
Concrete Autoencoders

Appendices

A. Selected Features for Single Classes in MNIST
Here, we show additional examples of using the concrete autoencoder on subsets of the MNIST data that consist of a single
digit. Here, we select k = 10 features for each subset of data.

(a) (b) (c) (d)

Figure 7. Here, we show the results of using concrete autoencoders to select the k = 10 most informative pixels of images of the digit 0 in
the MNIST dataset. Compare with Fig. 1 in the main paper for more information.

(a) (b) (c) (d)

Figure 8. Here, we show the results of using concrete autoencoders to select the k = 10 most informative pixels of images of the digit 0 in
the MNIST dataset. Compare with Fig. 1 in the main paper for more information.

(a) (b) (c) (d)

Figure 9. Here, we show the results of using concrete autoencoders to select the k = 10 most informative pixels of images of the digit 0 in
the MNIST dataset. Compare with Fig. 1 in the main paper for more information.



Concrete Autoencoders

B. Additional Related Works
In this appendix, we include additional literature that is relevant to concrete autoencoders, but that which we did not have
space to include in the main text.

In Chandra & Sharma (2015), the authors propose a complicated method for performing discrete feature selection with
autoencoders. However, their method is multi-stage and cannot be optimized in an end-to-end manner. The method we
propose instead, using the concrete random variables, shares the same machinery as Louizos et al. (2017), who use concrete
random variables to create sparse networks. However, the motivation in that work is to reduce the number of parameters in
the network, and not perform feature selection. The idea of using continuous relaxations of random variables for feature
selection was also explored by (Yamada et al., 2018). They observed the benefits of using concrete random variables for
exploring different features. However, they were unable to get feature selection with concrete random variables to converge,
as they did not introduce an annealing schedule as we did in our method.

In Section 4.4, we apply concrete autoencoders to gene expression inference. This allows us to impute the expression of all
of the genes from a a measurement of a small number of them. This bears some resemblance to gene imputation methods
(Van Dijk et al., 2018; Li & Li, 2018). However, these methods impute the gene information for single cells by utilizing
measurements from other cells. They do not directly perform gene selection.



Concrete Autoencoders

C. Pseudocode for a Concrete Autoencoder
Here, we have the pseudocode for training the concrete autoencoder in more detail. We also describe how to use a trained
concrete autoencoder for feature selection on new data, as well as how to use the concrete autoencoder for imputation.

Algorithm 1. Training a Concrete Autoencoder

Input: training dataset X ∈ Rn×d, number of features to select k, decoder network fθ(·), number of epochs B, learning
rate λ, initial temp T0, final temp TB .

for i ∈ {1 . . . k} do
Initialize a d-dimensional vector of parameters α(i) with small positive values.

end for
Initialize the parameters θ of the reconstruction function in a standard way for neural networks.
for b ∈ {1 . . . B} do

Let T = T0(TB/T0)
b/B

for i ∈ {1 . . . k} do
Samplem(i) ∼ Concrete(α(i), T )

Let X(i)
S = X ·m(i)

end for
Define XS to be the matrix ∈ Rn×k that results from horizontally concatenating the X(1)

S . . . X
(k)
S .

Let the loss L be defined as ‖fθ(XS)−X‖F
Compute the gradient of the loss w.r.t. θ using backpropagation and w.r.t each α(i) using the reparametrization trick.
Update the parameters θ ← θ − λ∇θL, and α(i) ← α(i) − λ∇α(i)L

end for

Return: trained reconstruction function fθ(·) and trained Concrete parameters α(i)

Algorithm 2. Using a Trained Concrete Autoencoder for Feature Selection

Input: test sample x ∈ Rd, trained Concrete parameters α(i)

for i ∈ {1 . . . k} do
Let m(i) = argmaxj(α

(i)
j ), where j indexes the elements of the sample vector

Let x(i)
S = xm(i)

end for

Return: xS

Algorithm 3. Using a Trained Concrete Autoencoder for Imputation

Input: test sample with subset of features x̂ ∈ Rk, trained reconstruction function fθ(·)

Return: fθ(x̂)



Concrete Autoencoders

D. Classification Accuracies for Feature Selection Methods with Linear Reconstruction
We carried out a series of experiments in which we compared concrete autoencoders with linear decoders to the other feature
selection methods using linear regression as the reconstruction function. We selected k = 50 of features with each method.

After selecting the features using concrete autoencoder and the other feature selection methods, we trained a standard linear
regressor with no regularization to impute the original features. The resulting reconstruction errors on a hold-out test set are
shown in Table 1 in the main text. We also used the selected features to measure classification accuracies, which are shown
in Table 2 here. Generally, we find that the concrete autoencoder continues to have the lowest reconstruction error and a
high (but not always the highest) classification accuracy.

Dataset (n, d) PCA Lap AEFS UDFS MCFS PFA CAE
MNIST (10000, 784) 0.925 0.646 0.690 0.892 0.807 0.852 0.906
MNIST-Fashion (10000, 784) 0.825 0.517 0.580 0.547 0.513 0.683 0.677
COIL-20 (1440, 400) 0.996 0.389 0.580 0.556 0.635 0.642 0.586
Mice Protein (1080, 77) 0.721 0.134 0.125 0.139 0.139 0.130 0.134
ISOLET (7797, 617) 0.895 0.407 0.576 0.455 0.522 0.622 0.685
Activity (5744, 561) 0.796 0.280 0.240 0.287 0.295 0.364 0.420

Table 2. Classification accuracies of feature selection methods. Here, we show the classification accuracies of the various feature
methods on six publicly available datasets. Here CAE refers to the concrete autoencoder. For each method, we select k = 50 features
(except for mice protein dataset, for which we use k = 10) and use a neural network with 1 hidden layer for reconstruction. All reported
values are on the test set. The classifier used here was a Extremely Randomized Trees classifier (a variant of Random Forests) with the
number of trees being 50. (Higher is better.)



Concrete Autoencoders

E. Examples of Feature Groups in MNIST Digits
Here, we show examples of feature groups that were selected by the concrete autoencoder on single classes of digits in the
MNIST dataset (see Section 4.3 in the main text for more details). The patterns in the case of single classes of digits are even
more striking; here, the set of correlated pixels can be used to infer the direction of the stroke when the digit was written, as
correlated pixels are more likely to be part of the same stroke. For example, consider Fig. 10(b), in which the pixel groups
shown for the digit ‘1’. We note that the pixel groups tend to form vertical subsets, as the writing stroke connected those sets
of pixels together.

(a) (b) (c) (d)

Figure 10. Here, we show the results of using concrete autoencoders to select the k = 10 most informative pixels groups of images of the
digit 0 in the MNIST dataset. Compare with Fig. 5 in the main paper. Each panel is a different digit: (a) the digit 0, (a) the digit 1, (a) the
digit 2, (a) the digit 7



Concrete Autoencoders

F. Architecture for GEO Dataset Experiments
For the GEO dataset, we trained three reconstruction networks to perform the imputation from both the landmark and
CAE-selected genes. In each case, the hidden layers consisted of 9000 neurons and dropout rate was set to 0.1. The initial
learning rate was 0.001 and decayed after each epoch by multiplication with 0.95. The number of epochs was set to 100 for
training the reconstruction networks. We used batch sizes of 256.

The concrete autoencoder was trained with a linear decoder network for 5000 epochs. For this dataset, we set the initial
temperature to be 10, and the final temperature to be 0.01.



Concrete Autoencoders

G. Supervised Concrete Autoencoders and Other Extensions
Concrete autoencoders can be easily adapted to the supervised setting by replacing the reconstruction neural network in the
decoder with a neural network classifier. The pseudocode, shown below, is quite similar to training the standard concrete
autoencoder.

Algorithm 4. Training a Concrete Autoencoder with Supervised Labels

Input: training features X ∈ Rn×d, training labels y, number of features to select k, classifier function fθ(·), number of
epochs B, learning rate λ, initial temperature T0, final temperature TB .

for i ∈ {1 . . . k} do
Initialize a d-dimensional vector of parameters α(i) with small positive values.

end for
Initialize the parameters θ of the reconstruction function in a standard way for neural networks.
for b ∈ {1 . . . B} do

Let T = T0(TB/T0)
b/B

for i ∈ {1 . . . k} do
Samplem(i) ∼ Concrete(α(i), T )

Let X(i)
S = X ·m(i)

end for
Define XS to be the matrix ∈ Rn×k that results from horizontally concatenating the X(1)

S . . . X
(k)
S .

Let L be the cross entropy loss between the true labels y and the logits fθ(XS)
Compute the gradient of the loss w.r.t. θ using backpropagation and w.r.t each α(i) using the reparametrization trick.
Update the parameters θ ← θ − λ∇θL, and α(i) ← α(i) − λ∇α(i)L

end for

Return: trained classifier function fθ(·) and trained Concrete parameters α(i)

We trained a concrete autoencoder in this supervised manner on the MNIST digits, some representative images are shown in
Fig. 11. Generally, we found the imputation quality to be not as good as when the objective function is directly reconstruction
error.

(a) (b) (c) (d)

Figure 11. Demonstrating concrete autoencoders on the MNIST dataset. Here, we show the results of using concrete autoencoders to
select in an supervised manner the k = 20 most informative pixels of images in the MNIST dataset. (a) The 20 selected features (out of
the 784 pixels) on the MNIST dataset are shown in white. (b) A sample of input images in MNIST dataset with the top 2 rows being
training images and the bottom 3 rows being test images. (c) The same input images with only the selected features shown as white dots.
(d). The reconstructed versions of the images, using only the 20 selected pixels, shows that generally the digit is identified correctly. Note
that we trained a separate 1-hidden layer neural network that reconstructs the images using only the 20 selected pixels because the decoder
of the concrete autoencoder outputs class probabilities.

In the supervised regime, concrete autoencoders can be compared with other deep learning-based feature selection methods,



Concrete Autoencoders

such as those that utilize knockoffs (Lu et al., 2018; Romano et al., 2018). We carried out empirical comparisons to Deep
Knockoffs. We found that on the MNIST dataset (with k = 20), while knockoffs were able to recover relevant features with
low false discovery rates, concrete autoencoder consistently achieved lower test reconstruction MSE (11% lower RMSE).

Besides supervised learning, the concrete autoencoder can be extended in different ways. One possible extension is to attach
different costs to selecting different features, for example if certain features represent tests or assays that are much more
expensive than others. Such as cost may be incorporated into the loss function and allow the analyst to trade off cost for
accuracy. Another possible extension is to add a KL objective that measures the deviation of the concrete node from the
uniform distribution (to measure how sparse it is), which may work as a method of regularization.


