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Appendix
The Kalman filter (Kalman et al., 1960) works by itera-
tively applying two steps, predict and update. It assumes
additive Gaussian noise with zero mean and covariances
Σtrans and Σobs on both transitions and observations, which
need to be given to the filter. During the prediction step the
transition model A is used to infer the next prior state es-
timate
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the current posterior estimate
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, by
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and Σ−
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t AT + Σtrans.

The prior estimate is then updated using the current observa-
tion wt and the observation model H to obtain the posterior
estimate
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where I denotes the identity matrix. The matrix Qt is re-
ferred to as the Kalman gain. The whole update step can be
interpreted as a weighted average between state and obser-
vation estimate, where the weighting, i.e., Qt, depends on
the uncertainty about those estimates.

If currently no observation is present or future states should
be predicted, the update step is omitted.

A. Simplified Kalman Filter Formulas

As stated above the simple latent observation model H =[
Im 0m×(n−m)

]
, as well as the assumed factorization

of the covariance matrices allow us to simplify the Kalman
Filter equations.

A.1. NOTATION

In the following derivations we neglect the time indices t and
t+ 1 for brevity. For any matrix M, M̂ denotes a diagonal
matrix with the same diagonal as M, m denotes a vector
containing those diagonal elements and M (ij) denotes the
entry at row i and column j. Similarly, v(i) denotes the i-th
entry of a vector v. The point wise product between two
vectors of same length (Hadamat Product) will be denoted
by � and the point wise division by �.

A.2. PREDICTION STEP

Mean: z− = Az+

Covariance: Σ− = AΣ+AT + Σ̂
trans

The computation of the mean can not be further simplified,
however, depending on the state size and bandwidth, sparse
matrix multiplications may be exploited. For the covariance,
let T = AΣ+. Then,
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Since we are only interested in the diagonal parts of
Σu,−,Σl,− and Σs,− i.e. Σ̂

u,−
, Σ̂

l,−
and Σ̂

s,−
, we can

further simplify these equations by realizing two proper-
ties of the terms above. First, for any matrix M,N and a
diagonal matrix Σ̂ it holds that
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Hence, we can simplify the equations for the upper and
lower part to
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Second, since we are only interested in the diagonal of the
result it is sufficient to compute only the diagonals of the
individual parts of the sums which are almost all of the same
structure i.e. S = MΣ̂

+
NT . Let T = MΣ̂

+
, then each

element of T can be computed as

T (ij) =
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which can be implemented efficiently using elementwise
matrix multiplication and sum reduction.

A.3. UPDATE STEP

Kalman Gain Q = Σ−HT
(
HΣ−HT + Σobs

)−1

Mean z+ = z− + Q
(
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)
Covariance Σ+ = (I−QH) Σ−
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Using this result, the mean update can be simplified to
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Hence the diagonals of the individual parts can be computed
as

σu,+ = (1m − qu)� σu,− (16)

σs,+ = (1m − qu)� σs,− (17)

σl,+ = σl,− − ql � σs,−. (18)

B. Root Mean Square Error Results

To evaluate the actual prediction performance of our ap-
proach we repeated some experiments using the RMSE as
loss function. Other than that and removing the variance
output of the decoder no changes were made to the model,
hyperparameters and learning procedure. The results can be
found in Table 7.
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Table 7. RMSE Results

Model RMSE

Pendulum

RKN (m = 15, b = 3,K = 15) 0.0779± 0.0082
RKN (m = b = 15,K = 15) 0.0758± 0.0094
LSTM (m = 50) 0.0920± 0.0774
LSTM (m = 6) 0.0959± 0.0100
GRU (m = 50) 0.0821± 0.0084
GRU (m = 8) 0.0916± 0.0087

Multiple Pendulums

RKN (m = 45, b = 3, k = 15) 0.0878± 0.0036
LSTM (m = 50) 0.098± 0.0036
LSTM (m = 12) 0.104± 0.0043
GRU (m = 50) 0.112± 0.0371
GRU (m = 14) 0.105± 0.0055

Quad Link (without additional noise )

RKN (m = 100, b = 25, k = 15) 0.103± 0.00076
LSTM (m = 100) 0.175± 0.182
LSTM (m = 25) 0.118± 0.0049
GRU (m = 100) 0.278± 0.105
GRU (m = 25) 0.121± 0.0021

Quad Link (with additional noise )

RKN (m = 100, b = 25, k = 15) 0.171± 0.0039
LSTM (m = 75) 0.175± 0.0022
GRU (m = 25) 0.204± 0.0023

C. Visualization of Imputation Results

Exemplary results of the data imputation experiments con-
ducted for the Pendulum and Quad Link experiment can be
found in Figure 5

D. Network Architectures and Hyper Parameters

For all experiments Adam (Kingma & Ba, 2014) with de-
fault parameters (α = 10−3, β1 = 0.9, β2 = 0.999 and
ε = 10−8) was used as an optimizer. The gradients were
computed using (truncated) Backpropagation Trough Time
(BpTT) (Werbos, 1990). Further in all (transposed) convolu-
tional layers layer normalization (LN) (Ba et al., 2016) was
employed to normalize the filter responses. ”Same” padding
was used. The elu activation function (Clevert et al., 2015)
plus a constant 1 is denoted by (elu + 1) was used to ensure
that the variance outputs are positive.

D.1. PENDULUM AND MULTIPLE PENDULUM
EXPERIMENTS

Observations. Pendulum: Grayscale images of size
24 × 24 pixels. Multiple Pendulum: RGB images of size
24× 24 pixels. See Figure 6 for examples.

Dataset. 1000 Train and 500 Test sequences of length
150. For the filtering experiments noise according to section
E was added , for imputation 50% of the images were
removed randomly.

Encoder. 2 convolution + 1 fully connected + linear out-
put & (elu + 1) output:

• Convolution 1: 12, 5× 5 filter, ReLU, 2× 2 max pool
with 2× 2 stride

• Convolution 2: 12, 3× 3 filter with 2× 2 stride, ReLU,
2× 2 max pool with 2× 2 stride

• Pendulum: Fully Connected 1: 30, ReLU

• Multiple Pendulum: Fully Connected 1: 90, ReLU

Transition Model Pendulum: 15 dimensional latent obser-
vation, 30 dimensional latent state. Multiple Pendulum: 45
dimensional latent observation, 90 dimensonal latent state.
Both: bandwidth: 3, number of basis: 15

• α(zt): No hidden layers - softmax output

Decoder (for s+
t ). 1 fully connected + linear output:

• Fully Connected 1: 10, ReLU

Decoder (for o+
t ). : 1 fully connected + 2 transposed

convolution + transposed convolution output:

• Fully Connected 1: 144 ReLU

• Transposed Convolution 1: 16, 5× 5 filter with 4× 4
stride, ReLU

• Transposed Convolution 2: 12, 3× 3 filter with 2× 2
stride, ReLU

• Transposed Convolution Out: Pendulum: 1 Multiple
Pendulum: 3, 3× 3 filter with 1× 1 stride, Sigmoid

Decoder (for σ+
t or σ+

t ). 1 fully connected + (elu + 1):

• Fully Connected 1: 10, ReLU
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D.2. QUAD LINK

Observations. Grayscale images of size 48x48 pixels.

Dataset. 4000 Train and 1000 Test sequences of length
150. For the filtering with additional noise experiments
noise according to section D was added, for imputation
50% of the images were removed randomly.

Encoder. 2 convolution + 1 fully connected + linear out-
put & (elu + 1) output:

• Convolution 1: 12, 5× 5 filter with 2× 2 stride, ReLU,
2× 2 max pool with 2× 2 stride

• Convolution 2: 12, 3× 3 filter with 2× 2 stride, ReLU,
2× 2 max pool with 2× 2 stride

• Fully Connected 1: 200 ReLU

Transition Model. 100 dimensional latent observation,
200 dimensional latent state, bandwidth: 3, number of basis:
15

• α(zt): No hidden layers - softmax output

Decoder (for s+
t ). 1 fully connected + linear output:

• Fully Connected 1: 10, ReLU

Decoder (for o+
t ). 1 fully connected + 2 transposed con-

volution + transposed convolution output:

• Fully Connected 1: 144 ReLU

• Transposed Convolution 1: 16, 5× 5 filter with 4× 4
stride, ReLU

• Transposed Convolution 2: 12, 3× 3 filter with 4× 4
stride, ReLU

• Transposed Convolution Out: 1, 1× 1 stride, Sigmoid

Decoder (for σ+
t or σ+

t . 1 fully connected + (elu + 1):

• Fully Connected 1: 10, ReLU

D.3. KITTI

Observation and Data Set. For this experiment, our
encoder is based on the pose network proposed by (Zhou
et al., 2017) which helps us to speed-up the training process.
Specifically we extract features from the conv6 layer of the

pose network by running the model on the KITTI odometry
dataset. The training dataset for this experiment comprised
of sequences 00, 01, 02, 08, 09. Sequences 03, 04, 05, 06,
07, 10 were used for testing.

Encoder. Pose Network of (Zhou et al., 2017) up to layer
conv6 + 1 Convolution

• Convolution 1: 50, 1x1 filter,with 1x1 stride

Transition Model. 50 dimensional latent observations,
100 dimensional latent state, bandwidth 1, number of basis
16

• α(zt): No hidden layers - softmax output

Decoder (for s+
t ). 2 fully connected + linear output:

• Fully Connected 1: 50, ReLU

D.4. PNEUMATIC BROOK ROBOT ARM

Observations and Data Set. 6 sequences of 30, 000 sam-
ples each of input currents and observed joint positions,
sampled at 100Hz. 5 sequences were used for training, 1 for
testing.

Encoder. 1 fully connected + linear output & (elu + 1)
output.

• Fully Connected, 30 ReLU

Transition Model. 30 dimensional latent observation, 60
dimensional latent state, bandwidth 3, number of basis 32

Decoder (for s+
t . 1 fully connected + linear output

• 30 ReLU

E. Observation Noise generation process

Let U(x, y) denote the uniform distribution from x to
y.To generate the noise for the pendulum task for each
sequence a sequence of factors ft of same length was
generated. To correlate the factors they were sampled as
f0 ∼ U(0, 1) and ft+1 = min(max(0, ft + rt), 1) with
rt ∼ U(−0.2, 0.2). Afterwards, for each sequence two
thresholds t1 ∼ U(0.0, 0.25) and t2 ∼ U(0.75, 1) were
sampled. All ft < t1 were set to 0, all ft > t2 to 1 and
the rest was linearly mapped to the interval [0, 1]. Finally,
for each image it an image consisting of pure uniformly
distributed noise inoiset was sampled and the observation
computed as ot = ft · it + (1− ft) · inoiset .
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(a) Pendulum (b) Quad Link

Figure 5. Each of (a) and (b) shows from left to right: true images, input to the models, imputation results for RKF, imputation results for
KVAE(Fraccaro et al., 2017).
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Figure 6. Example images for the multiple pendulum experiments. Left: Noise free image. Middle: sequence of images showing how the
noise affects different pendulums differently. Right: Image without useful information.


