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Abstract

We study the problem of optimizing the clustering of a set of vectors when the quality of the
clustering is measured by the Entropy or the Gini impurity measure. Our results contribute to
the state of the art both in terms of best known approximation guarantees and inapproximability
bounds: (i) we give the first polynomial time algorithm for Entropy impurity based clustering
with approximation guarantee independent of the number of vectors and (ii) we show that the
problem of clustering based on entropy impurity does not admit a PTAS. This also implies an
inapproximability result in information theoretic clustering for probability distributions closing a
problem left open in [Chaudhury and McGregor, COLT08] and [Ackermann et al., ECCC11]. We
also report experiments with a new clustering method that was designed on top of the theoretical
tools leading to the above results. These experiments suggest a practical applicability for our
method, in particular, when the number of clusters is large.

1 Introduction

Data clustering is a fundamental tool in machine learning that is commonly used to reduce the
computational resources required to analyse large datasets. For comprehensive descriptions of
different clustering methods and their applications refer to [14, 15]. In general, clustering is the
problem of partitioning a set of items so that, in the output partition, similar items are grouped
together and dissimilar items are separated. When the items are represented as vectors that
correspond to frequency counts or probability distributions many clustering algorithms rely on so
called impurity measures (e.g., entropy) that estimate the dissimilarity of a group of items (see,
e.g., [13] and references therein) In a simple example of this setting a company may want to group
users according to their taste for different genres of movies. Each user u is represented by a vector,
where the value of the ith component counts the number of times u watched movies from genre
i. To evaluate the dissimilarity of a group of users we calculate the impurity of the sum of their
associated vectors and then we select the partition for which the sum of the dissimilarities of its
groups is minimum. The design of clustering methods based on impurity measures is the central
theme of this paper.
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Problem Description. An impurity measure I : v ∈ Rg 7→ I(v) ∈ R+ is a function that assigns to
a vector v a non-negative value I(v) so that the more homogeneous v, with respect to the values of
its coordinates, the larger its impurity. Well-known examples of impurity measures are the Entropy
impurity (aka Information Gain in the context of random forests) and the Gini impurity [7]:

IEnt(v) = ‖v‖1
g∑
i=1

vi
‖v‖1

log
‖v‖1
vi

,

IGini(v) = ‖v‖1
g∑
i=1

vi
‖v‖1

(
1− vi
‖v‖1

)
We are given a collection of n many g-dimensional vectors V with non-negative values and we

are also given an impurity measure I. The goal is to find a partition P of V into k disjoint groups
of vectors V1, . . . , Vk so as to minimize the sum of the impurities of the groups in P, i.e.,

I(P) =

k∑
m=1

I

( ∑
v∈Vm

v

)
. (1)

We refer to this problem as the Partition with Minimum Weighted Impurity Problem
(PMWIP). While we present results for IGini our main focus is on the Entropy impurity IEnt. We
use PMWIPEnt (PMWIPGini) to refer to PMWIP with impurity measure IEnt (IGini).

Motivations. Clustering based on impurity measures is used in a number of relevant application
as: (i) partition the values of attributes during the branching phase in the construction of random
forest/decision trees [7, 8, 11, 12, 19]. (ii) clustering of words based on their distribution over
a text collection for improving classification tasks [6, 13] and (iii) quantization of memoryless
channels/design of polar codes [28, 18, 17, 25, 24]. Although these papers present their clustering
optimization criterion in terms of different information theoretic concepts, e.g., mutual information,
information gain, KL-divergence, we note that all of them can be rephrased in terms of our objective
function, the entropy impurity measure. These equivalences are discussed in [11].

Despite of its wide use in relevant applications and entropy being, arguably, the most important
measure in Information Theory as well as relevant in Machine Learning, the current understanding
of PMWIP from the perspective of algorithms/complexity is very limited as we detail further.
This contrasts with what is known for clustering in metric spaces where the gap between the ratios
achieved by the best known algorithms and the largest known inapproximability factors, assuming
P 6= NP , are somehow tight (see [5] and references therein). Our study contributes to change this
scenario.

Our Results. First we present a simple linear time algorithm that simultaneously guarantees (i)
an O(log

∑
v∈V ‖v‖1) approximation for PMWIPEnt; (ii) an O(log n+log g) approximation for the

case where all vectors in V have the same `1 norm and (iii) a 3-approximation for the PMWIPGini.
The last is tight in the sense that one cannot obtain a PTAS for PMWIPGini, unless P=NP, due
to its connection with the k-means problem [5, 20].

Then, we present a second algorithm that provides an O(log2(min{k, g}))-approximation for
PMWIPEnt in polynomial time. Our algorithm is the first approximation algorithm for clustering
based on entropy minimization, among those that do not rely on assumptions over the input data,
which achieves an approximation that does not depends on n. We also explore a relation between
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vertex covers and star decompositions in cubic graphs to prove that PMWIPEnt is APX-Hard even
for the case where all vectors have the same `1-norm. This result solves a problem that remained
open in previous work [9, 2].

In order to assess the potential of our theoretical tools/findings for practical purposes we devel-
oped a new clustering method, on top of them, and compared it with Divisive Clustering [13],
an adaptation of k-means that uses Kullback-Leibler divergence (KL-divergence) instead of squared
Euclidean distance. We observe in our experiments, over two datasets, that the new method ob-
tains partitions with impurity close to that obtained by Divisive Clustering. The advantage of
our method is that it is much faster, especially when the number of clusters is large, since it runs
in O(n log n+ ng) time while Divisive Clustering has Θ(ngk) complexity per iteration.

Techniques. In terms of algorithmic techniques, when g > k, the first step of both algorithms
proposed here is to employ an extension of the approach introduced in [19] that allows to reduce the
dimensionality of the vectors in V from g to k with a controllable additive loss in the approximation
ratio. In [19], where the case k = 2 is studied, after the reduction step, an optimal clustering
algorithm is used. However, for arbitrary k, the focus of our work, the same strategy cannot be
applied since the problem is NP-Complete. Thus, it is crucial to devise novel procedures to handle
the case where g ≤ k.

The procedure employed by the first algorithm is quite simple: it assigns vectors to groups
according to the dominant coordinate, that is, one with the largest value. The procedure of the
second algorithm is significantly more involved, it relies on the combination of the following results:
(i) the existence of an optimal algorithm for g = 2 [18];(ii) the existence of a mapping χ : Rg 7→ R2

such that for a set of vectors B which is pure, i.e., a set of vectors with the same dominant
component, IEnt(

∑
v∈B v) = O(log g)IEnt(

∑
v∈B χ(v)) and (iii) a structural theorem that states

that there exists a partition whose impurity is at an O(log2 g) factor from the optimal one and
such that at most one of its groups is mixed, i.e., it is not pure. The search for a partition of this
type with low impurity can be achieved in pseudo-polynomial time via Dynamic Programming. To
obtain a polynomial time algorithm we then employ a filtering technique similar to that employed
for obtaining a FPTAS for the subset sum problem.

Related Work. We first discuss theoretical work on the problem. Kurkoski and Yagi [18] showed
that PMWIPEnt can be solved in polynomial time when g = 2. The correctness of this algorithm
relies on a theorem, proved in [7], which is generalized for g > 2 and k groups in [11, 8, 12].
These theorems state that there exists an optimal solution that can be separated by hyperplanes
in Rg. These results imply the existence of an O(ng) optimal algorithm when k = 2. Recently,
it was proved that PMWIPEnt is NP -Complete, even when k = 2, and constant approximation
algorithms were given for a class of impurity measures that includes Entropy and Gini for k = 2
[19]. As noted before their approach cannot be directly employed to handle the case where k is
arbitrary.

PMWIPEnt has recently attracted large interest in the information theory community in the
context of efficient quantizer design, and also motivated by the construction of polar codes [28, 18,
17, 25, 24] In our terminology, the focus of this series of work is proving bounds on the increase of
impurity when we reduce the number of clusters from n to k.

PMWIPEnt is a generalization of MTCKL [9], the problem of clustering a set of n probability
distributions into k groups minimizing the total Kullback-Leibler (KL) divergence from the dis-
tributions to the centroids of their assigned groups. MTCKL corresponds to the particular case
of PMWIPEnt where each vector in V has the same `1 norm. While the optimal solutions of
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PMWIPEnt and MTCKL match, the problems differ in terms of approximation since the objective
function for MTCKL has an additional constant term −

∑
v∈V IEnt(v) so that an α-approximation

for MTCKL problem implies an α-approximation for PMWIPEnt while the converse is not neces-
sarily true.

In [9] an O(log n) approximation for MTCKL is given. Some (1 + ε)-approximation algorithms
were proposed for a constrained version of MTCKL where every element of every probability distri-
bution lies in the interval [λ, v] [3, 1, 4, 22]. The algorithm from [3, 4] runs in O(n2O(mk/ε log(mk/ε)))
time, where m is a constant that depends on ε and λ. In [1] the running time is improved to
O(ngk + g2O(k/ε log(k/ε)) logk+2(n)) via the use of weak coresets. Recently, using strong coresets,
O(ngk+2poly(gk/ε) time is obtained [22]. We shall note that these algorithms provide guarantees for
µ-similar Bregman divergences, a class of metrics that includes domain constrained KL divergence.
By using similar assumptions on the components of the input probability distributions, Jegelka
et. al. [16] show that Lloyds k-means algorithm—which also has an exponential time worst case
complexity [29]—obtains an O(log k) approximation for MTCKL.

Among the algorithms mentioned for MTCKL, the one that allows a more direct comparison
with ours is the method proposed in [9] since it runs in polytime and does not rely on assumptions
over the input data. As discussed before an α-approximation for the MTCKL problem implies
α-approximation for the special case of PMWIPEnt with vectors of the same `1 norm, so the
approximation measure used in [9] is more challenging. However, our results apply to a more
general problem and nonetheless we are able to provide approximation guarantee depending on the
minimum between the logarithm of the number of clusters and the dimension while the guarantee
in [9] depends on the logarithm of the number of input vectors.

In terms of computational complexity, Chaudhuri and McGregor [9] proved that a variant of
MTCKL where the centroids must be chosen from the vectors in V is NP-Complete. Ackermann
et. al. [2] proved that MTCKL is NP-Hard. Our hardness result for PMWIPEnt implies that
clustering with KL-Divergence if APX-Hard, improving the previous results.

Experimental work on clustering using impurity measures have been performed by a number of
authors [6, 12, 27, 13, 21, 22]. A variant of Loyds k-means that uses Kullback-Leibler divergence
rather than squared Euclidean distance was proposed independently in [11, 13]. Experiments from
[13] suggest that this method, denoted by them as Divisive Clustering, is superior to those
proposed in [6, 27]. That is the reason why we decided to compare our method with this specific
one.

2 Preliminaries

We start defining some notations employed throughout the paper. An instance of PMWIP is a
triple (V, k, I), where V is a collection of non-null vectors in Rg with non-negative integer coordi-
nates, k is an integer larger than 1 and I is a scaled impurity measure.

We assume that for each coordinate i = 1, . . . , g there exists at least one vector v ∈ V whose
ith coordinate is non-zero, i.e., the vector

∑
v∈V v has no zero coordinates—for otherwise we

could consider an instance of PMWIP with the vectors lying in some dimension g′ < g. For
a set of vectors S, the impurity I(S) of S is given by I(

∑
v∈S v). The impurity of a partition

P = (V (1), . . . , V (k)) of the set V is then I(P) =
∑k

i=1 I(V (i)). We use OPT(V, I, k) to denote the
minimum possible impurity for an k-partition of V and, whenever the context is clear, we simply
talk about instance V (instead of (V, I, k)) and of the impurity of an optimal solution as OPT(V )
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(instead of OPT(V, I, k)). We say that a partition (V (1), . . . , V (k)) is optimal for input (V, I, k) iff∑k
i=1 I(V (i)) = OPT(V, I, k).
For an algorithm A and an instance (V, I, k), we denote by A(V, I, k) and I(A(V, I, k)) the

partition output by A on instance (V, I, k) and its impurity, respectively. Whenever it is clear from
the context, we omit to specify the instance and write I(A) for I(A(V, I, k)).

We use bold face font to denote vectors, e.g., u,v, . . .. For a vector u we use ui to denote its ith
component. Given two vectors u = (u1, . . . , ug) and v = (v1, . . . , vg) we use u · v to denote their
inner product and u ◦ v = (u1v1, . . . , ugvg) to denote their component-wise (Hadamard) product.
We use 0 and 1 to denote the vectors in Rg with all coordinates equal to 0 and 1, respectively.
We use [m] to denote the set of the first m positive integers. For i = 1, . . . , g we denote by ei the
vector in Rg with the ith coordinate equal to 1 and all other coordinates equal to 0.

The following properties will be useful in our analysis.

Proposition 1. Let p ∈ [0, 0.5). Then, p log(1/p) ≥ (1− p) log[1/(1− p)]

Proof. For p = 0 and p = 0.5 the result holds. Moreover, the derivative of p log(1/p) − (1 −
p) log[1/(1− p)] is [ln(1/(p)(1− p))− 2]/ ln(2)

Proposition 2. Let A > 0. The function f(x) = x log(A/x) is increasing in the interval (0, A/e]
and decreasing in the interval (A/e,A] so that its maximum value in the interval [0, A] is (A log e)/e.

Proof. The result follows because f ′(x) = (ln(A)− lnx− 1)/ ln 2, the derivative of f(x) is positive
in the interval (0, A/e) and negative in the interval [A/e,A).

2.1 Frequency weighted impurity measures with subsystem property

The impurity measures we will focus on, namely Gini and Entropy, are special cases of a larger
class of impurity measures, which we denote by C, that satisfy the following definition

I(u) = ‖u‖1
dim(u)∑
i=1

f

(
ui
‖u‖1

)
, (P0)

where dim(u) is the dimension of vector u and f : R → R is a function satisfying the following
conditions:

1. f(0) = f(1) = 0 (P1)

2. f is strictly concave in the interval [0,1] (P2)

3. For all 0 < p ≤ q ≤ 1, it holds that f(p) ≤ p
q · f(q) + q · f

(
p
q

)
(P3)

Impurity measures satisfying the conditions (P0)-(P2) are called frequency-weighted impurity
measures based on concave functions [12]. A fundamental properties of such impurities measures
is that they are superadditive as shown in [12]. We record this property in the following lemma.

Lemma 1 (Lemma 1 in [12]). If I satisfies (P0)-(P2) then for every vectors uk and uR in Rg+, we
have I(uk + uR) ≥ I(uk) + I(uR).
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The Entropy and the Gini impurity measure satisfy the definition (P0) by means of the functions
fEntr(x) = −x log x and fGini(x) = x(1 − x). In fact, for a vector u ∈ Rg the Entropy impurity
IEnt(u) and the Gini impurity IGini(u) are defined by

IEnt(u) = ‖u‖1
g∑
i=1

fEntr

(
ui
‖u‖1

)
and IGini(u) = ‖u‖1

g∑
i=1

fGini

(
ui
‖u‖1

)
. (2)

It is also easy to see that IEnt(u) = ‖u‖1H
(

u1
‖u‖1 ,

u2
‖u‖1 , . . . ,

ug
‖u‖1

)
where H(·) denotes the Shannon

entropy function.
The following fact states that both the Gini and Entropy impurity measures belong to the class

C. For the sake of self-containment we have deferred a simple proof of this fact to the appendix.

Fact 1. Both fEntr and fGini satisfy properties (P1)-(P3), and, in particular, we have that fEntr
satisfies (P3) with equality. Therefore both the Gini impurity measure IGini and the Entropy im-
purity measure IEnt belong to C.

We now show that the impurity measures of class C satisfy a special subsystem property which
will be used in our analysis to relate the impurity of partitions for instances of dimension g with
the impurity of partitions for instances of dimension k.

Lemma 2 (Subsystem Property). Let I be an impurity measure in C. Then, for every u ∈ Rg+
and pairwise orthogonal vectors d(1), . . . ,d(k) ∈ {0, 1}g, such that

∑k
i=1 d(i) = 1, we have

I(u) ≤ I
(

(u · d(1),u · d(2), . . . ,u · d(k))

)
+

k∑
i=1

I(u ◦ d(i)). (3)

Moreover, for I = IEnt we have that (3) holds with equality.

Proof. Let f be the concave function used by the frequency-weighted impurity measure I.
For i = 1, . . . , k, let u(i) = u ◦ d(i). We have

I(u) = ‖u‖1
g∑
j=1

f(
uj
‖u‖1

) (4)

= ‖u‖1
k∑
i=1

∑
j|d(i)j =1

f(
uj
‖u‖1

) (5)

≤ ‖u‖1
k∑
i=1

∑
j|d(i)j =1

uj
‖u‖1

‖u‖1
‖u(i)‖1

f(
‖u(i)‖1
‖u‖1

) +
‖u(i)‖1
‖u‖1

f(
uj

‖u(i)‖1
) (6)

= ‖u‖1
k∑
i=1

∑
j|d(i)j =1

uj

‖u(i)‖1
f(
‖u(i)‖1
‖u‖1

) +
k∑
i=1

∑
j|d(i)j =1

‖u(i)‖1f(
uj

‖u(i)‖1
) (7)

= ‖u‖1
k∑
i=1

f(
‖u(i)‖1
‖u‖1

) +
k∑
i=1

‖u(i)‖1
∑

j|d(i)j =1

f(
uj

‖u(i)‖1
) (8)

= I
(

(u · d(1),u · d(2), . . . ,u · d(k))
)

+
k∑
i=1

I(u ◦ d(i)) (9)
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where (5) follows from (4) by splitting the second summation according to the partition of [g]
induced by the non zero components of the vectors d(i); (6) follows from (5) by applying property

(P3) with p =
uj
‖u‖1 and q = ‖u(i)‖1

‖u‖1 ; (7) follows from (6) by simple algebraic manipulations; (8)

follows from (7) since by definition of u(i) we have
∑

j|d(i)j =1
uj = ‖u(i)‖1; (8) follows from (7) since

‖u(i)‖1 = u · d(i) and I(u ◦ d(i)) =
∑

j|d(i)j =1
‖u ◦ d(i)‖1f(

uj
‖u◦d(i)‖1

) and ‖u ◦ d(i)‖1 = ‖u(i)‖1.

The second statement of the lemma follows immediately by the fact that the concave function
fEntr satisfies property (P3) with equality (see Fact 1). Hence, for IEnt the inequality in (6) becomes
an equality.

Remark 1. The Subsystem property in the previous lemma holds also under the stronger assump-
tion that vectors d’s are from [0, 1]g and not necessarily orthogonal.

3 Handling high-dimensional vectors

In this section we present an approach to address instances (V, I, k) with I ∈ C and g > k. It
consists of two steps: finding a ’good’ projection of Rg into Rk and then solving PMWIP for the
projected instance with g = k. Thus, in the next sections we will be focusing on how to build this
projection and how to solve instances with g ≤ k. The material of this section is a generalization
for arbitrary k of the results introduced in [19] for k = 2.

Let D be the family of all sequences D of k pairwise orthogonal directions in {0, 1}g, such
that

∑
d∈D d = 1. For each D = (d(1), . . . , ·d(k)) ∈ D and any v ∈ Rg we define the operation

projD : Rg+ → Rk+ by

projD(v) = (v · d(1), . . . ,v · d(k)).

We also naturally extend the operation to sets of vectors S, by defining projD(S) as the multiset
of vectors obtained by applying projD to each vector of S.

LetA be an algorithm that on instance (V, I, k) chooses a sequence of vectorsD = {d(1), . . . ,d(k)} ∈
D and returns a partition (V (1), . . . , V (k)) such that (projD(V (1)), . . . , projD(V (k))) is a ’good’ par-
tition for the k-dimensional instance (projD(V ), I, k). In this section we quantify the relationship
between the approximation attained by (projD(V (1)), . . . , projD(V (k))) for instance (projD(V ), I, k)
and the corresponding approximation attained by (V (1), . . . , V (k)) for instance (V, I, k).

Let u =
∑

v∈V v and u(i) =
∑

v∈V (i) v. From the subsystem property we have the following upper
bound on the impurity of the partition returned by A.

I(A) =

k∑
i=1

I(u(i)) ≤
k∑
i=1

I
(

(u(i) · d(1), . . . ,u(i) · d(k))
)

+

k∑
i=1

∑
d∈D

I(u(i) ◦ d)

Thus, by the superadditivity of I we have

I(A) ≤
k∑
i=1

I
(

(u(i) · d(1), . . . ,u(i) · d(k))
)

+
∑
d∈D

I(u ◦ d). (10)

We now show two lower bounds on OPT(V, I, k). For the sake of simplifying the notation we
will use OPT(V ) for OPT(V, I, k).
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Lemma 3. For any instance (V, I, k) of PMWIP and any D = {d(1), . . . ,d(k)} ∈ D we have
OPT(V ) ≥ OPT(projD(V )).

Proof. Let V (1), . . . , V (k) be an optimal partition for V , i.e.,

k∑
i=1

I(
∑

v∈V (i)

v) = OPT(V ). (11)

We define the corresponding partition on the vectors ṽ in projD(V ) by letting Ṽ (i) = {projD(v) |
v ∈ V (i)}. We have

k∑
i=1

I(
∑

ṽ∈Ṽ (i)

ṽ) ≥ OPT(projD(V )). (12)

Let u(i) =
∑

v∈V (i) v. Moreover, by the subadditivity of f , we have that for each i = 1, . . . , k,
it holds that

I(
∑

v∈V (i)

v) = ||u(i)||1
g∑
j=1

f

(
u
(i)
j

||u(i)||1

)
=||u(i)||1

k∑
j=1

∑
`|d(j)` =1

f

(
u
(i)
`

||u(i)||1

)
≥

||u(i)||1
k∑
i=1

f

∑`|d(j)` =1
u
(i)
`

||u(i)||1

 = I(
∑

ṽ∈Ṽ (i)

ṽ)

which implies

OPT(V ) =
k∑
i=1

I(
∑

v∈V (i)

v) ≥
k∑
i=1

I(
∑

ṽ∈Ṽ (i)

ṽ)

that combined with (12) gives the desired result.

The following result, proved in [8, 12], states that the groups in the optimal solution can be
separated by hyperplanes in Rk. We recall it here as it will be used to derive our second lower
bound on OPT(V ) contained in Lemma 5 below.

Lemma 4 (Hyperplanes Lemma [8, 12]). Let I be an impurity measure satisfying properties (P0)-
(P2). If (Vi)i=1,...k is an optimal partition of a set of vectors V , then there are vectors v(1), . . .v(k) ∈
Rg such that v ∈ Vi if and only if v · v(i) < v · v(j) for each j 6= i.

Lemma 5. Let (V, I, k) be an instance of PMWIP. Let u =
∑

v∈V v. It holds that

OPT(V ) ≥ min
D∈D

∑
d′∈D

I(u ◦ d′),

Proof. Let W be the multiset of vectors built as follows: for each v = (v1, . . . , vg) ∈ V we add
the vectors v1e1, . . . , vgeg to W . Hence, W has ng vectors, all of them with only one non-zero
coordinate.

It is not hard to see that for every partition V (1), . . . V (k) of V there is a corresponding partition
W (1), . . . ,W (k) such that

∑k
i=1 I(

∑
v∈V (i) v) =

∑k
i=1 I(

∑
w∈W (i) w), hence,

OPT(V ) ≥ OPT(W ).
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Let us now employ Lemma 4 to analyze OPT(W ). Let W (1), . . . ,W (k), be a partition of W
with impurity OPT(W ). From Lemma 4 if two vectors w,w′ ∈ W are such that w = wei and
w′ = w′ei for some i (i.e., they have the same non-zero component) then there is a j such that
both w and w′ belong to W (j).

For j = 1, . . . , k, let d(j) be the vector in {0, 1}g such that d
(j)
i = 1 if and only if the vectors

of W whose only non-zero coordinate is the ith one are in W (j). Then {d(1), . . . ,d(k)} ∈ D and we
have

OPT(W ) =
k∑
i=1

I(
∑
w∈W

w ◦ d(i)) =
k∑
i=1

I(
∑
v∈V

v ◦ d(i)) =
k∑
i=1

I(u ◦ d(i)) ≥ min
D∈D

∑
d′∈D

I(u ◦ d′).

Putting together (10) and Lemmas 3, 5 we have

I(A)

OPT(V )
≤

∑k
i=1 I

(
(u(i) · d(1), . . . ,u(i) · d(k))

)
+
∑

d∈D I(u ◦ d)

max
{
OPT(projD(V )),minD∈D

∑
d′∈D I(u ◦ d′)

}
≤

∑k
i=1 I

(
(u(i) · d(1), . . . ,u(i) · d(k))

)
OPT(projD(V ))

+

∑
d∈D I(u ◦ d)

minD∈D
∑

d′∈D I(u ◦ d′)
(13)

Since the first ratio in the last expression is the approximation attained by the partition
projD(V (1)), . . . , projD(V (k)) on the instance (projD(V ), I, k), this inequality says that we can
obtain a good approximation for instance (V, I, k) of PMWIP (where the vectors have dimension
g > k) by properly choosing: (i) a set D of k orthogonal directions in {0, 1}g, and—given the
choice of D—(ii) a good approximation for the instance (projD(V ), I, k), where the vectors have
dimension k.

4 The dominance algorithm

For a vector v we say that i is the dominant component for v if vi ≥ vj for each j 6= i. In such a case
we also say that v is i-dominant. For a set of vectors U we say that i is the dominant component
in U if i is the dominant component for u =

∑
v∈U v.

Given an instance (V, I, k) let u =
∑

v∈V v and let us assume that, up to reordering of the
components, it holds that ui ≥ ui+1, for i = 1, . . . , g − 1.

Let ADom be the algorithm that proceeds according to the following cases:

i g > k. ADom assigns each vector v = (v1, . . . , vg) ∈ V to group i where i is the dominant
component of vector v′ = (v1, . . . , vk−1,

∑g
j=k vj)

ii g ≤ k. ADom assigns each vector v ∈ V to group i where i is the dominant component of v.

The only difference between cases (i) and (ii) is the reduction of dimensionality employed in the
former to aggregate the smallest components with respect to u.

Let D = {d(1), . . . ,d(k)} ∈ D where d(i) = ei for i = 1, . . . , k− 1 and d(k) = 1−
∑k−1

`=1 d(`). We
notice that that vector v′ in case (i) is exactly projD(v). Thus, if g > k, we can rewrite (13) as

9



I(ADom(V ))

OPT(V )
≤ I(ADom(projD(V ))

OPT(projD(V ))
+

∑
d∈D I(u ◦ d)

minD∈D
∑

d′∈D I(u ◦ d′)
(14)

The next lemma is useful to prove an upper bound on the approximation of ADom, when g ≤ k.

Lemma 6. Let (V, I, k) be an instance of PMWIP with I ∈ C and s.t. the dimension g of the
vectors in V satisfies g ≤ k. For a subset S of V let uS =

∑
v∈S v. If there exist positive numbers

α, β such that for each S ⊆ V we have

β(‖uS‖1 − ‖uS‖∞) ≤ I(uS) ≤ α(‖uS‖1 − ‖uS‖∞)

then the algorithm ADom guarantees α/β approximation, i.e.,

I(ADom(V ))

OPT(V )
≤ α

β
.

Proof. Let (V (1), . . . , V (k)) be the partition of V returned by ADom. Then, by the superadditivity
of I

I(ADom)

OPT(V )
=

∑g
i=1 I(

∑
v∈V (i) v)∑g

i=1

∑
v∈V (i) I(v)

.

Thus, it is enough to prove that for i = 1, . . . , g

I(
∑

v∈V (i) v)∑
v∈V (i) I(v)

≤ α

β

Fix i ∈ [g] and let u =
∑

v∈V (i) v. By hypothesis, we have

I(u) ≤ α(‖u‖1 − ‖u‖∞) and I(v) ≥ β(‖v‖1 − ‖v‖∞) for every v ∈ V (i).

Moreover, by construction, for every vector v ∈ V (i) we have ‖v‖∞ = vi, so that
∑

v∈V (i) ‖v‖∞ =
‖u‖∞. Putting everything together we have

I(
∑

v∈V (i) v)∑
v∈V (i) I(v)

≤ α(‖u‖1 − ‖u‖∞)∑
v∈V (i) β(‖v‖1 − ‖v‖∞)

=
α(‖u‖1 − ‖u‖∞)

β(‖u‖1 − ‖u‖∞)
=
α

β
,

as desired.

4.1 Analysis of ADom for the Gini impurity measure IGini

In this section we show that algorithm ADom achieves constant 3-approximation when the impurity
measure is IGini.

The following lemma together with Lemma 6 will show that ADom guarantees 2-approximation
on instances with g ≤ k.

Lemma 7. For a vector v ∈ Rg+ we have ‖v‖1 − ‖v‖∞ ≤ IGini(v) ≤ 2(‖v‖1 − ‖v‖∞).

10



Proof. First we prove the upper bound. We have that

IGini(v) = ‖v‖1
g∑
i=1

vi
‖v‖1

(
1− vi
‖v‖1

)
=

∑g
i=1

∑
j 6=i vivj

‖v‖1
(15)

=
‖v‖∞(‖v‖1 − ‖v‖∞) +

∑
i|vi 6=‖v‖∞ vi

∑
j 6=i vj

‖v‖1
(16)

=
2‖v‖∞(‖v‖1 − ‖v‖∞) +

∑
i|vi 6=‖v‖∞ vi

∑
j 6=‖v‖∞,j 6=i vj

‖v‖1
(17)

≤ 2‖v‖∞(‖v‖1 − ‖v‖∞) + (‖v‖1 − ‖v‖∞)2

‖v‖1
(18)

=
(‖v‖1 − ‖v‖∞)(‖2‖v‖∞ + v‖1 − ‖v‖∞)

‖v‖1
(19)

=
(‖v‖1 − ‖v‖∞)(‖v‖1 + ‖v‖∞)

‖v‖1
≤ 2(‖v‖1 − ‖v‖∞) (20)

For the lower bound we observe that
∑g

i=1 v
2
i ≤ ‖v‖∞‖v‖1. Therefore, we have

IGini(v) = ‖v‖1
g∑
i=1

vi
‖v‖1

(
1− vi
‖v‖1

)
= ‖v‖1 −

∑g
i=1 v

2
i

‖v‖1
≥ ‖v‖1 −

‖v‖∞‖v‖1
‖v‖1

= ‖v‖1 − ‖v‖∞.

(21)

Theorem 1. Algorithm ADom is a 2-approximation algorithm for instances (V, I, k) with I = IGini
and g ≤ k.

Proof. Directly from Lemmas 6 and 7.

The following lemma will provide an upper bound (in fact an exact estimate) of the second
ratio in (14).

Lemma 8. Fix a vector u ∈ Rg such that ui ≥ ui+1 for each i = 1, . . . g−1 and D = {d(1), . . .d(k)} ∈
D with d(i) = ei for i = 1, . . . , k − 1 and d(k) =

∑g
j=k ej = 1−

∑k−1
j=1 d(j). It holds that

∑
d∈D

I(u ◦ d) = min
D′∈D

{ ∑
d′∈D′

I(u ◦ d′)

}

Proof. Let D∗ ∈ D be such that

∑
d∗∈D∗

I(u ◦ d∗) = min
D′∈D

{ ∑
d′∈D′

I(u ◦ d′)

}
(22)

and |D∗ ∩D| is maximum among all D∗ satisfying (22).
Let us assume for the sake of contradiction that D∗ 6= D. Let d̂ ∈ D∗ such that d̂g = 1. We

note that d̂ 6= d(k) for otherwise we would have D∗ = D.
Let c ∈ D∗ \ (D ∪ {d̂}) such that for all other d ∈ D∗ \ (D ∪ {d̂}) we have min{i | ci = 1} <

min{i | di = 1}, i.e., c is the vector in D∗ \ (D ∪ {d̂}) with the smallest non-zero component.
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Let v = c + d̂ and i∗ be the minimum integer such that vi∗ = 1. Note that i∗ ≤ k − 1, for
otherwise we would have D∗ /∈ D. Let F be the set of vectors from D defined by

F = (D∗ \ {d̂, c}) ∪ {d(i∗),v − d(i∗)}.

The following claim directly follows from [19, Lemma 4.1]. For the sake of self-containment we
defer its proof to the appendix.
Claim. Fix u ∈ Rg such that ui ≥ ui+1 for each i = 1, . . . , g − 1. Let z(1) and z(2) two orthogonal

vectors from {0, 1}g \ {0}. Let i∗ = min{i | max{z(1)i , z
(2)
i } = 1} and v(1) = ei∗ and v(2) =

z(1) + z(2) − ei∗ . Then

I(u ◦ v(1)) + I(u ◦ v(2)) ≤ I(u ◦ z(1)) + I(u ◦ z(1)).

By the Claim, we have that∑
d∈F

I(u ◦ d) = I(u ◦ d(i∗)) + I(u ◦ (v − d(i∗))) +
∑

d∈F∩D∗
I(u ◦ d)

≤ I(u ◦ d̂) + I(u ◦ c) +
∑

d∈F∩D∗
I(u ◦ d) =

∑
d∈D∗

I(u ◦ d),

hence since D satisfies (22) we have that F also satisfies (22).
In addition we observe that |D ∩ F | > |D ∩D∗| as by definition it shares with D all that was

shared by D∗ and also d(i∗). This would be in contradiction with the maximality of the intersection
of D∗. Therefore, we must have D∗ = D which concludes the proof.

Putting together inequalities (14), Theorem 1 and Lemma 8 we get that

Theorem 2. Algorithm ADom is a linear time 3-approximation for the IGini

4.2 Analysis of ADom for the Entropy impurity measure IEnt

The following lemma will be useful for applying Lemma 6 to the analysis of the performance of
ADom with respect to the entropy impurity measure IEnt.

Lemma 9. For a vector v ∈ Rg+ we have

(‖v‖1−‖v‖∞) log

(
‖v‖1

min{‖v‖1 − ‖v‖∞, ‖v‖∞}

)
≤ IEnt(v) ≤ 2(‖v‖1−‖v‖∞) log

(
g‖v‖1

‖v‖1 − ‖v‖∞

)
.

Proof. Let i∗ be an index in [g] such that vi∗ = ‖v‖∞. We have that

IEnt(v) = ‖v‖∞ log
‖v‖1
‖v‖∞

+
∑
i 6=i∗

vi log
‖v‖1
vi

(23)

= ‖v‖∞ log
‖v‖1
‖v‖∞

+ (‖v‖1 − ‖v‖∞) log ‖v‖1 −
∑
i 6=i∗

vi log vi. (24)
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For the upper bound, we observe that the expression in (24) is maximum when vi = (‖v‖1 −
‖v‖∞)/(g − 1) for i 6= i∗. Thus,

IEnt(v) ≤ ‖v‖∞ log
‖v‖1
‖v‖∞

+ (‖v‖1 − ‖v‖∞) log
‖v‖1

(‖v‖1 − ‖v‖∞)
+ (‖v‖1 − ‖v‖∞) log(g − 1). (25)

To show that this satisfies the desired upper bound, we split the analysis into two cases:

If ‖v‖∞ ≥ ‖v‖12 we have that

IEnt(v) ≤ ‖v‖∞ log
‖v‖1
‖v‖∞

+ (‖v‖1 − ‖v‖∞) log
‖v‖1

‖v‖1 − ‖v‖∞
+ (‖v‖1 − ‖v‖∞) log(g − 1)

≤ 2(‖v‖1 − ‖v‖∞) log
‖v‖1

(‖v‖1 − ‖v‖∞)
+ (‖v‖1 − ‖v‖∞) log(g − 1)

≤ 2(‖v‖1 − ‖v‖∞) log
g‖v‖1

(‖v‖1 − ‖v‖∞)
,

where the second inequality follows from Proposition 1 using p = (‖v‖1 − ‖v‖∞)/‖v‖1.

If ‖v‖∞ ≤ ‖v‖12 we have that

IEnt(v) ≤ 2(‖v‖1 − ‖v‖∞)
log e

e
+ (‖v‖1 − ‖v‖∞) log

‖v‖1
‖v‖1 − ‖v‖∞

+ (‖v‖1 − ‖v‖∞) log(g − 1)

≤ 2(‖v‖1 − ‖v‖∞) log
g‖v‖1

‖v‖1 − ‖v‖∞
.

where the first inequality follows from (25) and Proposition 2.

For the lower bound, consider the same two cases:
If ‖v‖∞ > ‖v‖1

2 , the expression in (24) is minimum when there is a unique index j 6= i∗ such that
vj = ‖v‖1 − ‖v‖∞ and vi = 0 for each i ∈ [g] \ {j, i∗}. Thus,

IEnt(v) ≥ ‖v‖∞ log
‖v‖1
‖v‖∞

+(‖v‖1−‖v‖∞) log
‖v‖1

‖v‖1 − ‖v‖∞
≥ (‖v‖1−‖v‖∞) log

‖v‖1
min{‖v‖1 − ‖v‖∞, ‖v‖∞}

If ‖v‖∞ < ‖v‖1
2 , the expression in (24) is minimum when there exists a set of indexes A ⊆ [g] with

|A| = d‖v‖1/‖v‖∞e − 1 such that vi = ‖v‖∞ for each i ∈ A and (possibly) an index j 6∈ A such
that vj = ‖v‖1 − |A| · ‖v‖∞. Thus,

IEnt(v) ≥ (‖v‖1 − ‖v‖∞) log
‖v‖1
‖v‖∞

≥ (‖v‖1 − ‖v‖∞) log
‖v‖1

min{‖v‖1 − ‖v‖∞, ‖v‖∞}

From the bounds in the previous lemma and Lemma 6 we obtain our first guarantee on the
approximation of algorithm ADom for the Entropy Impurity measure on instances with g ≤ k.

Theorem 3. Let (V, I, k) be an instance of PMWIP with I = IEnt and g ≤ k. Let p = log g +
log(

∑
v∈V ‖v‖1)). Then, ADom guarantees a 2p-approximation on instance (V, I, k).
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Proof. Let S be a subset of V and let uS =
∑

v∈S v. Define α = 1 and β = 2p.
If ‖uS‖1 = ‖uS‖∞ then I(uS) = 0 so that the conditions of Lemma 6 is satisified. Otherwise,

Lemma 9 guarantees that

‖uS‖1 − ‖uS‖∞ ≤ I(uS) ≤ 2(‖uS‖1 − ‖uS‖∞) log(g‖uS‖1) ≤ ‖uS‖1 − ‖uS‖∞2p.

Thus, it follows from Lemma 6 that we have a 2p−approximation.

Remark 2. Let s be a large integer. The instance {(s, 0), (2, 1), (0, 1)} and k = 2 shows that the
analysis is tight up to constant factors. In fact, the impurity of ADom is larger than log s while the
impurity of the partition that leaves (s, 0) alone is 4.

Theorem 4. Let Uniform-PMWIP (U-PMWIP) be the variant of PMWIP where all vectors
have the same `1 norm. We have that ADom is an O(log n + log g)-approximation algorithm for
U-PMWIP with I = IEnt and g ≤ k.

Proof. Let (V, I, k) be an instance of U-PMWIP with I = IEnt and vectors of dimension g ≤ k.
Let (V (1), . . . , V (k)) be the partition of V returned by ADom. By the superadditivity of I it holds
that

I(ADom)

OPT(V )
=

∑g
i=1 I(

∑
v∈V (i) v)∑g

i=1

∑
v∈V (i) I(v)

Thus, it is enough to prove that for i = 1, . . . , g

I(
∑

v∈V (i) v)∑
v∈V (i) I(v)

= O(log n+ log g)

Let s be the `1 norm of all vectors in V , let u =
∑

v∈V (i) v and let c = ‖u‖1 − ‖u‖∞. By Lemma
9, we have that

I(u) ≤ c log
gns

c
.

Moreover, we have

∑
v∈V (i)

I(v) ≥ max

c, c log s−
∑

v∈V (i)

(‖v‖1 − ‖v‖∞) log(‖v‖1 − ‖v‖∞)


If c ≥ s/2 then we have a O(log n+ log g) approximation using c as a lower bound. If c < s/2

we get that ∑
v∈V (i)

I(v) ≥ c log s− c log c = c log(s/c)

and the approximation is O(log n+ log g) as well

Remark 3. Let s be a large integer. The instance with n − 1 vectors equal to (s, 0), one vector
equals to (s, s/2) and k = 2 shows that the analysis is tight.

To obtain an approximation of ADom for IEnt for general k and g we need an upper bound on
the second fraction in Equation (13). This is given by the next lemma.
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Lemma 10. Fix a vector u ∈ Rg such that ui ≥ ui+1 for each i = 1, . . . g − 1 and D =
{d(1), . . .d(k)} ∈ D with d(i) = ei for i = 1, . . . , k − 1 and d(k) =

∑g
j=k ej = 1 −

∑k−1
j=1 d(j).

It holds that ∑
d∈D

IEnt(u ◦ d) ≤ O(log k) min
D′∈D

{ ∑
d′∈D′

IEnt(u ◦ d′)

}

Proof. Let D∗ = {d(1)
∗ , . . . ,d

(k)
∗ } ∈ D be such that

∑
d∈D∗

IEnt(u ◦ d) = min
D′∈D

{ ∑
d′∈D′

IEnt(u ◦ d′)

}
(26)

and |D ∩D∗| is maximum among all set of vectors in D satisfying (26). Assume that D 6= D∗ for
otherwise the claim holds trivially.

By Lemma 2 we have that for every D̂ = {d̂(1), . . . , d̂(k)} ∈ D

k∑
i=1

IEnt(u ◦ d̂(i)) = IEnt(u)− IEnt(u · d̂(1), . . . ,u · d̂(k))

= ‖u‖1

(
H

(
u1
‖u‖1

, . . . ,
ug
‖u‖1

)
−H

(
u · d̂(1)

‖u‖1
, . . . ,

u · d̂(k)

‖u‖1

))

where H() denotes the Entropy function. Let us define H(D̂) = H
(
u·d̂(1)

‖u‖1 , . . . ,
u·d̂(k)

‖u‖1

)
Then D̂ is a set of vectors that minimizes

∑k
i=1 IEnt(u ◦ d̂(i)) iff it maximizes H(D̂).

We can think of the vectors in D̂ as buckets containing components of u, and we say that uj is

in bucket i if d̂
(i)
j = 1. From the above formula and the concavity property of the Entropy function

we have that the following claim holds.

Claim 1. Assume that there exists a subset A ⊆ {j | d̂(i)j = 1} of bucket i and a subset B ⊆ {j′ |
d̂
(i′)
j′ = 1} of bucket i′ such that∣∣∣∣∣∣

d̂(i) · u−
∑
j∈A

uj +
∑
j′∈B

uj′

−
d̂(i′) · u−

∑
j′∈B

uj′ +
∑
j∈A

uj

∣∣∣∣∣∣ ≤ |d̂(i) · u− d̂(i′) · u| (27)

i.e., swapping bucket for elements in A and B does not increase the absolute difference between the
sum of elements in buckets i and i′. Then, for the set of vectors D̃ = {d̃(1), . . . , d̃(k)} ∈ D defined
by

d̃(`) =


d̂(`) ` 6∈ {i, i′}
d̂(i) −

∑
j∈A ej +

∑
j′∈B ej′ ` = i

d̂(`) −
∑

j′∈B ej′ +
∑

j∈A ej ` = i′,

i.e., for the set of vectors corresponding to the new buckets, it holds that H
(
u·d̂(1)

‖u‖1 , . . . ,
u·d̂(k)

‖u‖1

)
≤

H
(
u·d̃(1)

‖u‖1 , . . . ,
u·d̃(k)

‖u‖1

)
, with the equality holding iff inequality (27) is tight.
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Because of Claim 1, we have that D∗ satisfying (26) is a set of vectors that coincides with
buckets that distribute the components of u in the most balanced way, i.e., H(D∗) is maximum
among all D ∈ D.

From these observations, we can characterize the structure of buckets of D∗. For the sake of a

simpler notation, let us denote with S(i) the sum of components in bucket d
(i)
∗ , i.e., S(i) = u · d(i)

∗ .
We have the following

Claim 2. The set D∗ satisfies the following properties:

(i) there is no bucket i that consists of a single element uj with j ≥ k;

(ii) if uj is not alone in bucket i then for each i′ 6= i it holds that S(i′) ≥ uj ;

(iii) if uj is not alone in bucket i then for each i′ 6= i it holds that S(i′) ≥ S(i) − uj ;

For (i), assume, by contradiction that such i and j exists. Then, since D∗ 6= D, there exists
a bucket i′ 6= i that contains at least two elements, with one of them being uj′ for some j′ < k.
Then, by Claim 1, swapping the buckets for uj and uj′ produces a new set of vectors with entropy
not smaller than H(D∗) and intersection with D larger than that of D∗, which is a contradiction.

For (ii), we observe that if there exists a bucket i′ such that S(i′) < uj by moving every element
but uj from bucket i to bucket i′, by Claim 1, we get a new set of vectors with entropy larger than
H(D∗), which is a contradiction.

For (iii), we observe that if there exists a bucket i′ such that S(i′) < S(i) − uj then by moving
uj from bucket i to bucket i′, by Claim 1, we get a new set of vectors with entropy larger than
H(D∗), which is a contradiction.

We are now ready to prove the statement of the lemma. We have that IEnt(u ◦ d(i)) = 0 for
i = 1, . . . , k − 1. This holds since buckets 1, . . . , k − 1 contain only one element. Let S =

∑
j≥k uj ,

and define i(j) to be the bucket of D∗ that contains uj , for each j = 1, . . . , g. We have

k∑
i=1

IEnt(u◦d(i)) = IEnt(u◦d(k)) =
∑
j≥k

uj log
S

uj
=

∑
j≥k

uj≤S(i(j))/2

uj log
S

uj
+

∑
j≥k

uj>S
(i(j))/2

uj log
S

uj
(28)

where in the last expression we split the summands according to whether uj ≥ S(i(j))/2 or uj <
S(i(j))/2. We will argue that

∑
j≥k

uj≤S(i(j))/2

uj log
S

uj
is O(log k)

k∑
i=1

IEnt(u ◦ d
(i)
∗ ) (29)

∑
j≥k

uj>S
(i(j))/2

uj log
S

uj
is O(log k)

k∑
i=1

IEnt(u ◦ d
(i)
∗ ), (30)

from which the statement of the lemma follows.

Proof of Inequality (29).
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Since
k∑
i=1

IEnt(u ◦ d
(i)
∗ ) =

g∑
j=1

uj
S(i(j))

uj
≥

∑
j≥k

uj≤S(i(j))/2

uj log
S(i(j))

uj
. (31)

it is enough to show that for each j ≥ k, with uj ≤ S(i(j))/2, we have

uj log(S/uj)

uj log(S(i(j))/uj)
≤ log(4k). (32)

The above inequality can be established by showing that S ≤ 2k · S(i(j)) and, then, using the
bound log a

log b ≤ log(2a/b), which holds whenever b ≥ 2 and a ≥ b.
To see that S ≤ 2k · S(i(j)), let ` be a bucket in D∗ containing some uj′ for j′ ≥ k. By Claim 2,

item (i), we have that bucket ` contains at least two elements. Let e(`) be the element in bucket `
of minimum value. Then, by Claim 2, item (iii), we have

S(i(j)) ≥ S(`) − ue(`) ≥ S(`)/2, (33)

where the last inequality follows from the fact that bucket ` has at least two elements. Let B = {` |
bucket ` has at least one element uj′ with j′ ≥ k}. Then, we have kS(i(j)) ≥

∑
`∈B S

(`)/2 ≥ S/2,

that gives S/S(i(j)) ≤ 2k, as desired.
End of proof of Inequality (29).

Proof of Inequality (30).
First we argue that we can assume that there exists at most one j, with j ≥ k, with uj >

S(i(j))/2. In fact, if there exist j 6= j′ such that uj > S(i(j))/2 and uj′ > S(i(j′))/2 then i(j′) 6= i(j)
and no element ur, with r < k, is either in bucket i(j) or in i(j′). Hence, by the pigeonhole principle,
there must exist elements ur and us, with r, s < k that are both in some bucket i′ /∈ {i(j), i(j′)}.
Thus, by Claim 1, swapping buckets for ur and uj we get a new set of vectors D′ whose buckets
are at least as balanced as those of D∗ (H(D′) ≥ H(D∗)) and |D′ ∩D| ≥ |D∗ ∩D|. However, in
D′ there is one less index j with j ≥ k and uj > S(i(j))/2. Thus, by repeating this argument, we
eventually obtain a D′ satisfying H(D∗) = H(D′) (maximum) and there is at most one j satisfying
uj > S(i(j))/2.

We also have that uj = uk. For otherwise, if uk > uj , by the previous observation we have
that S(i(k)) ≥ 2uk hence swapping uk and uj we obtain a more balanced set of vectors D′ with
H(D′) > H(D∗), against the hypothesis that H(D∗) is maximum. Therefore, we can assume,
w.l.o.g., that j = k and i(k) = k.

Finally, for each `, `′ < k we can assume that u` and u`′ are in different buckets. For otherwise,
swapping buckets for uj and u` ≥ uj = uk > S(k) − uk we get a new set D′ with H(D′) ≥ H(D∗),
|D′ ∩D| ≥ |D∗ ∩D| and for all j ≥ k, uj ≤ S(i(j))/2. Then, the desired result would follow because
we already proved that inequality (29) holds. Note that |D′ ∩ D| ≥ |D∗ ∩ D| must hold because
the bucket k before the swap cannot be equal to {uk, uk+1, . . . , ug} for otherwise we would have an
empty bucket.

Because of the previous observations we can assume that in D∗, up to renaming the buckets, for
each m ∈ [k] the element um is in bucket m. Let Xm = S(m) − um. Note that uk +

∑k
m=1Xm = S.
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Then, we have the following lower bound on the impurity of the buckets of D∗:

k∑
i=1

IEnt(u ◦ d
(i)
∗ ) ≥

k∑
m=1

um log
S(m)

um
≥ uk

(
k∑

m=1

log
S(m)

um

)
(34)

= uk log

(
k∏

m=1

(um +Xm)

um

)
= uk log

(
(uk +Xk)

∏k−1
m=1(um +Xm)

uk
∏k−1
m=1 um

)
.(35)

On the other hand, because of the standing assumption, j = k, we can write as upper bound
on the only summand in the left hand side of (30)

uj log
S

uj
= uk log

(
(uk +Xk) +

∑k−1
m=1Xm

uk

)
.

Therefore, to prove the bound in (30) it is enough to show

(uk +Xk) +
k−1∑
m=1

Xm ≤

(
(uk +Xk)

∏k−1
m=1(Xm + um)∏k−1

m=1 um

)
.

We can now show that this inequality holds by using Claim 2 (ii), which gives (uk +Xk) ≥ us
for each s < k such that Xs 6= 0. Therefore, we have(

(Xk + uk) +
k−1∑
s=1

Xs

)
k−1∏
m=1

um = (Xk + uk)
k−1∏
m=1

um +
k−1∑
s=1

Xs

k−1∏
m=1

um

≤ (Xk + uk)
k−1∏
m=1

um +
k−1∑
s=1

uk +Xk

us
Xs

k−1∏
m=1

um

= (Xk + uk)
k−1∏
m=1

um + (uk +Xk)
k−1∑
s=1

Xs

∏
m∈[k−1]\s

um


= (uk +Xk)

 k−1∏
m=1

um +
k−1∑
s=1

Xs

∏
m∈[k−1]\s

um


≤ (uk +Xk)

k−1∏
m=1

(um +Xm),

which concludes the proof of (30).
The proof of the lemma is complete.

By (14), combining the results in the previous lemma with Theorems 3, 4 and the fact that
k ≤ n, we have the following results that apply regardless the relation between g and k.

Theorem 5. Let (V, IEnt, k) be an instance of PMWIP and let p = min{log k, log g}+log(
∑

v∈V ‖v‖1).
Then, ADom on instance (V, IEnt, k) guarantees 2p-approximation.

Theorem 6. Let Uniform-PMWIP (U-PMWIP) be the variant of PMWIP where all vectors
have the same `1 norm. We have that ADom is an O(log g + log n)-approximation algorithm for
U-PMWIP with I = IEnt.
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5 An O(log2(min{g, k}))-approximation for PMWIP with IEnt

In this section we present our main result on the entropy measure. Under the assumption g ≤ k,
we will show the existence of an O(log2 g)-approximation polynomial time algorithm. Note that in
the light of Lemma 10 and the approach of Section 3 (see, in particular equation (13)), this implies
an O(log2(min{g, k}))-approximation algorithm for any g and k.

Recall that a vector v is called i-dominant if i is the largest component in v, i.e., vi = ‖v‖∞.
Accordingly, we say that a set of vectors B (often, in this section, referred to as a bucket) is i-
dominant if i is the largest component in the bucket, i.e., ‖

∑
v∈B v‖∞ =

∑
v∈B vi. We use dom(v)

and dom(B), respectively, to denote the index of the dominant component of vectors v and
∑

v∈B v.
We will say that a bucket B is i-pure if each vector in B is i-dominant. A bucket which is not

i-pure for any i will be called a mixed bucket.
Following the bound on the impurity of a vector v given by Lemma 9, we define the ratio of a

vector v as

ratio(v) =
‖v‖1

‖v‖1 − ‖v‖∞
.

and, accordingly, the ratio of bucket B as

ratio(B) =
‖
∑

v∈B v‖1
‖
∑

v∈B v‖1 − ‖
∑

v∈B v‖∞
.

Abusing notation, for a set of vectors B we will use ‖B‖1 to denote ‖
∑

v∈B v‖1 and ‖B‖∞ to
denote ‖

∑
v∈B v‖∞. Moreover, we use B(j) to denote the set of the j vectors in B of minimum

ratio. Since in this section we are only focusing on the entropy impurity measure, we will use I to
denote IEnt

We will find it useful to employ the following corollary of Lemma 9.

Corollary 1. For a vector v ∈ Rg+ and i ∈ [g] we have

(‖v‖1 − ‖v‖∞) max

{
1, log

(
‖v‖1

‖v‖1 − ‖v‖∞

)}
≤ IEnt(v) ≤ 2(‖v‖1 − vi) log

(
2g‖v‖1
‖v‖1 − vi

)
(36)

Proof. The second inequality follows from Lemma 9 and Proposition 2, using A = 2g‖v‖1.

5.1 Our Tools

In this section we discuss the main tools employed to design our algorithms.
The example of Remark 2, apart from establishing the tightness of ADom for IEnt, also shows

that we cannot obtain a very good partition by just considering those containing only pure buckets.
However, perhaps surprisingly, the situation is different if we allow at most one mixed bucket. This is
formalized in Theorem 7, our first and main tool to obtain good approximate solutions for instances
of PMWIP. This structural theorem will be used by our algorithms to restrict the space where
a partition with low impurity is searched. Its proof, presented in the next section, is reasonably
involved: it consists of starting with an optimal partition an then showing how to exchange vectors
from its buckets so that a new partition P ′ satisfying the desired properties is obtained.
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Theorem 7. There exists a partition P ′ with the following properties: (i) it has at most one mixed
bucket; (ii) if v is an i-dominant vector in the mixed bucket and v′ is an i-dominant vector of a
i-pure bucket, then ratio(v) ≤ ratio(v′); (iii) the impurity of P ′ is at an O(log2 g) factor from the
minimum possible impurity.

Our second tool is a transformation χ2C that maps vectors in Rg into vectors in R2. The nice
property of this transformation is that it preserves the entropy of a set of i-pure vectors up to an
O(log g) distortion as formalized by Proposition 3. Thus, in the light of Theorem 7, instead of
searching for low-impurity partitions of g-dimensional vectors with at least k-1 pure buckets, we
can search for those in a 2-dimensional space.

The transformation χ2C is defined as follows

χ2C(v) =

{
(‖v‖∞, ‖v‖1 − ‖v‖∞) if ‖v‖∞ ≥ 1

2‖v‖1
(‖v‖1/2, ‖v‖1/2) if ‖v‖∞ < 1

2‖v‖1.

Let I2(B) to denote the 2-impurity of the set B, that is, the impurity of the set of 2-dimensional
vectors obtained by applying χ2C to each vector in B. We have that

Proposition 3. Fix i ∈ [g] and let B be an i-pure bucket. It holds that

(1/2)I2(B) ≤ I(B) ≤ 2I2(B) + 4(log g)
∑
w∈B

I(w).

Finally, our last tool is the following result from [18], here stated following our notation, that
shows that PMWIP can be optimally solved when g = 2.

Theorem 8 ([18]). Let V be a set of 2-dimensional vectors and let k be an integer larger than
1. There exists a polynomial time algorithm to build a partition of V into k buckets with optimal
impurity.

In addition, the partition computed by the algorithm satisfies the following property: if B is a
bucket in the partition and if v ∈ V \ B then either ratio(v) ≥ maxv′∈B{ratio(v′)} or ratio(v) ≤
minv′∈B{ratio(v′)}.

Motivated by the previous results we define A2C as the algorithm that takes as input a set of
vectors B and an integer b and produces a partition of B into b buckets by executing the following
steps: (i) every vector v ∈ B is mapped to χ2C(v); (ii) the algorithm given by Theorem 8 is
applied over the transformed set of vectors to distribute them into b buckets; (iii) the partition of
B corresponding to the partition produced in step (ii) is returned.

Algorithm A2C is employed as a subroutine of the algorithms presented in the next section.
The following property holds for A2C .

Proposition 4. Let B be an i-pure set of vectors. The impurity of the partition P constructed by
the algorithm A2C on input (B, b) is at most an O(log g) factor from the minimum possible impurity
for a partition of set B into b buckets.

Proof. Let P∗ be the partition of B into b buckets with minimum impurity. We have that

I(P) ≤ 2I2(P) + 4 log g
∑
w∈B

I(w) ≤ 2I2(P∗) + 4 log g
∑
w∈B

I(w)

≤ 4I(P∗) + 4(log g)
∑
w∈B

I(w) = O(log g)I(P∗),
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where the first inequality follows from Proposition 3 (applied to each bucket of P), the second one
from the optimality of P, the third one by Proposition 3 (applied to each bucket of P∗), and the
last one by observing that by superadditivity of I we have I(P∗) ≥

∑
w∈B I(w).

5.2 Proof of Theorem 7

The proof proceeds in steps. Lemma 11 shows that there exists a partition with at most one mixed
bucket whose impurity is O(log g) factor from OPT(V ). Next, we explain how to modify this
partition in order to obtain a new partition P with at most one mixed bucket, impurity limited
by O(log g)OPT(V ) and such that the vectors in its i-pure buckets are ordered according to their
ratios. Finally, we show how to modify P so that we obtain a partition P ′ that satisfies the
properties of Theorem 7.

Lemma 11. There exists a partition with at most one mixed bucket that satisfies: (i) the impurity
of the mixed bucket is at a O(log g) factor from the optimal impurity and (ii) the sum of the
impurities of the pure buckets is at most the optimal impurity.

Proof. Let P∗ be an optimal partition. If P∗ has at most one mixed bucket we are done. Otherwise,
let B1, . . . , Bj , with j ≥ 2, be the mixed buckets in P∗. We assume w.l.o.g. that B1 is the bucket
with the smallest ratio among the mixed buckets.

For i = 2, . . . , j, let Si = {v|v ∈ Bi and dom(v) 6= dom(Bi)}. Let P be a new partition
obtained from P∗ by replacing B1 with B′1 = B1 ∪ S2 . . . ∪ Sj and Bi with B′i = Bi \ Si, for i ≥ 2.
It is clear that B′1 is the unique mixed bucket in P.

It follows from subadditivity that I(B′i) ≤ I(Bi) for i > 1, which establishes (ii). Thus, in order
to complete the proof it is enough to establish an upper bound on I(B′1).

For i = 2, . . . , j, let u(i) =
∑

v∈Bi
v and w(i) =

∑
v∈Si

v. Moreover, let si = ‖w(i)‖1. Thus,

‖u(i)‖1 − ‖u(i)‖∞ = ‖u(i)‖1 −
∑
v∈Bi

vdom(Bi) ≥ |w
(i)‖1 −

∑
v∈Si

vdom(Bi) ≥ ‖w
(i)‖1/2 =

si
2
,

where the leftmost inequality holds because for each v ∈ Si we have dom(v) 6= dom(Bi), so that
‖v‖1/2 ≥ vdom(Bi).

Therefore, it follows from Corollary 1 that

I(Bi) ≥ (‖u(i)‖1 − ‖u(i)‖∞) max{1, log(ratio(Bi))} ≥
si
2

max{1, log(ratio(Bi))}, (37)

for each i > 1
We assume w.l.o.g. that B1 is 1-dominant. Let u(1) =

∑
v∈B1

v and let s1 = ‖u(1)‖1 and

c1 = ‖u(1)‖1 − ‖u(1)‖∞. Again, from Corollary 1, we have

I(B1) ≥ c1 max{1, log(ratio(B1))} (38)

For i = 2, . . . , j let ci = ‖w(i)‖1 − w(i)
1 . Let u =

∑
v∈B′1

v. Then, u = u(1) +
∑j

i=2 w(i), hence

‖u‖1 =
∑j

i=1 si and ‖u‖1 − u1 =
∑j

i=1 ci.
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By Corollary 9 (with i = 1) we have that

I(B′1) ≤ 2

(
j∑
i=1

ci

)
· log

(
2g

∑j
i=1 si∑j
i=1 ci

)

≤ 2

(
c1 +

j∑
i=2

si

)
log

(
2g
s1 +

∑j
i=2 si

c1 +
∑j

i=2 si

)
(39)

≤ 2

(
c1 +

j∑
i=2

si

)
log

(
2g
s1
c1

)
= 2

(
c1 +

j∑
i=2

si

)
log(2g · ratio(B1)), (40)

where the second inequality follows from Proposition 2.
Since ratio(B1) ≤ ratio(Bi) for i > 1 we can conclude, by using the lower bounds (37) and (38)

that I(B′1) = O(log g)
∑j

i=1 I(Bi).

Using the mapping χ2C and Proposition 4, we can derive the following result.

Lemma 12. There exists a partition with the following properties: (i) it has at most one mixed
bucket; (ii) if Bi is a i-pure bucket and v is a i-dominant vector that belongs to an i-pure bucket
different from Bi then either ratio(v) ≥ maxv′∈Bi

{ratio(v′)} or ratio(v) ≤ minv′∈Bi
{ratio(v′)}

and (iii) its impurity is at a O(log g) factor from the minimum possible impurity.

Proof. Let P be a partition that satisfies Lemma 11. Let Vi be the set of i-dominant vectors that

are not in the mixed bucket. If Vi 6= ∅ let B1
i , . . . , B

t(i)
i be the i-pure buckets where they lie. We

replace these t(i) buckets by the t(i) buckets obtained by running algorithm A2C for input (Vi, t(i)).
This replacement is applied for every i. It follows from Proposition 4 that the total impurity of
the pure buckets in the new partition is at most at a O(log g) factor from the total impurity of the
pure buckets in P.

The property (ii) is assured by the structure of the partition constructed by Algorithm A2C . In
order to guarantee that the ties are broken correctly we present the i-dominant vector for algorithm
A2C in the order of their ratios.

Now, we conclude the proof of Theorem 7. Our starting point is the partition P that satisfies
items (i)-(iii) of Lemma 12. We show how to obtain a partition P ′ from P that satisfies the
properties of Theorem 7.

Let Bmix be the mixed bucket in P. We assume w.l.o.g that dom(Bmix) = 1. Moreover, let Bi
be the i-pure bucket that contains the i-dominant vectors with the smallest ratios. In what follows
we assume that the vectors in Bi are sorted by increasing order of their ratios so that by the jth
first vector in Bi we mean the one with the jth smallest ratio.

Let si,p = ‖Bi‖1 (p indicates a pure bucket, i indicates the dominance, and s indicates that we
are considering the total sum of the components of the vectors). Let Vi,mix be the set of i-dominant
vectors in Bmix, i.e., Vi,mix = {v ∈ Bmix | dom(v) = i}.

Let si,mix = ‖Vi,mix‖1, i.e., si,mix denotes the total sum of the components of the i-dominant
vectors from bucket Bmix.

In order to explain the construction of P ′ we need to define 2g set of vectors X1, Y1, . . . , Xg, Yg
that will be moved among the buckets of P to obtain P ′. Those are defined according to the
following cases:
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case 1. si,p < si,mix.

subcase 1.1 i > 1 (i is not the dominant component of Bmix).
Let ri be the largest ratio among the ratios of the vectors from Bi. In addition, let Yi = Bi and

let Xi be the set of i-dominant vectors from Bmix whose ratios are larger than ri.

subcase 1.2 i = 1. Let m be such that ‖V1,mix(m− 1)‖1 ≤ s1,p and ‖V1,mix(m)‖1 > s1,p.
Moreover, let r1 be the ratio of the m-th first 1-dominant vector of V1,mix. Let X1 = V1,mix \

V1,mix(m− 1) (the set containing all the 1-dominant vector of Bmix but the first m− 1 ones) and
let Y1 = {v ∈ B1 | ratio(v) < r1} (the set containing every vector in B1 with ratio smaller than
r1).

case 2. si,p ≥ si,mix.

In this case, let m be such that ‖Bi(m− 1)‖1 < si,mix and ‖Bi(m)‖1 ≥ si,mix. Moreover, let ri
be the ratio of the m-th vector of Bi. We define Yi = Bi(m− 1) (the set containing the m− 1 first
vectors of Bi) and Xi = {v ∈ Vi,mix | ratio(v) > ri} (the set containing every i-dominant vector in
Bmix with ratio larger than ri).

Let X =
⋃g
i=1Xi and let Y =

⋃g
i=1 Yi. The partition P ′ is obtained from P by replacing

the bucket Bmix with the bucket B′mix = (Bmix ∪ Y ) \ X and the bucket Bi, for every i, with
B′i = (Bi ∪Xi) \ Yi.

Lemma 13. The partition P ′ satisfies item (i) and (ii) from Theorem 7.

Proof. By construction every i-dominant vector in B′mix has ratio at most ri and every i-dominant
vector in V \B′mix has ratio at least ri.

Lemma 14. The impurity of the partition P ′ is at most O(log g) times larger than that of P.

Proof. See the Appendix.

5.3 The approximation algorithm

We first present a pseudo-polynomial time algorithm that provides an O(log2 g) approximation and
then we show how to convert it into a polynomial time algorithm with the same approximation.
The key idea is to look among the partitions that satisfy the properties of Theorem 7 for one that
(roughly speaking) minimizes the impurity of its mixed bucket plus the sum of the 2-impurity of
its pure buckets.

A special case: no mixed bucket. Theorem 7 establishes the existence of a partition P∗ whose
impurity is an O(log2 g) approximation of the optimum and has at most one mixed bucket. For a
better understanding of the strategy at the basis of our algorithm, let us first discuss how one can
efficiently construct a good partition for the case where the partition P∗, achieving the O(log2 g)
approximation, has no mixed buckets.

In this case, we can employ algorithm A2C to obtain a partition with minimum 2-impurity
among those that only have pure buckets. By Proposition 3 it follows that the impurity of a
partition made only of pure buckets, is upper bounded by its 2-impurity plus O(log g) times a lower
bound on the optimal impurity. Proceeding like in the proof of Proposition 4 then we can show
that the impurity of the partition of minimum 2-impurity is upper bounded by the same upper
bound on the impurity of P∗.

23



The partition with minimum 2-impurity made only of pure buckets can be obtained by means
of dynamic programming.

To see this, for each j = 1, . . . , g let

Vj = {v|dom(v) = j} and Sj = {v|dom(v) = j′ for some j′ ≤ j} (41)

Moreover, for each b = 1, . . . , k let Q∗(Sj , b) be a partition of the vectors of Sj into b pure buckets
such that its 2-impurity, denoted by OPT2(j, b), is minimum. It is not hard to see that the following
recurrence holds:

OPT2(j, b) =

{
I2(A2C(Vj , b)) if j = 1

min1≤b′<b−j{I2(A2C(Vj , b
′)) + OPT2(j − 1, b− b′)} if j > 1

(42)

where A2C(Vj , b) is the partition of Vj into b buckets obtained by the Algorithm A2C discussed in
the previous section.

Thus, if there exists a partition P∗, without mixed buckets, for which I(P∗) = O(log2 g)OPT(V ),
then the impurity of the partition Q∗(Sg, k) constructed by a DP algorithm based on the equation
(42) satisfies

I(Q∗(Sg, k)) ≤ I2(Q∗(Sg, k)) +O(log g)
∑
v∈V

I(v)

≤ I2(P∗) +O(log g)OPT(V ) ≤ 2I(P∗) +O(log g)OPT(V ) ≤ O(log2 g)OPT (V ),

where the first inequality in the first line follows from Proposition 3, the first inequality in the
second line is due to the minimality of the 2-impurity of Q∗(Sg, k) and the superadditivity of I
impying that

∑
v∈V I(v) is a lower bound on OPT(V ).

A pseudopolynomial time algorithm for the general case. Now, we turn to the case where
there exists at most one mixed bucket in the partition given by Theorem 7. Given an instance
(V, I, k) of PMWIP, let C =

∑
v∈V ‖v‖1 and for each i = 1, . . . , g, let Vi and Si be as in (41). For

fixed w, i ∈ [g], ` ∈ [|V |], c ∈ [C], b ∈ [k] let us denote by Q∗(w, `, Si, b, c) a partition of Si into b
buckets that satisfies the following properties:

a it has one bucket, denoted by BQ
∗
, that contains exactly ` vectors that are w-dominant;

b it contains at most one mixed bucket. This mixed bucket, if it exists, is the bucket BQ
∗
.

c For every i, if v and v′ are, respectively, i-dominant vectors in BQ
∗

and V \ BQ∗ ; then
ratio(v) ≤ ratio(v′);

d the total sum of all but the w-component of vectors in BQ
∗

is equal to c, i.e., c = ‖BQ∗‖1 −
(
∑

v∈BQ∗ vw);

e the sum of the 2-impurities of the buckets in Q∗(w, `, Sj , b, c) \ BQ
∗

is minimum among the
partitions for Sj into b buckets that satisfy the previous items.

The algorithm builds partitions Q∗ = Q∗(w, `, Sg, k, c) for all possible combinations of w, ` and
c and, then, returns the one with minimum impurity.
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This approach is motivated by the following: Let P∗ be a partition that contains one mixed
bucket, denoted by B∗mix, and satisfies the properties of Theorem 7. For such a partition, let w∗ =
dom(B∗mix), `∗ be the number of w∗-dominant vectors in B∗mix and c∗ = ‖B∗mix‖1 −

∑
v∈B∗mix

vw∗

(the sum of all but the w∗ component of the vectors in B∗mix.) Then, it is possible to prove that
the impurity of a partition Q∗ = Q∗(w∗, `∗, Sg, k, c∗) is at an O(log g) factor from that of P∗
(see the proof of Theorem 9 below). The key observations are: (i) the impurity of the bucket
BQ

∗
of Q∗ is at an O(log g) factor from that of B∗mix since ‖BQ∗‖1 is at most twice ‖B∗mix‖1 and

‖BQ∗‖1−
∑

v∈BQ∗ vw∗ = ‖B∗mix‖1−
∑

v∈B∗mix
vw∗ = c∗; (ii) the sum of the 2-impurity of the buckets

in Q∗ \ BQ∗ is at most the sum of the 2-impurity of the buckets P∗ \ B∗mix so that their standard
impurities differ by not more than a logarithmic factor.

Building the partitions Q∗(w, `, Si, b, c). To simplify our discussion let us assume w.l.o.g. that
w = 1.

LetQ∗ = Q∗(w, `, Si, b, c) be a partition that satisfies properties (a)-(e) above and let Ipure2 (Q∗) =
I2(Q∗ \BQ

∗
) be the total 2-impurity of the buckets of Q which are surely pure. Moreover, let Vi(j)

be the set of the j vectors of Vi of smallest ratio, and let ci(j) = ‖Vi(j)‖1 −
∑

v∈Vi(j) v1, i.e., the
total sum of all components but the first of the vectors in Vi(j).

For i = 1 we have

Ipure2 (Q∗(1, `, Si, b, c)) =

{
I2(A2C(V1 \ V1(`), b− 1)), if c = c1(`)

∞ otherwise
(43)

For i > 1 we have

Ipure2 (Q∗(1, `, Si, b, c)) = min
0≤j≤|Vi|
0≤b′<b

{I2(A2C(Vi \Vi(j), b′))+Ipure2 (Q∗(1, `, Si−1, b−b′, c−ci(j)))} (44)

Algorithm 1 relies on equations (43) and (44). First, at line 1, it preprocesses the partitions
generated by algorithm A2C that are used by these equations. Next, it runs over the possible
combinations (w, `) and, for each of them, the procedureM is called to search for a partition with
impurity smaller than those found so far.

For a fixed pair (w, `), procedure M constructs partitions Q∗(w, `, Si, b, c) for all the possible
combinations of i and b and all the possible corresponding c. Thus, to simplify we use Q∗(Si, b, c)
to refer to Q∗(w, `, Si, b, c). The first step of procedure M, where component w is relabeled to
1 is only meant to keep a direct correspondence with the assumption w = 1 in equations (43)
and (44). Equation (43) is implemented in lines 8-10 to build the list U1 that contains all the
partitions Q∗(1, b, c) for which Ipure2 (Q∗(1, b, c)) 6= ∞. The loop of lines 11-12 calls procedure
GenerateNewList, that employs Equation (44), to build a list Ui, from list Ui−1, containing all
partitions Q∗(i, b, c) with Ipure2 () 6= ∞. We note that at line 20 the special bucket B′ of the
new partition under construction, is obtained as an extension of the bucket BQ

∗
of the partition

Q∗(i− 1, b, ) in Ui−1, which includes the vectors in V1(`).
At the end of the procedure M the partition of minimum impurity in Ug is returned. This is

the partition of minimum impurity among the partition Q∗(w, `, Sg, b, c) stored in list Ug for some
b and c. Hence, for w = w∗ and ` = `∗, in particular, it is a partition that has impurity not larger
than the partition Q∗(w∗, `∗, Sg, k, c∗) which we already observed to be an O(log g) approximation
of the minimum impurity partition satisfying Theorem 7.
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Since c ≤ C =
∑

v∈V ‖v‖1 and the lists Ui cannot grow larger than gkC it is easy to see that
the proposed algorithm runs in polynomial time on n = |V | and C =

∑
v∈V ‖v‖1.

The following theorem gives a formal proof of the approximation guarantee for the solution
returned by Algorithm 1

Algorithm 1 (V : set of g-dimensional vectors; k: integer )

1: Preprocess A2C(Vj \ Vj(j′), b) for j = 1, . . . , g, j′ = 1, . . . , |Vj | and b = 1, . . . , k
2: QBest ← arbitrarily chosen partition of Sg into k buckets
3: for w = 1, . . . , g and ` = 1, . . . , |Vw| do
4: if I(M(w, `)) < I(QBest) then
5: Update QBest to M(w, `)

6: procedure M(w:class,`:integer)
7: Relabel the components of the vectors so that label of component w becomes 1.
8: for b′ = 1, . . . , k do
9: Q ← {V1(`)} ∪ A2C(V1 \ V1(`), b′ − 1)

10: Add Q to U1.

11: for i = 2, . . . , g do
12: Ui ← GenerateNewList(Ui−1)

13: Return the partition with minimum impurity in Ug

14: function GenerateNewList(U, i)
15: for every partition Q in the list U do
16: Let (i, b, c) be the values s.t. Q = Q(i, b, c)
17: if b < k then
18: for b′ = 1, . . . , k − b do
19: for j = 0, . . . , |Vi| do
20: B′ ← BQ ∪ Vi(j)
21: Q′ ← {B′} ∪ (Q \BQ) ∪ A2C(Vi \ Vi(j), b′).
22: Add Q′ to U
23: c′ ← ‖B′‖1 −

∑
v∈B′ v1

24: if U contains another Q′′ with parameters (i, b+ b′, c′) then
25: if Ipure2 (Q′′) > Ipure2 (Q′) then
26: remove Q′′ from U
27: else
28: remove Q′ from U

return U

Theorem 9. For instances with vectors of dimension g ≤ k, there exists a pseudo-polynomial time
O(log2 g)-approximation algorithm for PMWIP.

Proof. Let Q be the partition with smallest impurity between the one returned by Algorithm 1
and the one returned by the DP based algorithm that implements Equation (42). In addition,
let P∗ be a partition that satisfies the conditions of Theorem 7. In particular, we have I(P∗) ≤
O(log2 g)OPT(V ).

To show that I(Q) is O(log2 g)OPT(V ) we compare I(Q) with I(P∗). We argue according to
whether P∗ has a mixed bucket or not.

Case 1. P∗ has a mixed bucket. We can assume that P∗ coincides with the partition P ′ of Lemma
14.
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Let B′mix be the mixed bucket of P ′ and assume w.l.o.g. that w′ is the dominant component in
B′mix. Let s′ = ‖B′mix‖1, c′ = s′ − ‖B′mix‖∞ and c = s′ −

∑
v∈B′mix

v1 (recall that in the proof of
Lemma 14 component 1 is the dominant component of the bucket Bmix from the partition P that
is used as a basis to obtain P ′; note that it is possible to have 1 6= w′). From Proposition 2, since
c′ ≤ c, and the proof of Lemma 14 we have that

2c′ log
2gs′

c′
≤ 2c log

2gs′

c
≤ O(log2 g)OPT(V ). (45)

In particular, the second inequality in (45) is proved in Appendix D, Bounds on the mixed
buckets B′mix—note that with our present definition of s′ and c the middle term of (45) coincides
with the right hand side of (91).

Let `′ be the number of w′-dominant vectors from P ′ that lie in B′mix. We know that the impurity
of the output partition Q is not larger than that of Q∗(w′, `′, Sg, k, c′), one of the partitions built
by Algorithm 1. Thus, it is enough to show that the impurity of Q∗(w′, `′, Sg, k, c′) is at a O(log2 g)
factor from the optimum. For this we will show that I(Q∗) is O(I(P ′) + OPT(V ) log g). In what
follows we use Q∗ to refer to Q∗(w′, `′, Sg, k, c′), and as before, BQ

∗
denotes the special bucket in

Q∗.
Let

s1 = ‖
∑

v∈B′
mix

dom(v)=w′

v‖1 and c1 = s1 −
∑

v∈B′
mix

dom(v)=w′

vw.

By Corollary 1, with i = w′, we have that

I(BQ
∗
) ≤ 2c′ log

(
2g · (2(c′ − c1) + s1)

c′

)
≤ 2c′ log

4gs′

c′
≤ O(log2 g)OPT(V ) (46)

where

• for the first inequality, we are also using the fact that ‖BQ∗‖1 ≤ 2(c′ − c1) + s1. To see that
the last relation holds we note that

‖
∑

v∈BQ∗
dom(v) 6=w′

v‖1 −
∑

v∈BQ∗
dom(v)6=w′

vw′ = c′ − c1,

hence 2(c′ − c1) is an upper bound on the total mass of the vectors in BQ
∗

which are not
w′-dominant. Therefore, we have the upper bound 2(c′ − c1) + s1 used in the first inequality
for ‖BQ∗‖1.

• for the second inequality we are using s′ ≥ c′ − c1 + s1.

• the last inequality follows from (45)

We now focus on the buckets of Q∗ different from BQ
∗
—which are surely pure. From the proof

of Lemma 14 ( Appendix D, Bounds on the i-pure buckets ) we have that the total impurity
of the buckets in P ′ different from B′mix satisfies∑

B∈P ′\B′mix

I(B) = O(log2 g)OPT(V ). (47)
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In addition, we have∑
B∈Q∗\BQ∗

I(B) ≤
∑

B∈Q∗\BQ∗

(
2I2(B) + 4(log g)

∑
w∈B

I(w)
)

(48)

= 2
∑

B∈Q∗\BQ∗
I2(B) + 4(log g)

∑
w∈V

I(w) (49)

≤ 2
∑

B∈P ′\B′mix

I2(B) + 4(log g)
∑
w∈V

I(w) (50)

≤ 4
∑

B∈P ′\B′mix

I(B) + 4(log g)
∑
w∈V

I(w) (51)

≤ O(log2)OPT(V ) + OPT(V ) log g, (52)

where the inequality in (48) follows from Proposition 3; (50) follows from (49) by the property (e);
(51) follows from (50) by Proposition 3 and, finally, to obtain (52) we use (47) for the left term and
superadditivity for the right term;

From (46) and (48)-(51) we have

I(Q) ≤ I(Q∗) = I(BQ
∗
) +

∑
B∈Q∗\BQ∗

I(B) = O(log2 g)OPT(V )

and the proof for Case 1 is complete.

Case 2. P∗ does not have a mixed bucket. In this case, let Q′ be the partition built according to
the recurrence in (42). It was argued right after this inequality that I(Q′) is O(log2 g)OPT (V ).
Thus, I(Q) is also O(log2 g)OPT (V ).

The polynomial time algorithm. Let P∗ be a partition that satisfies the conditions of Theorem
7. If P∗ does not have a mixed bucket then the DP based on Equation (42) is a polynomial time
algorithm that builds a partition whose impurity is at most O(log g) times larger than that of P∗.
Thus, we just need to focus in the case where P∗ has a mixed bucket.

Let Algo-Prune be the variant of Algorithm 1 that together with the instance takes as input
an extra integer parameter t and uses the following additional conditions regarding the way the
lists U ′is are handled: (i) only partitions for which the fifth parameter c is at most t are added to
Ui; (ii) after creating the list Ui in line 12 and before proceeding to list Ui+1 the following pruning
is performed: the interval [0, t] is split into 4g subintervals of length t/4g and while there exist two
partitions Q(w, `, Si, b, c) and Q′(w, `, Si, b, c′) in Ui with both c′ and c lying in the same subinterval,
the one for which the Ipure2 () is larger is removed. This step guarantees that a polynomial number
of partitions are kept in Ui.

Let us consider the algorithm Apoly that executes Algo-Prune e = dlog(
∑

v∈V ‖v‖1)e times.
In the jth execution Algo-Prune is called with t = 2j . After execution j the partition with the
minimum impurity found in Ug is kept as Q(j). After all the e executions have been performed, the
partition with minimum impurity in {Q(1), . . . ,Q(e)} is returned.

From the above observation that in each call of Algo-Prune the number of partitions kept in
the lists is polynomial in size of the instance and the fact that the number of calls to Algo-Prune
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is also polynomial in the size of the input, we have that Apoly is a polynomial time algorithm for
our problem.

It remains to show that Apoly is also an O(log3 g)-approximation algorithm. For this, let us
consider again the partitions P∗ and Q∗(1, `∗, Sg, k, c) defined in the case 2 of the proof of Theorem
9. We can show that there is a partition Q among those constructed by Apoly such that Ipure2 (Q) ≤
Ipure2 (Q∗(1, `∗, Sg, k, c)) and such that the special bucket BQ ofQ has `∗ vectors that are 1-dominant
and satisfies ‖BQ‖1 −

∑
v∈BQ v1 ≤ 2(‖Bmix‖1 − ‖Bmix‖∞) = 2c.

Note that these properties are enough to obtain our claim since, with them, proceeding as in
the proof of Theorem 9 one can show that the impurity of Q is at most an O(log3 g) factor larger
than the optimal impurity.

For the definition of Q we need some additional notation. As in Theorem 9, let us denote with
Q∗ the partition Q∗(1, `∗, Sg, k, c). Then BQ

∗
denotes the special bucket of this partition.

For i = 1, . . . , g let bi be the number of i-pure buckets in Q∗ \BQ∗ and let ni be the number of
i-dominant vectors that lie in the bucket BQ

∗
. Moreover, let ci = ‖Vi(ni)‖1 −

∑
v∈Vi(ni)

v1. With

this, we have that
∑g

i=1 ci = c = ‖Bmix‖1 − ‖Bmix‖∞.
The partition Q is defined as the last partition of the sequence Q1, . . . ,Qg, where

• Q1 is the partitionQ∗(1, `∗, S1, b1, c1) constructed in the dlog ce-th execution of Algo-Prune,
i.e., with t = 2dlog ce > c.

• For i > 1, let Q′i be the partition obtained by extending Qi−1 with the bi buckets from the
partition A2C(Vi \Vi(ni), bi) and replacing the bucket BQi−1 , from Qi−1, with BQi−1 ∪Vi(ni).
Note that such a partition is added to Ui before the pruning step (ii) is executed. Then, Qi
is defined as the partition that survives (after the pruning step (ii)) in the subinterval where
Q′i lies.

Let c′i = ‖BQi‖1−
∑

v∈BQi v1 (the total mass of vectors in the special bucket BQi of Qi, minus
the mass of such vectors in the component 1).

We can prove by induction that ∣∣∣∣∣∣c′i −
i∑

j=1

cj

∣∣∣∣∣∣ ≤ i · t
4g

.

For i = 1 the result holds since c1 = c′1. It follows from the induction that

c′i−1 −
i−1∑
j=1

cj ≤
(i− 1) · t

4g

The result for i is established by observing that the pruning step (ii) above, ensures that∣∣c′i − (c′i−1 + ci)
∣∣ ≤ t

4g

Let Q∗i be the subpartition of Q∗ that contains bucket BQ
∗

and all i′-pure bucket for each
i′ ≤ i. We can also prove by induction that Ipure2 (Qi) ≤ Ipure2 (Q∗i ). For i = 1 the result holds since
Q1 = Q∗1. For a general i we have that

Ipure2 (Qi) ≤ Ipure2 (Qi−1) +A2C(Vi \ V (ni), bi)

≤ Ipure2 (Q∗i−1) +A2C(Vi \ V (ni), bi) = Ipure2 (Q∗i ).
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Thus, by using the same arguments employed in the proof of Theorem 9 on can show that the
impurity of Q is at an O(log2 g) factor from the optimal one. We can now state the main theorem
of the paper.

Theorem 10. There is a polynomial time O(log2(min{g, k})) approximation algorithm for PMWIP.

Proof. By the above argument we have that Algorithm Apoly is a polynomial time O(log2 g) ap-
proximation algorithm for PMWIP with g ≤ k. For g > k, applying Lemma 10 and the approach of
Section 3 (see, in particular equation (13)), we have an O(log2 k)-approximation algorithm. Putting
together the two cases we have the claim.

6 Hardness of Approximation of PMWIPEnt

The goal of this section is to establish the following result.

Theorem 11. PMWIPEnt is APX-Hard.

We start with the definition of a gap decision problem associated with the minimum vertex
cover problem on bounded degree graphs.

Definition 1. For every ε > 0 and integer d, we define the following (gap) decision problem: ε-
Gap-MinVC-3: given a cubic graphs G = (V,E) and an integer k, decide whether G has a vertex
cover of size k or all vertex covers of G have size > k(1 + ε).

Definition 2. For every η > 0, we define the following (gap) decision problem: η-Gap-PMWIPEnt:
given a set of vectors U , an integer k, and a value k′, decide whether there exists a k-clustering
C = C1, . . . Ck of the vectors in U such that the total impurity IEnt(C) =

∑k
`=1 IEnt(C`) is at most

k′ or for each k-clustering C of U it holds that IEnt(C) > (1 + η)k′.

We will use the following result from the proof of [10, Theorems 17 and 19] as the basis for
a gap-preserving reduction from Minimum Vertex Cover in Cubic Graphs to PMWIPEnt,
which will in turn imply APX-hardness of the latter problem.

Theorem 12. For some constants ε > 0 the ε-Gap-MinVC-3 is NP-hard.

We will use the following definition of a (constant) gap-preserving reduction:

Definition 3. Let A,B be minimization problems. A gap-preserving reduction from A to B is a
polynomial time algorithm that, given an instance x of A and a value k, produces an instance y of
B and a value k′ such that there exists constants ε, η > 0 for which

1. if OPT (x) ≤ k then OPT (y) ≤ k′;

2. if OPT (x) > (1 + ε)k then OPT (y) > (1 + η)k′;

The reduction. Given a cubic graph G = (V = {v1, . . . , vn}, E), with |E| = m, we can construct
(in polynomial time) a set of m n-dimensional binary vectors U = {ve | e ∈ E} ⊆ {0, 1}n by
stipulating that if e = (vi, vj) then only the i-th and j-th components of ve are 1 and all others are
0.
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In what follows, for a set of vectors C ⊆ U we use IEnt(C) to denote the impurity of C, that
is, IEnt(C) = IEnt(

∑
v∈C v).

We will find it convenient to visualize vectors in U in terms of their corresponding edges. For
a subset of C ⊆ U we will say that C is a p-star if the corresponding set of edges form a star
in G, i.e., if |C| = p and there exists a coordinate j ∈ [n] such that for each vectors ve ∈ C the
jth components of ve is 1. By directly applying the definition of the impurity IEnt we have the
following.

Fact 2. If C ⊆ U is a p-star, then we have IEnt(C) = 2p+ p log p

We also have that p-stars are sets of p edges of minimum impurity as recorded in the following
fact.

Fact 3. Let C ⊆ U be a set of p edges. Then IEnt(C) ≥ 2p+ p log p.

Proof. Let dC(v) be the number of edges of C incident in v. Then, we have

IEnt(C) = 2pH

(
dC(v1)

2p
, . . . ,

dC(vn)

2p

)
, (53)

where H() denotes the Shannon entropy.
By the concavity of H(), we have that the minimum of the entropy appearing on rights hand

side of (53) is attained when the maximum possible mass is concentrate in one component, i.e.,

min
d1,...dn

di∈[p],
∑

i di=2p

H

(
d1
2p
, . . . ,

dn
2p

)
= H

(
p

2p
,

1

2p
, . . .

1

2p
, 0, . . . , 0

)
. (54)

The desired result now follows by noticing that the entropy on the right hand side of (54) is equal
to 1 + 1

2 log p.

The following lemma, which is key for our development, relates minimal vertex covers with star
decompositions in cubic graphs. This result might be of independent interest.

Lemma 15. Let G = (V,E) be a cubic graph and U be a corresponding set of vectors obtained by
the reduction described above. If G has a minimal vertex cover of size k then there is a k-clustering
C = {C1, . . . Ck} of U where for each i, the cluster Ci is either a 2-star or a 3-star.

Proof. Let S = {v1, . . . , vk} be a minimal vertex cover in G. Let G[S] = (S,E[S]) be the subgraph
of G induced by the vertices in S.

For each i = 1, . . . , k let Di be the set of edges in E \ E[S] that are incident to vi.
We say that vi is of type j if |Di| = j. Since the graph is cubic and S is minimal then the only

possible types are 1, 2 and 3. We then extend the sets Di by applying the following procedure:

While there exists an edge e = vivj ∈ G[S], with vi having type 2 do
Remove e from G[S] and add it to Dj

Increase the type of vj by one unit.

Let G[S] be the resulting graph. Since the graph G was cubic, every vertex of type 2 or 3 in
G[S] is isolated and every vertex of type 1 is adjacent to two vertices of type 1. Therefore, in G[S],
the edges define a collection of disjoint cycles of vertices of type 1. Let vi1 , vi2 , . . . , vir be one such
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cycle, where vir = vi1 . Then, for j = 1, . . . , r − 1 we remove edge (vij , vij+1) from G[S] and add it
to Dij so that vij becomes a vertex of type 2. After repeating this for each cycle, we have that for
all j, the set Dj has cardinality 2 or 3. Moreover, by construction, we also have ∪iDi = E.

Then, the clustering C = {C1, . . . , Ck} where Ci = {ve | e ∈ Di}, satisfies the claim.

Corollary 2. Let G = (V,E) be a cubic graph and U be a corresponding set of vectors obtained by
the reduction described above. If G has a minimal vertex cover of size k then there is a k-clustering
C = {C1, . . . Ck} of U of impurity IEnt(C) = 6k + 3(|U | − 2k) log 3.

Proof. Let m = |U | = |E|. Let C = {C1, . . . Ck} be the clustering given by Lemma 15. Let a and b
denote the number of 2 and 3 stars in C, respectively. Then 2a + 3b = m and a + b = k, whence,
a = 3k −m and b = m− 2k. Finally, from Fact 2 we have

IEnt(C) = 6a+ b (6 + 3 log 3) = 6k + 3(m− 2k) log 3.

The consequence of the last corollary is that setting k′ = 6k+ 3(m− 2k) log 3 we have that the
reduction described above satisfies property 1 in Definition 3.

6.1 Preservation of the Gap

We want to show that when the minimum vertex cover of the graph G has size at least k(1 + ε)
then the impurity of every k-clustering is at least a constant times larger than 6k+3(|U |−2k) log 3,
which is the impurity of the clustering in Corollary 2, which exists when the minimum vertex cover
of G has cardinality ≤ k. This will imply that our reduction satisfies also the second property in
Definition 3.

In the following, C will denote a clustering of minimum impurity for the instance of PMWIPEnt
obtained via the reduction, when, for some constant ε > 0, the size of the minimum vertex cover
for G is at least k(1 + ε).

We will use the following notation to describe such a clustering C of minimum impurity.

• a: number of clusters in C consisting of a 3-star; we refer to these clusters as the a-group of
clusters;

• b: number of clusters in C consisting of a 2-star; we refer to these clusters as the b-group of
clusters;

• c: number of cluster in C consisting of a 1-star (single edge); we refer to these clusters as the
c-group of clusters;

• d: number of clusters in C consisting of 2 edges without common vertex (2-matching); we
refer to these clusters as the d-group of clusters;

• e: number of remaining clusters in C; we refer to these clusters as the e-group of clusters;

• q: number of edges in the e-group of clusters.

In the definitions above the letters a, b, c, d and e are used to denote both the size and the type
of a group of clusters. We believe this overloaded notation helps the readability.

The following proposition will be useful in our analysis.
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Proposition 5. Let x ≥ 2 and let n1,n2 be positive integers. We have that

n1(2x+ x log x) + n2(2(x+ 1) + (x+ 1) log(x+ 1)) ≥ (n1 + n2)(2x+ x log x),

where x = (n1x+ n2(x+ 1))/(n1 + n2).

Proof. It is enough to prove that

n1x log x+ n2(x+ 1) log(x+ 1) ≥ (n1 + n2)x log x.

This inequality follows from Jensen inequality since f(x) = x log x is convex in the interval [2,∞]

The next two propositions give lower bounds on the sum of the impurities of the clusters in the
e-group.

Proposition 6. The total impurity of the clusters in the e-group is at least 2q + q/e log(q/e).

Proof. Let C1, . . . , Ce be the clusters in the e-group. Note that each one of these clusters has
cardinality ≥ 3. Let p = bq/ec. Then, we have p ≥ 3. Suppose that there exist clusters Ci, Cj such
that |Ci| = x and |Cj | = y with y > x+ 1. Let C ′i be an (x+ 1)-star and C ′j be a (y− 1)-star, then
we have

IEnt(Ci) + IEnt(Cj) ≥ 2x+ x log x+ 2y + y log y

≥ 2(x+ 1) + (x+ 1) log(x+ 1) + 2(y − 1) + (y − 1) log(y − 1)

≥ IEnt(C
′
i) + IEnt(C

′
j),

where the first inequality follows from Fact 3, the second inequality holds true for each 3 ≤ x ≤ y−2
and the last inequality follows from Fact 2.

The above inequality says that if we replace Ci, Cj with C ′i, C
′
j , the impurity of the resulting

set of e clusters is not larger than the impurity of the original e-group. Moreover, the total number
of edges has not changed. By repeated application of such a replacement we eventually obtain a
group of e clusters C̃ = {C̃1, . . . , C̃e} each of cardinality p or p+ 1 and containing in total e edges
and such that

∑
i=1 IEnt(Ci) ≥

∑
i=1 IEnt(C̃i). In particular, the total impurity of such clusters is

not larger than the total impurity of the original e clusters. Note that these new e clusters need
not exist and are only used here for the sake of the analysis.

Let n1 be the number of clusters in C̃ with p edges and n2 be the number of clusters in C̃ with
p+ 1 edges and let p = n1p+n2(p+1)

n1+n2
. Then, q = n1p+ n2(p+ 1) and e = n1 + n2, hence p = q/e.

Finally, by applying Proposition 5, we have the desired result:

e∑
j=1

IEnt(Ci) ≥
e∑
j=1

IEnt(C̃i)

= n1(2p+ p log p) + n2(2(p+ 1) + (p+ 1) log(p+ 1))

≥ (n1 + n2)(2p+ p log p) = 2q +
q

e
log

q

e
.
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We say that C is an S-structure if it correspond to a set of 3 edges, of which two form a 2-star
and the third one is not incident to any one of the first two edges. Moreover, we say that C is a
3-path structure if it corresponds to a set of 3 edges forming a path.

Fact 4. The impurity of a 3-path structure is 2 + 6 log 3, the impurity of a S-structure is 4 + 6 log 3
and the impurity of a cluster corresponding to 3 disjoint edges is 6 + 6 log 3.

Proposition 7. If q < 4e then the total impurity of the clusters in the e-group is lower bounded
by the impurity of a partition of q edges into e sets, each of which is either a 4-star or a 3-path
structure.

Proof. First we consider two simple cases. In the first one no cluster in the e-group has cardinality
larger than 3. In this case, all clusters have cardinality 3 and the result holds since Fact 4 assures
that the impurity of each of these clusters can be lower bounded by the impurity of a 3−path
cluster. In the second case, all clusters in the e-group, with more than three edges, are 4 stars.
Again, we can establish the result by using the same reasoning.

In the most interesting case there is a cluster C in the e-group with cardinality r ≥ 4 that does
not correspond to a 4−star. In this case, there exist r−3 clusters of cardinality 3 in the e-group, for
otherwise the average cardinality would be ≥ 4, violating the assumption q < 4e. Let D1, . . . Dr−3
be these clusters. Moreover, let C ′ be a 3-path structure and D′1, . . . D

′
r−3 be 4-stars. We have

|C ′|+
r−3∑
j=1

|D′j | = 3 + 4(r − 3) = r + 3(r − 3) = |C|+
r−3∑
j=1

|Dj |. (55)

Furthermore, by definition clusters of cardinality 3 that are in the e-group are not 3-stars. Thus,
by Fact 4 we have that for each i = 1, . . . r − 3, it holds that IEnt(Di) ≥ 2 + 6 log 3 and by Fact 3,
it holds that IEnt(C) ≥ 2r + r log r. Then

IEnt(C) +
r−3∑
j=1

IEnt(Dj) ≥ 2r + r log r + (r − 3) (2 + 6 log 3)

≥ (2 + 6 log 3) + 16(r − 3)

= IEnt(C
′) +

r−3∑
i=1

IEnt(D
′
i),

where the second inequality holds for each r ≥ 4.
The above inequalities together with (55) say that if we replace C,D1, . . . Dr−3 with C ′, D′1, . . . D

′
r−3,

the impurity of the resulting set of e clusters is not larger than the impurity of the original set
of e clusters. Moreover, the total number of edges does not change. By repeated application of
such a replacement we eventually obtain a group of e clusters C̃ = {C̃1, . . . , C̃e} each of which
is either a 3-path structure of a 4-star. Moreover, these clusters contain in total e edges and∑

i=1 IEnt(Ci) ≥
∑

i=1 IEnt(C̃i), i.e., the total impurity of the new clusters1 is not larger than the
total impurity of the original e clusters. The proof is complete.

Proposition 8. If the minimum vertex cover for G has size at least k(1 + ε) then the following
inequality holds: c+ d+ q ≥ kε/2.

1Note that these e clusters need not exist and are only used here for the sake of the analysis.
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Proof. If it does not hold we could construct a vertex cover of size smaller than k(1+ε) by selecting
a vertex to cover the edges of the 3-stars, b vertices to cover the edges of the b stars and one vertex
per edge of the other clusters. The number of edges in these other clusters is c+ 2d+ q. Hence, we
must have a+ b+ c+ 2d+ q ≥ k(1 + ε). Since a+ b ≤ k we conclude that c+ d+ 2q ≥ kε, so that
c+ d+ q ≥ c/2 + d/2 + q ≥ kε/2

Let C(k) denote the clustering only consisting of 2-stars and 3-stars described in Lemma 15 and
Corollary 2, which exists when the minimum vertex cover of the graph G has size ≤ k. We also
refer to this clustering as the k-cover clustering.

We will now show that, if the minimum size of a vertex cover for G is at least k(1 + ε) then the
impurity of the minimum impurity clustering C (for the instance obtained via the reduction) is at
least a constant factor larger than the impurity of C(k).

Lemma 16. Let G = (V,E) be a cubic graph and U be a corresponding set of vectors obtained by
the reduction described above. If every vertex cover in G has size ≥ k(1 + ε), then there exists a
constant η > 0 such that every k-clustering C = {C1, . . . Ck} of U has impurity IEnt(C) ≥ k′(1 + η),
where k′ = IEnt(C(k)).

Proof. Recall the definition of the parameters a, b, c, d, e, q, regarding the minimum impurity k-
clustering C. We split our analysis into two cases according whether 3k −m, which is the number
of 2-stars in C(k), is smaller than b+ d, the number of clusters of C with 2 edges, or not.

Case 1 b+ d ≥ 3k −m.
Let z = (b+ d)− (3k −m). We can write the impurity of the k-cover clustering C(k) as

IEnt(C(k)) = (6 + 3 log 3)a+ (6 + 3 log 3)z + 6(3k −m).

Let p = q/e. Then, lower bounding the impurity of the clusters in the e-group as in Proposition 6,
we have that the impurity of C satisfies

IEnt(C) ≥ (6 + 3 log 3)a+ 2c+ 8d+ 6b+ (p log p+ 2p)e.

Therefore,
IEnt(C)− IEnt(C(k)) ≥ 2c+ 2d− (3 log 3)z + (p log p+ 2p)e

Summing up the edges in the clusters, we have that 2z+pe+c = 3(z+c+e), hence z = (p−3)e−2c
Thus,

IEnt(C)− IEnt(C(k)) ≥ (2 + 6 log 3)c+ 2d+ (p log p+ (2− 3 log 3)p+ 9 log 3)e (56)

= (2 + 6 log 3)c+ 2d+ (log p+ (2− 3 log 3) + 9 log 3/p)q (57)

> 1.99(c+ d+ q) (58)

≥ 0.49kε, (59)

where inequality (57)-(58) follows because the global minimum of log p+ (2− 3 log 3) + 9 log 3/p is
larger than 1.99 and inequality (58)-(59) follows from Proposition 8.

Since IEnt(C(k)) ≤ k(6+3 log 3), the impurity of the clustering C is a constant factor larger than
the impurity of C(k).

Case 2 b + d < 3k − m. We further split this case into two subcases according to whether the
average size of the clusters in the e-group is at least four or smaller than four.
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Subcase 2.1 b+ d < 3k −m and q ≥ 4e.
Let y = (m− 2k − a) and z = 3k −m− (b+ d). Let p = q/e. Hence, we have p ≥ 4.
We can write the impurity of the k-cover clustering C(k) as

IEnt(C(k)) = (6 + 3 log 3)a+ (6 + 3 log 3)y + 6b+ 6d+ 6z.

Since y + z = (c+ e) and 3y + 2z = pe+ c we get that y = (p− 2)e− c and z = 2c+ (3− p)e.
Thus,

IEnt(C(k)) = (6 + 3 log 3)a+ (p− 2)(6 + 3 log 3)e− (6 + 3 log 3)c+ 6b+ 6d+ 12c+ 6(3− p)e
= (6 + 3 log 3)a+ [(3 log 3)p+ 6(1− log 3)]e+ 6b+ 6d+ (6− 3 log 3)c.

The impurity of C is given by

IEnt(C) ≥ (6 + 3 log 3)a+ 6b+ 2c+ 8d+ (p log p+ 2p)e

Therefore, we have

IEnt(C)− IEnt(C(k)) ≥ (3 log 3− 4)c+ 2d+ [p log p+ (2− 3 log 3)p+ 6(log 3− 1)]e (60)

= (3 log 3− 4)c+ 2d+ (log p+ (2− 3 log 3) + 6(log 3− 1)/p)q (61)

≥ (2.5− 1.5 log 3)(c+ d+ q) (62)

≥ (1.25− 0.75 log 3)kε (63)

where the inequality (61) holds because function f(x) = log x+ 6(log 3− 1)/x is increasing in the
interval [4,∞]. The last inequality follows from Proposition 8.

Since IEnt(C(k)) ≤ k(6 + 3 log 3), the impurity of the clustering C is at least constant factor
larger than the impurity of C(k).

Subcase 2.2 b+ d < 3k −m and q < 4e.
Let z = (3k − m) − (b + d) and y = (m − 2k) − a. Because of the assumption q < 4e, by

Proposition 7, the sum of the impurities of the clusters in the e-group can be lower bounded by
the sum of the impurities of a set of e clusters such that each of them is either a 3-path structure
or a 4-star. Let x be the number of 3-path structures in this group, hence (e− x) is the number of
4-stars in this same group.

Since both C(k) and C have the same number of clusters, we have

c+ e = z + y.

Since the total number of edges in the clusters is the same we also have

c+ 3x+ 4(e− x) = 2z + 3y.

From these equalities we have that z = 2c− (e− x).
Therefore, we can write the impurity of the clustering C(k) as follows

IEnt(C(k)) = 6(b+ d) + 6z + (6 + 3 log 3)(a+ c+ e− z).
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On the other hand, for the impurity of C we have

IEnt(C) ≥ 6b+ 8d+ a(6 + 3 log 3) + 2c+ 16(e− x) + (2 + 6 log 3)x.

Therefore, we have

IEnt(C)− IEnt(C(k)) ≥ 2d+ 2c− (6 + 3 log 3)(c+ e− z)− 6z + 16(e− x) + (2 + 6 log 3)x (64)

= 2d− (4 + 3 log 3)c− (6 + 3 log 3)e+ (3 log 3)z + (2 + 6 log 3)x

+16(e− x) (65)

= 2d+ (3 log 3− 4)c− (6 + 6 log 3)e+ (2 + 9 log 3)x+ 16(e− x) (66)

= 2d+ (3 log 3− 4)c+ (10− 6 log 3)e+ (9 log 3− 14)x (67)

≥ 2d+ (3 log 3− 4)c+ (10− 6 log 3)q/4 ≥ 10− 6 log 3

4
(d+ c+ q) (68)

≥ 10− 6 log 3

8
kε, (69)

where (66) follows from (65) using z = 2c− e+ x, the last but first inequality holds by q < 4e and
the last inequality follows from Proposition 8.

Since IEnt(C(k)) ≤ k(6+3 log 3), the impurity of the clustering C is a constant factor larger than
the impurity of the k-cover cluster C(k).

As a result of the above case based analysis, setting

η = ε× (6 + 3 log 3)×min

{
0.49,

5− 3 log 3

4
,
10− 6 log 3

8

}
,

we have IEnt(C) ≥ IEnt(C(k))(1 + η), as desired.

Proof of Theorem 11. We have shown that for every ε > 0 there exists an η > 0 such that for
every instance (G = (V,E), k) of ε-Gap-MinVC-3, setting k′ = 6k+ 3(|E| − 2k) log 3 the instance
(U, k, k′) of η-Gap-PMWIPEnt produced according to our reduction is such that if G has a vertex
cover of size ≤ k then U has a k-clustering of impurity ≤ k′ and if all vertex covers of G have size
> (1 + ε)k then all k-clustering of U have impurity > (1 + η)k′.

This, together with Theorem 12 implies that there exists η > 0 such that the η-Gap-PMWIPEnt
is NP-hard. Hence, if P 6= NP there is no polynomial time (1 + η)-approximation algorithm for
PMWIPEnt.

6.2 The impact of our result on related problems

PMWIPEnt is closely related to the MTCKL [9], the problem of clustering a set of n probability
distributions into k groups minimizing the total Kullback-Leibler (KL) divergence from the distri-
butions to the centroids of their assigned groups. Mathematically, we are given a set of n points
p(1), . . . , p(n), corresponding to probability distributions, and a positive integer k. The goal is to
find a partition of the points into k groups V1, . . . , Vk and a centroid c(i) for each group Vi such
that

k∑
i=1

∑
p∈Vi

KL(p, c(i))
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is minimized, where KL(p, q) =
∑d

j=1 pj ln(pj/qj) is the Kullback-Leibler divergence between points
p and q.

It is known that in the optimal solution for each i = 1, . . . k the centroid c(i) = (c
(i)
1 , . . . c

(i)
d ) is

given by c
(i)
j =

∑
p∈Vi pj/|Vi|, for each j = 1, . . . , d. Thus, MTCKL is equivalent to the problem of

finding a partition that minimizes

k∑
i=1

∑
p∈Vi

KL(p, c(i)) =

k∑
i=1

∑
p∈Vi

d∑
j=1

pj(ln pj − ln c
(i)
j ) = (70)

n∑
i=1

d∑
j=1

p
(i)
j ln p

(i)
j −

k∑
i=1

∑
p∈Vi

d∑
j=1

pj ln c
(i)
j = (71)

n∑
i=1

d∑
j=1

p
(i)
j ln p

(i)
j −

k∑
i=1

d∑
j=1

∑
p∈Vi

pj

 ln

(∑
p∈Vi pj

)
|Vi|

= (72)

− 1

log e

n∑
i=1

IEnt(p
(i)) +

1

log e

k∑
i=1

IEnt

(∑
p∈Vi

p

)
(73)

Therefore, the optimal solution of MTCKL is equal to the optimal one of the particular case
of PMWIPEnt in which vi = pi for i = 1, . . . , n. While their optimal solutions match in this case,
PMWIPEnt and MTCKL differ in terms of approximation since the objective function for MTCKL
has an additional constant term −

∑n
i=1 IEnt(p

(i)) so that an α-approximation for MCTKL problem
implies an α-approximation for PMWIPEnt while the converse is not necessarily true.

In terms of computational complexity, Chaudhuri and McGregor [9] proved that the variant
of MTCKL where the centroids must be chosen from the input probability distributions is NP-
Complete. The NP-Hardness of MTCKL, that remained open in [9], was established in Ackermann
et. al. [2], where it is also mentioned that the APX-hardness of k-means in R2 would imply the
same kind of hardness for MTCKL. However, it is not known whether the former is APX-Hard.

Our result provides an important progress in this line of investigation since it implies the APX-
hardness of MTCKL. This follows from the above observation about the correspondence between
the two problems and the fact that the same arguments in our reduction can also be used to show
the inapproximability of instances where all vectors have `1 norm equal to any constant value, and
in particular 1, i.e., the case where PMWIPEnt corresponds to MTCKL. In summary we have the
following.

Corollary 3. MCTKL is APX-Hard.

7 New fast method for information clustering

We have designed, implemented and tested a novel heuristic Ratio-Greedy for clustering based
on Entropy impurity, which uses some of the ideas that lead to the algorithms presented in the
previous sections.

The basis of Ratio-Greedy is the dominance algorithm of Section 4. In the case where the
number of allowed cluster k is larger than the dimension g, the dominance algorithm would only
use g clusters, each one being a pure bucket. Ratio-Greedy after grouping the vectors into g < k
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pure buckets B1, . . . , Bg, according to the dominant component, proceeds with splitting for each
i = 1, . . . , g, the bucket Bi into ti clusters, so that

∑
i ti = k, i.e., eventually producing exactly k

clusters. The number of clusters ti in which Bi is divided is chosen to be proportional to the impurity
of Bi relative to the total impurity of B1, . . . , Bg, i.e., ti = min{|Bi|, k IEnt(Bi)∑

i IEnt(Bi)
}. For partitioning

Bi into ti clusters, Ratio-Greedy uses ideas from the analysis of Section 5: It constructs a partition
Bi,1, . . . , Bi,ti where for each j and each vector v 6∈ Bi,j either ratio(v) ≥ maxv′∈Bi,j

{ratio(v′)}
or ratio(v) ≤ minv′∈Bi,j

{ratio(v′)}. This is achieved in the following way: Let Li be the list
obtained by sorting the vectors in Bi according to their ratios as defined in Section 5. It will be
convenient to think of Li as list of |Li| singleton clusters: {v1}, {v2}, . . . , {vni}, where ni denotes
the number of vectors in Bi. A greedy approach is used to reduce the number of clusters in Li from
ni to ti. This procedure consists of iteratively selecting two adjacent clusters {vi,vi+1 . . . ,vj} and
{vj+1,vj+2 . . . ,v`} in the current list Li and replacing them with their union {vi,vi+1 . . . ,v`} so
that a new list containing one less cluster is obtained. The pair of adjacent clusters in the list Li
that is selected to be merged, at each iteration, is the one for which loss(·, ·) is minimum, where the
loss(C,C ′) of two clusters C and C ′ is given by loss(C,C ′) = IEnt(C ∪ C ′) − IEnt(C) − IEnt(C ′).
The procedure stops when the list Li contains exactly ti clusters.

We need time O(ni · g + ni log ni) to: (i) compute the ratio of each vector in Bi; (ii) sort them;
(iii) compute the impurity of each vector; (iv) compute for each pair of adjacent vectors in Li the
loss of merging them into one cluster.

We maintain a priority queue whose elements are the pair of adjacent clusters (Cj , Cj+1) in Li
(representing the possible merge operations) valued with the loss(CjCj+1) as defined above. In
each iteration we need to extract the pair of min value from the priority queue, and change the pair
(Cj−1, Cj) with the pair (Cj−1, (Cj∪Cj+1)) and the pair (Cj , Cj+1) with the pair ((Cj∪Cj+1), Cj+2)
together with their values. If we use a binary heap to implement the priority queue each such
operation on the priority queue can be done in time O(g + log ni).

Therefore, Ratio-Greedy can be implemented to run in O(n log n+ ng) time. Moreover, the
impurity of the partition obtained by Ratio-Greedy is no worse than that obtained by ADom,
thus it inherits its approximation guarantees.

7.1 Experimental Evaluation

We tested Ratio-Greedy on the 20NEWS and RCV1 datasets. The former has been previously
used to evaluate text classification methods [6, 26, 23, 13]. In particular, we report comparisons
with the Divisive Clustering algorithm of Dhillon et al. [13] which (in the terms of our paper)
is designed to optimize the difference between the impurity of the classification and the sum of the
impurity of the input vectors.

Divisive Clustering is an adaptation of the k-means method that employs KL-divergence
rather than Euclidean squared distance. When k > g, the initialization of Divisive Clustering
resembles ADom since it consists of splitting the vectors that are i-dominant among k/g clusters.
For k ≤ g the initialization is not well specified so that we use ADom in this case. In [13] it was
shown that Divisive Clustering outperforms the agglomerative clustering methods of [6, 26].

We used the version of the 20 newsgroup data set available in Scikit-learn https://scikit-learn.

org/0.19/datasets/twenty_newsgroups.html, comprising 18.846 documents evenly divided into
20 disjoint classes. The RCV1-v2 corpus was obtained from http://www.jmlr.org/papers/

volume5/lewis04a/lyrl2004_rcv1v2_README.htm. It includes 804,414 documents assigned to
103 different classes (a single document may belong to more than one class).
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By using the scikit-learn CountVectorizer function, each document is turned into a vector
d whose component di counts the number of times that word i appears in document d. For
this vectorization of the texts, a filter function has been employed to strip out newsgroup-related
metadata (headers, footers and quotes), and prune words occurring in less than two documents or in
more than 95% of the documents, and english stopwords (for this we used the standard scikit-learn
stopword list).

After vectorizing the documents, the following quantities are computed in order to define the
input probability vectors for the classification algorithms:

• for each class c, let p(c) = |c|∑′
c |c′|

, where |c′| denotes the number of documents in class c′;

• for each word w and each class c let n(w, c) be the number of times the word w appears in
documents of class c.

• for each word w and each class c, let p(w|c) = 1+n(w,c)∑
w(1+n(w,c)) represent the probability of a

word, conditioned to a given class;

• set p(w, c) = p(w|c)p(c).

To each word a probability vector w is associated, setting, for each c = 1, . . . 20, wc = p(w, c).
Since p(w, c) = p(w|c)p(c) = p(c|w)p(w), each component wc represents the probability of class c
given the occurrence of word w weighted by the probability of w.

For 20NEWS the input obtained consisted of 51.840 vectors (1 for each word) of dimension 20
(1 for each class). For RCV1 we have 170.946 vector, each of them with 103 components.

The preprocessing was done in Python and the algorithms were developed and run in C on a
MacBook Air 2012 with OS X Yosemite (10.10.5), Intel Core i5 1.7 GHz processor and 4 GB of
memory RAM 1600 Mhz. The code as well as the datasets are available in https://github.com/

lmurtinho/RatioGreedyClustering/tree/ICML_submission

The Results. Figure 1 shows the impurities of the partitions obtained for different values of k
for both datasets. DC-Init, DC-Iter1 and DC-All correspond, respectively, to different points
in the execution of Divisive Clustering: right after its initialization, after its first iteration and
at the end. We set a limit of 100 iterations for Divisive Clustering. For both datasets, we
observe that Ratio-Greedy obtains partitions clearly better than that of DC-Init. With respect
to DC-Iter1, it produces similar results for 20NEWS while for RCV1 it is significantly better
when the number of clusters gets larger.

The key advantage of Ratio-Greedy, however, is its execution time. Table 1 shows the times
(in seconds) spent by the methods for RCV1 dataset. We can see that execution time of Ratio-
Greedy, in contrast with Divisive Clustering, is barely affected by the number of clusters
k. When k is large the difference between the methods is quite significant. As an example for
k = 2000, Ratio-Greedy is approximately 50 and 5000 times faster than DC-Iter1 and DC-
All, respectively. For NEWS20 dataset we observed a similar beheviour.

These experiments suggest that Ratio-Greedy is a strong candidate to be used in applications
in which the O(ngk) time complexity of DC per iteration may be prohibitive.
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Figure 1: Impurities (vertical axis) of the partitions obtained by Ratio-Greedy and Divisive
Clustering for different values of k (horizontal axis).

Table 1: Elapsed time in seconds taken by Divisive Clustering and Ratio-Greedy for RCV1
input.

Clusters Ratio-Greedy DC-Init DC-Iter1 DC-ITER5 DC-All

20 0.6 0.4 3 11 68.6
50 1 0.4 6 25.3 342.1
100 3.1 0.5 10.8 49.1 971.1
200 3.1 0.5 20.3 96.7 1932.4
500 3.3 0.5 48.8 238.7 4823.4
1000 3.5 0.5 96.6 477.2 9612.6
2000 3.5 0.5 191.3 958 19320.2
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A The proof of Fact 1

Fact 1. The Gini impurity measure defined by IGini(u) = ‖u‖1
∑g

i=1
ui

‖u‖1 (1− ui

‖u‖1 ) and the Entropy impurity

measure defined by IEnt = ‖u‖1
∑g

i=1
ui

‖u‖1 log(‖u‖1ui
) belong to C. For fEntr, a simple inspection shows that

(P3) holds at equality.

Proof. The measure IGini is obtained using the function fGini(x) = x(1−x), and IEnt is obtained using the
function fEntr(x) = x log 1

x . Clearly both functions satisfy property (P1), and it is known they also satisfy
(P2) [12]. So it remains to be shown that they satisfy property (P3).

For fGini, (P3) becomes

p(1− p) ≤ p(1− q) + p

(
1− p

q

)
∀q ∈ [p, 1]

which after canceling the p’s out and rearranging, is equivalent to p ≥ q + p
q − 1 for all q ∈ [p, 1], or

p ≥ maxq∈[p,1](q + p
q − 1). But the function in the max is convex in q, and hence its maximum is attained

at one of the endpoints q = p and q = 1; for these endpoints the inequality holds at equality, which then
proves the desired property.

For the function fEntr(x) = −x log x we have that for any 0 < x ≤ y < 1 it holds that

−x
y
y log(y)− yx

y
log(

x

y
) = −x log(y)− x log(x) + x log(y) = −x log(x),

showing that fEntr(x) = −x log x satisfies (P3) with equality.

B The proof of the Claim in Lemma 8

Claim. Fix u ∈ Rg such that ui ≥ ui+1 for each i = 1, . . . , g − 1. Let z(1) and z(2) two orthogonal vectors

from {0, 1}g \ {0}. Let i∗ = min{i | max{z(1)i , z
(2)
i } = 1} and v(1) = ei∗ and v(2) = z(1) + z(2) − ei∗ . Then

I(u ◦ v(1)) + I(u ◦ v(2)) ≤ I(u ◦ z(1)) + I(u ◦ z(1)).

Proof. For the sake of simplifying the notation, let us assume that i∗ = 1. Since v(1) + v(2) = z(1) + z(2),
and the only significant components are the non-zero components of z(1) + z(2), for the analysis, we assume
without loss of generality that z(2) = 1− z(1). Setting d = z(1), we have to prove that

IGini(u ◦ e1) + IGini(u ◦ (1− e1)) ≤ IGini(u ◦ d) + IGini(u ◦ (1− d)),

for every d ∈ {0, 1}g \ 0.
It follows from the definition of IGini(·) that

IGini(u◦d)+IGini(u◦(1−d)) = (u·d)

(
(u · d)2 −

∑
i|di=1(ui)

2

(ud)2

)
+(u(1−d))

(
(u(1− d))2 −

∑
i|di=0(ui)

2

(u(1− d))2

)
=

‖u‖1 −

(∑
i|di=1(ui)

2

u · d

)
−

(∑
i|di=0(ui)

2

u(1− d)

)
Define g(d) as the sum of two last terms of the above expression, that is,

g(d) =

(∑
i|di=1(ui)

2

u · d

)
+

(∑
i|di=0(ui)

2

u(1− d)

)
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It is enough to prove that g(e1) ≥ g(d) for an arbitrary d. For that, we assume w.l.o.g. that d1 = 1 due
to the symmetry of g(d) with respect to d.

Let

α =

∑
i>1|di=1(ui)

2∑
i>1|di=1 ui

and β =

∑
i|di=0(ui)

2∑
i|di=0 ui

Thus,

g(d) =
(u1)2 + α(u · d− u1)

u1 + (u · d− u1)
+ β

Moreover, we can write g(e1) as a function of d

g(e1) = u1 +
α(u · d− u1) + βu(1− d)

(u · d− u1) + u(1− d)

The following inequalities will be useful: α, β ≤ u1 since u1 ≥ ui for all i, (u ·d−u1) ≥ α and u(1−d) ≥ β.
We need to prove that

g(e1) = u1 +
α(u · d− u1) + β(u(1− d))

(u · d− u1) + u(1− d)
≥ (u1)2 + α(u · d− u1)

u1 + (u · d− u1)
+ β = g(d),

or equivalently,

u1(u · d− u1)

u1 + (u · d− u1)
− α(u · d− u1)

u1 + (u · d− u1)
≥ β(u · d− u1)

u · (1− d) + (u · d− u1)
− α(u · d− u1)

u · (1− d) + (u · d− u1)

Simplifying the terms we need to prove

(β − α)[(u · d− u1) + u1] ≤ (u1 − α)[(u · d− u1) + u · (1− d)]

which is equivalent to

βu1 − αu1 ≤ (u1 − β)(u · d− u1) + (u1 − α)u · (1− d), (74)

However, because α, β ≤ u1, (u · d− u1) ≥ α and u · (1− d) ≥ β, we have

(u1 − β)α+ (u1 − α)β ≤ (u1 − β)(u · d− u1) + (u1 − α)u · (1− d).

Thus, to establish inequality (74), it is enough to prove that

βu1 − αu1 ≤ (u1 − β)α+ (u1 − α)β,

or, equivalently,
αβ ≤ αu1.

The last inequality holds because u1 ≥ β.

C The proof of Proposition 3

Proposition 3. Fix i ∈ [g] and let B be a set of vector in Rg such that for each v ∈ B, it holds
that ‖v‖∞ = vi, i.e., B is i-pure. It holds that

1

2
I2(B) ≤ I(B) ≤ 2I2(B) + 4(log g)

∑
w∈B

I(w).
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Proof. Let us assume w.l.o.g. that B is 1-pure. Let v be the vector corresponding to B, that is,
v =

∑
v′∈B v′. Moreover, let

u =
∑
v′∈B

χ2C(v′)

,

uk =
∑

v′∈B:‖v′‖∞<‖v‖1/2

χ2C(v′)

and
uH =

∑
v′∈B:‖v‖∞≥‖v‖1/2

χ2C(v′)

Note that uk corresponds to the set of vectors for which the dominant component is affected
by transformation χ2C . It shall be clear that ‖v‖1 = ‖u‖1 and

‖v‖∞ ≤ ‖uk‖∞ + ‖uH‖∞ =
‖uk‖1

2
+ ‖uH‖∞ = ‖u‖∞

From Lemma 9 and Corollary 1 we have that

(‖v‖1 − ‖v‖∞) max

{
1, log

(
‖v‖1

‖v‖1 − ‖v‖∞

)}
≤ I(v) ≤ 2(‖v‖1 − ‖v‖∞) log

(
2g‖v‖1

‖v‖1 − ‖v‖∞

)
(75)

Let α = ‖u‖1 − ‖uH‖∞ − ‖u
k‖1
2 . Then, we have

I(u) = α log

(
‖u‖1
α

)
+ (‖u‖1 − α) log

(
‖u‖1
‖u‖1 − α

)
‘ (76)

Since ‖uH‖∞ + ‖uk‖1
2 ≥ ‖u‖1

2 then α ≤ ‖u‖1
2 , from Proposition 1 we have ‖u‖1−α‖u‖1 log ‖u‖1

‖u‖1−α ≤
α
‖u‖1 log ‖u‖1α . This, together with (76) implies that

α log
‖u‖1
α
≤ I(u) ≤ 2α log

‖u‖1
α

. (77)

Now we note that ‖uH‖∞ + ‖uk‖1
2 > ‖v‖∞, hence

α = ‖u‖1 − ‖uH‖∞ −
‖uk‖1

2
≤ ‖v‖1 − ‖v‖∞. (78)

We first focus on the proof of the left bound 1
2I2(B) ≤ I(B). We split the analysis into two cases

Case 1. ‖v‖1 − ‖v‖∞ ≤ ‖v‖1e . Then

I(u) ≤ 2α log
‖v‖1
α
≤ 2(‖v‖1 − ‖v‖∞) log

‖v‖1
‖v‖1 − ‖v‖∞

≤ 2I(v) (79)

where the first inequality is from (77), the second inequality is from Proposition 2 and the last
inequality is from (75) (using the hypothesis at the basis of this case).
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Case 2. ‖v‖1 − ‖v‖∞ > ‖v‖1
e . Then,

I(v) ≥ (‖v‖1 − ‖v‖∞) log e ≥ ‖v‖1 = ‖u‖1 ≥ I(u) (80)

where the first inequality is from (75) and the last inequality is because by definition of I = IEnt,
for a 2 dimensional vector u we have I(u) ≤ ‖u‖1.

From (79) and (79) it immediately follows that 1
2I2(B) = 1

2I(u) ≤ I(v) = I(B).

We now focus on the right inequality and show that I(v) ≤ 2I(u) + 4(‖v‖1−‖v‖∞) log g, from
which also the last inequality in the statement of the proposition immediately follows.

First, we observe that

2

(
‖u‖1 − ‖uH‖∞ −

‖uk‖1
2

)
= ‖uk‖1 + 2(‖uH‖1 − ‖uH‖∞) ≥ (‖uk‖1 + (‖uH‖1 − ‖uH‖∞)(81)

= ‖u‖1 − ‖uH‖∞ ≥ ‖v‖1 − ‖v‖∞ (82)

Therefore, usign (81)(82) we have 2
(
‖u‖1 − ‖uH‖∞ − ‖u

k‖1
2

)
≤ 2g‖u‖1

e , hence from the right

inequality of (75) we get

I(v) ≤ 2 (‖v‖1 − ‖v‖∞) log

(
2g‖v‖1

‖v‖1 − ‖v‖∞

)
(83)

≤ 4

(
‖u‖1 − ‖uH‖∞ −

‖uk‖1
2

)
log

2g‖v‖1
2
(
‖u‖1 − ‖uH‖∞ − ‖u

k‖1
2

) (84)

= 4

(
‖u‖1 − ‖uH‖∞ −

‖uk‖1
2

)log
‖v‖1(

‖u‖1 − ‖uH‖∞ − ‖u
k‖1
2

) + log g

 (85)

≤ 2I(u) + 4 (‖v‖1 − ‖v‖∞) log g (86)

where the last inequality follows from the left hand side of (76) together with the definition of α

(for the first term) and from ‖uH‖∞ − ‖u
k‖1
2 ≥ ‖v‖∞ and ‖v‖1 = ‖u‖1 (for the second term).

Since B is i-pure, we have that ‖v‖1 =
∑

w∈B ‖w‖1 and ‖v‖∞ =
∑

w∈B ‖w‖∞. Then, we have

I(v) ≤ 2I(u) + 4(log g)
∑
w∈B

(‖w‖1 − ‖w‖∞) ≤ 2I(u) + 4(log g)
∑
w∈B

I(w)

where the last inequality follows by Corollary 1.
We have then shown the right inequalities of the statement. The proof of the Proposition is

complete.

D Proof of Lemma 14

Proof. Recall that si,mix denotes the total sum of the components of the i-dominant vectors from
bucket Bmix and that we assumed dom(Bmix) = 1. We let ci,mix = si,mix −

∑
v∈Vi,mix

v1, i.e.,
the total sum of all but the first component of the i-dominant vectors in Bmix. Moreover, let
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smix =
∑g

i=1 si,mix and cmix =
∑g

i=1 ci,mix. Furthermore, let ci,p = si,p −
∑

v∈Bi
vi, i.e., the total

sum of the non-i components of vectors in Bi.
It follows from Corollary 1 that

I(Bmix) ≥ cmix max

{
1, log

(
smix
cmix

)}
(87)

Note that for i > 1, we have ci,mix ≥ (si,mix)/2, for otherwise i would not be the dominant
component in Vi,mix. Thus, we also have that

I(Bmix) ≥ cmix ≥ c1,mix +

g∑
i=2

si,mix/2 (88)

Moreover, if cmix < smix/e, from (87) we have that

I(Bmix) ≥ cmix log

(
smix
cmix

)
≥

(
c1,mix +

g∑
i=2

si,mix/2

)
log

(
smix

c1,mix +
∑g

i=2 si,mix/2

)
, (89)

where the last inequality follows from (88) and Proposition 2.
From Corollary 1 we have that

I(Bi) ≥ ci,p max

{
1, log

(
si,p
ci,p

)}
(90)

for every i-pure bucket Bi
Now we derive upper bounds on B′mix, B

′
1, . . . , B

′
g and compare them with the lower bounds

given by the previous equations.

Bound on the mixed bucket B′mix.
Let ski,mix = ‖Vi,mix∩B′mix‖1, this is the total sum of the components of the i-dominant vectors

in Bmix ∩B′mix.
Moreover, let

cki,mix = ski,mix −
∑

v∈Vi,mix∩B′mix

v1,

i.e., the total sum of all but the first components in the i-dominant vectors in Bmix ∩B′mix.
Recall that Yi is the set of i-dominant vectors moved from Bi to Bmix in order to obtain partition

P ′. Let ski,p = ‖Yi‖1 and let

tki,p = ski,p −
∑
v∈Yi

v1,

i.e., the total sum of all but the first components of vectors in Yi.
In these notations, the superscript k is used to remind the reader that these quantities refer to

vectors with ’low’ ratio.
From Corollary 1 (with i = 1) we have that

I(B′mix) ≤ 2

(
g∑
i=1

cki,mix + tki,p

)
log

2g
(∑g

i=1 s
k
i,mix + ski,p

)
∑g

i=1 c
k
i,mix + tki,p

 (91)
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Moreover, we have

g∑
i=1

(cki,mix + tki,p) ≤ ck1,mix + tk1,p +

g∑
i=2

(ski,mix + ski,p) (92)

Thus, we have that

I(B′mix) ≤ 2

(
ck1,mix + tk1,p +

g∑
i=2

(ski,mix + ski,p)

)
log

 2g
(∑g

i=1 s
k
i,mix + ski,p

)
ck1,mix + tk1,p +

∑g
i=2(s

k
i,mix + ski,p)


≤ 2

(
ck1,mix +

g∑
i=2

(ski,mix + ski,p)

)
log

(
4gsmix

ck1,mix +
∑g

i=2(s
k
i,mix + ski,p)

)

+ 2tk1,p log

(
2g
∑g

i=1(s
k
i,mix + ski,p)

tk1,p +
∑g

i=2(s
k
i,mix + ski,p)

)

≤ 2

(
ck1,mix + 2

g∑
i=2

si,mix

)
log

(
4gsmix

ck1,mix + 2
∑g

i=2 si,mix

)
(93)

+ 2tk1,p log

(
2g
∑g

i=1(s
k
i,mix + ski,p)

tk1,p +
∑g

i=2(s
k
i,mix + ski,p)

)
, (94)

where the first inequality follows from inequality (91), Proposition 2 and inequality (92); the second
inequality follows from ski,p ≤ si,mix and the third inequality from ski,p ≤ si,mix together with
Proposition 2.

We prove that the expression in (93)-(94) is at most an O(log g) factor of I(Bmix) + I(B1).
First, we consider the term in (93) that we denote by α.

If cmix ≥ smix/e then

α =

(
ck1,mix + 2

g∑
i=2

si,mix

)
log

(
2gsmix

ck1,mix + 2
∑g

i=2 si,mix

)

≤

(
2c1,mix + 2

g∑
i=2

si,mix

)
log

(
2gsmix

2c1,mix + 2
∑g

i=2 si,mix

)

≤

(
2c1,mix + 2

g∑
i=2

si,mix

)
log

(
2gsmix

2c1,mix + 2
∑g

i=2 ci,mix

)

=

(
2c1,mix + 2

g∑
i=2

si,mix

)
log

(
2gsmix
2cmix

)

≤

(
2c1,mix + 2

g∑
i=2

si,mix

)
log(ge) ≤ 4

(
c1,mix +

g∑
i=2

si,mix
2

)
log(ge) (95)

which is at a O(log g) factor from the lower bound on I(Bmix) given by inequality (88).
On the other hand, if cmix < smix/e, then the first term of (94) is at O(log g) factor from lower
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bound given by inequality (89), in fact we have

α =

(
ck1,mix + 2

g∑
i=2

si,mix

)
log

(
2gsmix

ck1,mix + 2
∑g

i=2 si,mix

)

≤

(
c1,mix + 2

g∑
i=2

si,mix

)
log

(
2gsmix

c1,mix + 2
∑g

i=2 si,mix

)

≤ 4

(
c1,mix +

g∑
i=2

si,mix
2

)
log

(
2gsmix

c1,mix +
∑g

i=2
si,mix

2

)
,

where the first inequality follows from Proposition 2.

Now, we turn to the second term of (94), which we will denote here by β. We have that

β = tk1,p log

(
2g(sk1,mix + sk1,p) + 2g(

∑g
i=2 s

k
i,mix + ski,p)

tk1,p +
∑g

i=2(s
k
i,mix + ski,p)

)

≤ tk1,p log

(
max

{
2g(sk1,mix + sk1,p)

tk1,p
, 2g

})

≤ tk1,p log

(
max

{
4g · s1,p
tk1,p

, 2g

})

≤ c1,p log

(
max

{
4g · s1,p
c1,p

, 2g

})
,

where the second inequality holds because sk1,mix ≤ s1,p. Moreover, since tk1,p ≤ c1,p the last
inequality holds due to Proposition 2. It is now easy to see that the quantity in the righthand side
of the last inequality is at a O(log g) factor from the lower bound on the impurity of B1 given by
inequality 90.

We have completed the proof that I(B′mix) = O(log g)(I(Bmix) + I(B1)) as desired.

Bound on i-pure buckets. Recall that Xi is the set of vectors moved from Bmix to Bi in order
to obtain partition P ′. Let sHi,mix be the total sum of the components of all vectors in Xi, i.e.,

sHi,mix = ‖
∑

v∈Xi
v‖1. Let dHi,mix be the total sum of all but the ith components over all vectors

in Xi, i.e., dHi,mix = sHi,mix −
∑

v∈Xi
vi. In addition, let sHi,p be the total sum of the components of

the vectors in the set Bi \ Yi, i.e., sHi,p = ‖
∑

v∈Bi\Yi v‖1. Finally, let cHi,p be the total sum of all but

the ith component over all the vectors in Bi \ Yi that is cHi,p = sHi,p −
∑

v∈Bi\Yi vi and let cki,p be the

total sum of all but the ith component over all the vectors in Yi that is cki,p = sHi,p − ‖Yi‖∞.

Case 1.) si,p ≥ si,mix. From Lemma 9 we have that

I(B′i) ≤ 2(cHi,p + dHi,mix) log

(
g · (sHi,mix + sHi,p)

cHi,p + dHi,mix

)
≤ 2(cHi,p + dHi,mix) log

(
2g · si,p

cHi,p + dHi,mix

)
(96)

Let v be the first vector of bucket Bi that is not moved to Bmix and let s = ‖v‖1. In particular,
v is the vector with the smallest ratio in Bi among those that are not moved to Bmix. Let c = s−vi.
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Recall definition of ri in the construction of P ′. We have that

sHi,mix

dHi,mix
> ri ≥

ski,p + s

cki,p + c
. (97)

and
sHi,mix ≤ si,mix ≤ ski,p + s, (98)

where the second inequality follows by the definition of Xi and Yi under the standing assumption
si,p ≥ si,mix.

Thus, from (97) and (98) we conclude that dHi,mix ≤ cki,p + c ≤ ci,p, hence, cHi,p + dHi,mix ≤ 2ci,p.
Therefore, from (96) and Proposition 2 we have

I(B′i) ≤ 2(cHi,p + dHi,mix) log

(
2g · si,p

cHi,p + dHi,mix

)
≤ 4ci,p log

(
g · si,p
ci,p

)
. (99)

Case 2.) si,p < si,mix.

subcase 2.1) i = 1. From Lemma 9, we have

I(B′1) ≤ 2(cH1,p + cH1,mix) log

(
g(sH1,p + sH1,mix)

cH1,p + cH1,mix

)
≤ 2(cH1,p + cH1,mix) log

(
2g · smix

cH1,p + cH1,mix

)
Let v be the first vector of Bmix that is moved to B1. Let s = ‖v‖1 and let c = s − v1. By

construction we have that sH1,p ≤ s1,p ≤ sk1,mix + s.
Moreover,

sH1,p

cH1,p
≥ r1 ≥

sk1,mix + s

ck1,mix + c
,

hence cH1,p ≤ ck1,mix + c.

Therefore, cH1,p + cH1,mix ≤ 2c1,mix. Thus, by the above inequality on I(B′1) and Proposition 2
we have

I(B′1) ≤ 4c1,mix log

(
2g · smix
c1,mix

)
≤ 4cmix log

(
2g · smix
cmix

)
. (100)

subcase 2.2 i > 1.
In this case the bucket B′i is exactly the set Xi. Thus, it follows from the subadditivity of I

that
I(B′i) = I(Xi) ≤ I(Vi,mix) (101)

Thus, by aggregating the upper bounds given by Equations (99), (100) and (101), we get that

g∑
i=1

I(B′i) ≤
g∑
i=1

4ci,p log

(
g · si,p
ci,p

)
+ 4cmix log

(
2g · smix
cmix

)
+

g∑
i=2

I(Vi,mix)

The first term is at most O(log g)
∑g

i=1 I(Bi) due to the lower bound in (90). The second term is
O(log g)I(Bmix) due to the lower bounds in (88) and (89). Finally, the last term is at most I(Bmix)
due to the subadditivity of I.
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