker & Wei (2018). Robust versions of U -statistics
have already been considered in the literature (for the purpose of covariance estimation, rather than the design of statistical
learning methods), from a completely different angle however. The U -statistic is viewed as a M -estimator minimizing a
criterion involving the quadratic loss, and the proposed estimator is the M -estimator solving the same criterion except that a
different loss function is used. This loss function is designed to induce robustness, while being close enough to the square
loss to derive guarantees.

The definition above is closer to that given in Joly & Lugosi (2016). Indeed, in the particular setting of a 1-sample U -statistic
of degree d1, Definition 2 coincides with the diagonal blocks estimate mentioned on page 5 of Joly & Lugosi (2016).
However, as noticed therein, this estimator only considers a small fraction of possible dt-tuples, namely those whose items
are all in the block B(t)

k . In order to overcome this limitations, an alternative strategy involving decoupled U -statistics is
adopted in Joly & Lugosi (2016). The approach pursued here is rather to consider randomized U -statistics, which is another
way to introduce variability into the tuples considered to build the estimator.

Proposition 4. Using the notation of Definitions 1 and 2, let nmin = mint nt, and n, d such that n/d = mint nt/dt. Let
δ ∈ [e1−2n/9d, 1[. Choosing K = d9/2 log(1/δ)e, we have with probability at least 1− δ:

∣∣∣θ̂MoGU − θ(h)
∣∣∣ ≤

√
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δ
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+

C2 log2( 1
δ )

nmin
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δ

) ,
with C1 = 108σ2

1(h) and C2 = 486σ2
2(h).

Proposition 5. Now let θ̂MoRGU (Median-of-Randomized-Generalized-U -statistics) be the estimator of θ(h) such that the
blocks B(t)

k are no longer partitions of the samples X(t), but rather drawn from SWoR. For any τ ∈]0, 1/2[, for any
δ ∈ [2e−8τ2n/9d, 1[, choosing K = dlog(2/δ)/(2(1/2− τ)2)e and Bt = b8τ2nt/(9 log(2/δ))c, it holds with probability
larger than 1− δ: ∣∣∣θ̂MoRGU − θ(h)

∣∣∣ ≤
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δ
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δ

) ,
with C1(τ) = 27σ2

1(h)/(2τ3) and C2 = 243σ2
2(h)/(4τ3).

Proofs. The proofs are analogous to that of Propositions 2 and 3, except that concentration results for generalized U -statistics
are used (see e.g. Hoeffding (1963)).

A.5. Proof of Theorem 1 (sketch of)

The proof follows the path of Theorem 2.11’s proof in Lugosi & Mendelson (2016), with adjustments every time U -statistics
are involved instead of standard means. The first one deals with the constants involved in the propositions.

Definition 3. Let λQ(κ, η, h) and λM(κ, η, h) defined as in Lugosi & Mendelson (2016) (see Definitions 2.2 and 2.3 therein).

Definition 4. A difference however occurs on rE(κ, h) and r̄M(κ, h). Indeed, let

rE(κ, h) = inf

r : E sup
u∈Fh,r

∣∣∣∣∣∣
√

2
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√
B(B − 1)

2
r

∣∣∣∣∣∣
 ,

and
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∣∣∣∣∣∣
√

2
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∑
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√
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2
r2

∣∣∣∣∣∣
 .

While the difference on rE(κ, h) is only due to the double summation, the change in r̄M(κ, h) also comprises the removal
of Y , as the general framework for pairwise learning does not involve any label. As a consequence, any Y in the older
definitions is replaced by 0. Moreover, one can assess a 0 noise W such that ‖W‖L2 = 0 ≤ 1 = σ. This way, all σ’s
encountered in older definitions and propositions can be replaced by 1.
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Lemma 1. For every q > 2 and L ≥ 1, there are constants B and κ0 that depend only on q and L for which the following
holds. If ‖h‖Lq ≤ L‖h‖L2 and X1, . . . , XB are independent copies of X , then

P

 2

B(B − 1)

∑
1≤i<j≤B

|h(Xi, Xj)| ≥ κ0‖h‖L2

 ≥ 0.9.

Proof. The proof is analogous to that of Lemma 3.4 in Mendelson (2017), except that a version of Berry-Esseen theorem
for U -statistics (Callaert & Janssen, 1978) is used instead of the standard one.

Lemma 2. For every q > 2 and L ≥ 1, there is a constant κ1 that depends only on q and L for which the following holds.
If X1, . . . , XB are independent copies of X , then

P

 2

B(B − 1)

∑
1≤i<j≤B

|h(Xi, Xj)| ≤ κ1‖h‖L2

 ≥ 0.9.

Proof. As
{

2
B(B−1)

∑
i<j |h(Xi, Xj)| ≥ κ1‖h‖L2

}
⊂ {∃i < j, |h(Xi, Xj)| ≥ κ1‖h‖L2

}, Chebyshev inequality gives

P

 2

B(B − 1)

∑
1≤i<j≤B

|h(Xi, Xj)| ≥ κ1‖h‖L2

 ≤ B(B − 1)

2
P {|h(Xi, Xj)| ≥ κ1‖h‖L2

} ≤ B(B − 1)

2κ2
1

.

Since B only depends on q and L (see proof of Lemma 1), so does κ1.

Proposition 6. There are constants κ, η,B, c > 0 and 0 < α < 1 < β depending only on q and L for which the following
holds. For a fixed f∗ ∈ F , let r∗ = max{λQ(κ, η,Hf∗), rE(κ,Hf∗)}. For any r ≥ 2r∗, with probability at least
1− 2 exp(−cn), ∀ Hf ∈ HF ,

• If ΦS(f, f∗) ≥ βr, then β−1ΦS(f, f∗) ≤ ‖Hf −Hf∗‖L2 ≤ α−1ΦS(f, f∗).

• If ΦS(f, f∗) ≤ βr, then ‖Hf −Hf∗‖L2
≤ (β/α)r.

Proof. Using Lemma 1 and Lemma 2 with h = Hf −Hf∗ , together with the union bound, it holds that for every block Bk
one has with probability at least 0.8

κ0‖Hf −Hf∗‖L2 ≤ Ūk(|Hf −Hf∗ |) ≤ κ1‖Hf −Hf∗‖L2 . (17)

Denoting by Ik the indicator of this event, and by Īk its complementary, we have E[Īk] ≤ 0.2. Moreover,

P

{
K∑
k=1

Ik ≥ 0.7K

}
= 1− P

{
1

K

K∑
k=1

Īk ≥ 0.3

}
.

When a MoU estimate is used, the Ik are independent, since built on disjoint blocks, and the concentration of Binomial
random variables allows to finish. But interestingly, when a MoCU is used, it is straightforward to see that the last term is
exactly the same quantity as the one involved in (10). The same method can thus be used since an upper bound of E[Īk] is
already available. Precisely, choosing τ = 0.25 < 0.3 and recalling B = bn/Kc, it holds

P

{
1

K

K∑
k=1

Īk ≥ 0.3

}
≤ 2 exp

(
−2(0.05)2K

)
.

So the number of blocks which satisfy (17) is larger than 0.7K with probability at least 1− 2 exp(−c1K) for some positive
constant c1. The rest of the proof is similar to that of Proposition 3.2 in Lugosi & Mendelson (2016).
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Proposition 7. Under the assumptions of Theorem 1, and using its notation, with probability at least

1− 2 exp(−c0nmin{1, r2}),

∀ f ∈ F if ΦS(f, f∗) ≥ βr then f∗ defeats f . In particular f∗ ∈ H , and ∀ f ∈ H , ΦS(f, f∗) = ‖Hf −Hf∗‖L2 ≤ βr.

Proof. This proof carefully follows that of Proposition 3.5 in Lugosi & Mendelson (2016) (see Section 5.1 therein), so that
only changes induced by pairwise objectives are detailed here. As discussed in Definition 4, every Y can be replaced by 0,
and every σ by 1. Attention must also be paid to the fact that in the context of means, m, the cardinal of each block, is also
equal to

(
m
1

)
, the number of possible 1-combinations. In our notation, it thus may sometimes be identified to B, the cardinal

of the blocks, and sometimes to B(B−1)
2 , the number of pairs per block.

Proof of pairwise Lemma 5.1 First, one may rewrite

Qf,g =
2

B(B − 1)

∑
i<j

(Hf (Xi, Xj)−Hg(Xi, Xj))
2
,

Mf,g =
4

B(B − 1)

∑
i<j

(Hf (Xi, Xj)−Hg(Xi, Xj)) ·Hg(Xi, Xj),

and
Rk(u, t) =

∣∣{(i, j) ∈ B2
k : i < j, |u(Xi, Xj)| ≥ t}

∣∣ =
∑

i<j∈B2
k

1{|u(Xi, Xj) ≥ t|}.

Since all pairs are not independent, even if the Xi’s are, one cannot use directly the proposed method. Instead, the Hoeffding
inequality for U -statistics gives that the probability of each Rk(Hf −Hf∗ , κ0r) to be greater than B(B−1)ρ0

4 is greater than

1− exp(−Bρ
2
0

4 ). For τ small enough, we still have that this probability is greater than 1− τ/12. Aggregating the Bernoulli
may be done in two ways. If we deal with a MoU estimate, the independence between blocks leads to the same conclusion.
If a MoRU estimate is used instead, the remark made for Proposition 6’s proof is again valid, and one can conclude.

The next difficulty arises with the bounded differences inequality for Ψ. If a MoU estimate is used, changing one sample X ′i
only affects one block, and generates a 1/K difference at most, exactly like with MoM, so that the bound holds the same
way. On the contrary, if a MoRU is used, there is no guarantee that the replaced sample contaminates all K blocks. The
analysis of the MoRU behavior in that case is a bit trickier, and we restrict ourselves to MoU estimates for the matches.

The end of the proof uses a standard symmetrization argument. This kind of arguments still apply to U -statistics (see e.g.
p.150 of Peña & Giné (1999)), and the proof is completed in the pairwise setting.

Proof of pairwise Lemma 5.2

P


∣∣∣∣∣∣ 2

B(B − 1)

∑
i<j

Ui,j − EU

∣∣∣∣∣∣ ≥ t
 ≤ 2

B(B − 1)t
E

∣∣∣∣∣∣
∑
i<j

Ui,j − EU

∣∣∣∣∣∣
≤ 2

B(B − 1)t

√√√√√E

∣∣∣∣∣∣
∑
i<j

Ui,j − EU

∣∣∣∣∣∣
2

≤ 2

B(B − 1)t

√ ∑
i<j, k<l

E[Ui,jUj,k]− (EU)2

≤ 2

B(B − 1)t

√
B(B − 1)

2

(
E[U2]− (EU)

2
)

+B(B − 1)(B − 2)σ2
1)

≤
√

2(B − 2)√
B(B − 1)t

‖U‖L2

P


∣∣∣∣∣∣ 2

B(B − 1)

∑
i<j

Ui,j − EU

∣∣∣∣∣∣ ≥ t
 ≤

√
2√
Bt
‖U‖L2
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After that, every case needing a pairwise investigation has already been treated earlier in the section: Binomial concentration,
bounded differences inequality, symmetrization arguments. So is Proposition 7 proved.

Theorem 1’s proof. Proposition 6 and Proposition 7 gives that if any f ∈ F wins all its matches, then with probability at
least 1− 2 exp(−c0nmin{1, r2}) ‖Hf −Hf∗‖L2

≤ cr. Hence it also holds with the same probability:

R(f)−R(f∗) = ‖Hf‖L2
− ‖Hf∗‖L2

≤ ‖Hf −Hf∗‖L2
≤ cr.

Although this extension to the pairwise learning framework deals with any loss `, it is important to notice that the extension
of Theorem 2.11 in Lugosi & Mendelson (2016) is applied to Hf , and not f directly. Hf is penalized via the quadratic loss
(as in Lugosi & Mendelson (2016)), so that the Theorem apply, up to technicalities induced by the U -statistics. Doing so,
one achieved a control on ‖Hf −H∗f ‖L2

(as in Lugosi & Mendelson (2016)), which is equal to ‖Hf −Hf∗‖L2
thanks to

the remark stated in the first paragraph of Subsection 3.3. This quantity happens to be greater than the excess risk of f ,
hence the conclusion. Formally, the tournament procedure outputs a Ĥf , and one has to recover the f̂ such that Ĥf = Hf̂ .

Knowing the dependence between f and Hf , and with the ability to evaluate Ĥf , which is known, on any pair, this last step
should not be too difficult.

About the extension to pairwise learning, one should keep in mind that the general framework does not involve any target Y .
Instead, one seeks directly to minimize `(f,X,X ′) =

√
`(f,X,X ′)

2
= (
√
`(f,X,X ′)− 0)2 = (Hf (X,X ′)− 0)2. We

recover the setting of Theorem 2.11 in Lugosi & Mendelson (2016): quadratic loss, with Y = 0, for the decision function
Hf . The only novelty to address here is the fact that Hf depends on two random variables X and X ′. And this is precisely
what has been done in this subsection.
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B. More Numerical Results
B.1. MoRM Estimation Results

Table 3. Quadratic Risks for the Mean Estimation, δ = 0.001

NORMAL (0, 1) STUDENT (3) LOG-NORMAL (0, 1) PARETO (3)

MOM 0.00149 ± 0.00218 0.00410 ± 0.00584 0.00697 ± 0.00948 1.02036 ± 0.06115
MORM1/6, SWOR 0.01366 ± 0.01888 0.02947 ± 0.04452 0.06210 ± 0.07876 1.12256 ± 0.14970
MORM1/6, MC 0.01370 ± 0.01906 0.02917 ± 0.04355 0.06167 ± 0.07143 1.13058 ± 0.14880
MORM3/10, SWOR 0.00255 ± 0.00361 0.00602 ± 0.00868 0.01241 ± 0.01610 1.05458 ± 0.07041
MORM3/10, MC 0.00264 ± 0.00372 0.00622 ± 0.00895 0.01283 ± 0.01650 1.05625 ± 0.07298
MORM9/20, SWOR 0.00105 ± 0.00148 0.00264 ± 0.00372 0.00497 ± 0.00668 1.02802 ± 0.04903
MORM9/20, MC 0.00105 ± 0.00146 0.00265 ± 0.00374 0.00499 ± 0.00673 1.02985 ± 0.04880
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Figure 1. Empirical Quantiles for the Different Mean Estimators on 4 Laws

The empirical quantiles confirm the quadratic risks results: the τ parameter is crucial, making MoRM the worst or the best
estimate depending on its value. The sampling scheme does not affect to much the performance, even if the MC scenario is
much more complex to analyze theoretically.
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B.2. MoRU Estimation Results

Table 4. Quadratic Risks for the Variance Estimation, δ = 0.001

NORMAL (0, 1) STUDENT (3) LOG-NORMAL (0, 1) PARETO (3)

MOU1/2; 1/2 0.00409 ± 0.00579 1.72618 ± 28.3563 2.61283 ± 23.5001 1.35748 ± 36.7998
MOUPARTITION 0.00324 ± 0.00448 0.38242 ± 0.31934 1.62258 ± 1.41839 0.09300 ± 0.05650
MORUSWOR 0.00504 ± 0.00705 0.51202 ± 3.88291 2.01399 ± 4.85311 0.09703 ± 0.07116
MOIU1/6, SWOR 0.00206 ± 0.00285 1.78161 ± 34.7216 2.50529 ± 21.8989 1.37800 ± 40.1308
MOIU1/6, MC 0.00205 ± 0.00281 1.65481 ± 26.2157 2.61701 ± 24.7918 1.50578 ± 42.9135
MOIU3/10, SWOR 0.00216 ± 0.00301 1.13887 ± 16.9511 2.07136 ± 14.8312 0.85041 ± 21.9916
MOIU3/10, MC 0.00211 ± 0.00288 1.22402 ± 17.4715 2.16590 ± 15.2378 0.89035 ± 22.2866

10−6 10−5 10−4 10−3 10−2 10−1

δ

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

q̂ 1
−
δ(|

̂ θ−
θ|

)

Normal̂(0, 1)
MoCUPart

MoCUSWoR

MoIU3/10, SWoR

MoIU3/10,MC

10−6 10−5 10−4 10−3 10−2 10−1

δ

0.8

1.0

1.2

1.4

1.6

1.8

2.0

q̂ 1
−
δ(|

̂ θ−
θ|

)

Student̂(3)
MoCUPart

MoCUSWoR

MoIU3/10, SWoR

MoIU3/10,MC

10−6 10−5 10−4 10−3 10−2 10−1

δ

2.0

2.5

3.0

3.5

q̂ 1
−
δ(|

̂ θ−
θ|
)

Log-normal (0, 1)
MoCUPart

MoCUSWoR

MoIU3/10, SWoR

MoIU3/10,MC

10−6 10−5 10−4 10−3 10−2 10−1

δ

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

q̂ 1
−
δ(|

̂ θ−
θ|

)

Paretô(3)
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Figure 2. Empirical Quantiles for the Different Variance Estimators on 4 Laws

The partitioning MoU seems to outperform every other estimate. One explanation can be that an extreme value may corrupt
only one block within this method, whereas randomized versions can suffer from it in several blocks.
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B.3. MoRU Learning Results: a Metric Learning Application
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Figure 3. Gradient Descent Convergences for Normal and Contaminated Datasets

In this experiment, we try to learn from points that are known to be close or not, a distance that fits them, over the set
of all possible Mahalanobis distances, i.e. d(x, y) =

√
(x− y)>M(x− y) for some positive definite matrix M . It is

done through mini-batch gradient descent over the parameter M . On the normal iris dataset (top), we see that standard
mini-batches perform well, while MoRU mini-batches induce a much slower convergence. But in the spirit of Lecué &
Lerasle (2017), the experiment is also run on a (artificially) corrupted dataset (bottom). This highlights how well can the
MoM-like estimators behave in the presence of outliers. Indeed, although the convergence with the MoRU mini-batches
remains slower than with the standard ones on the normal regime, they avoid peaks, presumably caused by the presence of
one (or more) outlier in the mini-batch. This makes it a very interesting alternative in the context of highly corrupted data.
Experiments run on the same dataset for clustering purposes show the same behavior.
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C. Alternative Sampling Schemes - Possible Extensions
As pointed out in Remark 1 and in the discussion in the end of Section 3, the approaches investigated in the present paper
could be implemented with sampling procedures different from the SRSWoR scheme. It is the purpose of this section to
review possible alternatives and discuss the technical difficulties inherent to the study of their performance.

C.1. MoRM using a Sampling with Replacement Scheme

Rather than forming K ≥ 1 data blocks of size B ≤ n from the original sample Sn by means of a SRSWoR scheme,
one could use a Monte-Carlo procedure and draw independently K times an arbitrary number B of observations with
replacement. In this case, each data block Bk is characterized by a random vector ek = (ek,1, . . . , ek,B) independent
from Sn, where, for each draw b ∈ {1, . . . , B}, ek,b = (ek,b(1), . . . , ek,b(n)) is a multinomial random vector in {0, 1}n
indicating the index of the observation randomly selected: for any i ∈ {1, . . . , n}, ek,b(i) = 1 if i has been chosen,
ek,b(i) = 0 otherwise and P{ek,b(i) = 1} = 1/n (notice also that

∑n
i=1 ek,b(i) = 1 with probability one). In this case, the

empirical mean based on block Bk can be written as

θ̃k =
1

B

B∑
b=1

〈ek,b, Zn〉,

where Zn = (Z1, . . . , Zn) and 〈., .〉 is the usual Euclidean scalar product on Rn. Conditioned upon Sn, the θ̃k’s are i.i.d.
and we have E[θ̃1 | Sn] = θ̂n, as well as

Var(θ̃1|Sn) =
1

B

 1

n

n∑
j=1

Z2
j − θ̂2

n

 .

The corresponding variant of the MoM estimator is

θ̃MoRM = median
(
θ̃1, . . . , θ̃K

)
.

Observe that this estimation procedure offers a greater flexibility, insofar as both K and B can be arbitrarily chosen. In
addition, the variance of the block estimators θ̃k:

Var(θ̃1) = Var
(
E[θ̃1 | Sn]

)
+ E

[
Var
(
θ̃1 | Sn

)]
=

(
1

n
+

1

B

(
1− 1

n

))
σ2.

It is comparable to that of the θ̄k’s for the same block size B ≤ n, although always larger: Var(θ̃1) − Var(θ̄1) =
(1 − 1/B)σ2/n ≥ 0. However, investigating the accuracy of θ̃MoRM is challenging, due to the fact that it is far from
straightforward to study the concentration properties of the random quantity

Ũεn = P{|θ̃1 − θ| > ε | Sn}.

Even if Chebyshev’s inequality yields

E[Ũεn] = pε ≤
(

1

n
+

1

B

(
1− 1

n

))
σ2

ε2
,

the r.v. Ũεn is a complex functional of the original data Sn, due to the possible multiple occurrence of a given observation in
a single sample obtained through sampling with replacement. In particular, in contrast to Uεn, it is not a U -statistic of degree
B. Viewing it as a function of the n i.i.d. random variables Z1, . . . , Zn and observing that changing the value of any of
them can change its value by at most 1− (1− 1/n)B ≤ B/n, the bounded difference inequality (see McDiarmid (1989))
gives only: ∀t > 0,

P
{
Ũεn − pε ≥ t

}
≤ exp

(
−2

n

B2
t2
)
, (18)

while we have P{Uεn − pε ≥ t} ≤ exp(−2(n/B)t2). Hence, the bound (18) is not sharp enough to establish guarantees for
the estimator θ̃MoRM similar to those stated in Proposition 1.
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C.2. Medians-of-Incomplete U -statistics

The computation of the U -statistic (2) is expensive in the sense that it involves the summation of O(n2) terms. The concept
of incomplete U -statistic, see Blom (1976) permits to address the computational issue raised by the expensive calculation
of the U -statistic (2), which involves the summation of O(n2) terms, so as to achieve a trade-off between scalability
and variance reduction. In one of its simplest forms, it consists in selecting a subsample of size M ≥ by sampling with
replacement (i.e. Monte-Carlo scheme) in the set Λ = {(i, j) : 1 ≤ i < j ≤ n}, of all pairs of observations that can be
formed from the original sample. Denoting by {(i1, j1), . . . , (iM , jM )} ⊂ Λ the subsample thus drawn, the incomplete
version of the U -statistic (2) is:

ŨM (h) =
1

M

M∑
m=1

h(Xim , Xjm).

As can be easily shown, (C.2) is an unbiased estimator of θ. More precisely, its conditional expectation given Sn is equal to
Un(h) and its variance is

Var
(
ŨM (h)

)
=

(
1− 1

M

)
Var (Un(h)) +

σ2(h)

M
.

Repeating independently the sampling procedure K times in order to compute incomplete U -statistics
ŨM,1(h), . . . , ŨM,K(h) (conditionally independent given the original dataset Sn), one may consider the Median of
Incomplete U -statistic:

θ̃MoIU(h) = median
(
ŨM,1(h), . . . , ŨM,K(h)

)
.

Although the variance of the ŨM,k(h)’s are smaller than that of the Ûk(h)’s (and that of the Ūk(h)’s) for the same number
of pairs involved in the computation of each estimator, the argument underlying Proposition 3’s proof cannot be adapted to
the present situation because the concentration properties of the random quantity

W̃ ε
n = P

{∣∣∣ŨM (h)− θ(h)
∣∣∣ > ε | Sn

}
,

which has mean

q̃ε = P
{∣∣∣ŨM (h)− θ(h)

∣∣∣ > ε
}
≤

Var
(
ŨM (h)

)
ε2

= O
(

1

Mε2

)
,

are very difficult to study, due to the complexity of the data functional (C.2). Like in SM C.1, a straightforward application
of the bounded difference inequality gives: ∀t > 0,

P
{
W̃ ε
n − q̃ε ≥ t

}
≤ exp

(
−2

n

M2
t2
)
.

Obviously, this bound is not sharp enough to yield a bound of the same order as those in Proposition 2 and Proposition 3.

Alternative sampling schemes. Other procedures than the Monte-Carlo scheme above can of course be considered to
build a subset of all pairs of observations and compute an incomplete U -statistic. Refer to Lee (1990) or to subsection 3.4
in Clémençon et al. (2016) for further details. When selecting a subsample of size M ≤ n(n − 1)/2 by simple random
sampling without replacement (SRSWoR) in the set of all pairs of observations that can be formed from the original sample,
the version of (C.2)obtained has conditional expectation and variance:

E
[
ŨM (h) | X1, . . . , Xn

]
= Un(h),

Var
(
ŨM (h) | X1, . . . , Xn

)
=

(
n
2

)
−M(
n
2

) × V̂ 2
n (h)

M
,

where
V̂ 2
n (h) =

1(
n
2

)
− 1

∑
i<j

(h(Xi, Xj)− Un(h))
2
.

Hence, its variance can be expressed as

Var
(
ŨM (h)

)
= Var (Un(h)) +

(
n
2

)
−M(

n
2

)
− 1

× 1

M

(
σ2(h) + Var (Un(h))

)
= O(1/M).
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In contrast with the situation investigated in subsection 3.1, the conditional expectation W̃ ε
n cannot be viewed as a U -statistic

of degree M , insofar as the n(n − 1)/2 variables {h(Xi, Xj) : i < j} are not i.i.d. r.v.’s. Here as well, the bounded
difference inequality is not sufficient to get bounds of the same order as that obtained in those in Proposition 2 and
Proposition 3, jumps

1−
(

(n− 1)(n− 2)/2

M

)
/

(
n(n− 1)/2

M

)
being at least of order M/n, as Stirling’s formula shows.


