
Provable Guarantees for Gradient-Based Meta-Learning

A. Background and Results for Online Convex Optimization
Throughout the appendix we assume all subsets are convex and in R

d unless explicitly stated. Let ‖ · ‖∗ be the dual norm

of ‖ · ‖, which we assume to be any norm on R
d, and note that the dual norm of ‖ · ‖2 is itself. For sequences of scalars

σ1, . . . , σT ∈ R we will use the notation σ1:t to refer to the sum of the first t of them. In the online learning setting, we will

use the shorthand ∇t to denote the subgradient of �t : Θ �→ R evaluated at action θt ∈ Θ. We will use Conv(S) to refer to

the convex hull of a set of points S and ProjS(·) to be the projection to any convex subset S ⊂ R
d.

A.1. Convex Functions

We first state the related definitions of strong convexity and strong smoothness:

Definition A.1. An everywhere sub-differentiable function f : S �→ R is α-strongly-convex w.r.t. norm ‖ · ‖ if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ α

2
‖y − x‖2 ∀ x, y ∈ S

Definition A.2. An everywhere sub-differentiable function f : S �→ R is β-strongly-smooth w.r.t. norm ‖ · ‖ if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+ β

2
‖y − x‖2 ∀ x, y ∈ S

We now turn to the Bregman divergence and a discussion of several useful properties (Bregman, 1967; Banerjee et al., 2005):

Definition A.3. Let f : S �→ R be an everywhere sub-differentiable strictly convex function. Its Bregman divergence is
defined as

Bf (x||y) = f(x)− f(y)− 〈∇f(y), x− y〉
The definition directly implies that Bf (·||y) preserves the (strong or strict) convexity of f for any fixed y ∈ S. Strict convexity
further implies Bf (x||y) ≥ 0 ∀ x, y ∈ S, with equality iff x = y. Finally, if f is α-strongly-convex, or β-strongly-smooth,
w.r.t. ‖ · ‖ then Definition A.1 implies Bf (x||y) ≥ α

2 ‖x− y‖2, or Bf (x||y) ≤ β
2 ‖x− y‖2, respectively.

Claim A.1. Let f : S �→ R be a strictly convex function on S, α1, . . . , αn ∈ R be a sequence satisfying α1:n > 0, and
x1, . . . , xn ∈ S. Then

x̄ =
1

α1:n

n∑
i=1

αixi = argmin
y∈S

n∑
i=1

αiBf (xi||y)

Proof. ∀ y ∈ S we have

n∑
i=1

αi (Bf (xi||y)− Bf (xi||x̄)) =
n∑

i=1

αi (f(xi)− f(y)− 〈∇f(y), xi − y〉 − f(xi) + f(x̄) + 〈∇f(x̄), xi − x̄〉)

= (f(x̄)− f(y) + 〈∇f(y), y〉)α1:n +

n∑
i=1

αi (−〈∇f(x̄), x̄〉+ 〈∇f(x̄)−∇f(y), xi〉)

= (f(x̄)− f(y)− 〈∇f(y), x̄− y〉)α1:n

= α1:nBf (x̄||y)

By Definition A.3 the last expression has a unique minimum at y = x̄.
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A.2. Standard Online Algorithms

Here we provide a review of the online algorithms we use. Recall that in this setting our goal is minimizing regret:

Definition A.4. The regret of an agent playing actions {θt ∈ Θ}t∈[T ] on a sequence of loss functions {�t : Θ �→ R}t∈[T ] is

RT =

T∑
t=1

�t(θt)−min
θ∈Θ

T∑
t=1

�t(θ)

Within-task our focus is on two closely related meta-algorithms, Follow-the-Regularized-Leader (FTRL) and (linearized

lazy) Online Mirror Descent (OMD).

Definition A.5. Given a strictly convex function R : Θ �→ R, starting point φ ∈ Θ, fixed learning rate η > 0, and a
sequence of functions {�t : Θ �→ R}t≥1, Follow-the-Regularized Leader (FTRL(R)

φ,η ) plays

θt = argmin
θ∈Θ

BR(θ||φ) + η
∑
s<t

�s(θ)

Definition A.6. Given a strictly convex function R : Θ �→ R, starting point φ ∈ Θ, fixed learning rate η > 0, and a
sequence of functions {�t : Θ �→ R}t≥1, lazy linearized Online Mirror Descent (OMD

(R)
φ,η ) plays

θt = argmin
θ∈Θ

BR(θ||φ) + η
∑
s<t

〈∇s, θ〉

These formulations make the connection between the two algorithms – their equivalence in the linear case �s(·) = 〈∇s, ·〉 –

very explicit. There exists a more standard formulation of OMD that is used to highlight its generalization of OGD – the

case of R(·) = 1
2‖ · ‖22 – and the fact that the update is carried out in the dual space induced by R (Hazan, 2015, Section 5.3).

However, we will only need the following regret bound satisfied by both (Shalev-Shwartz, 2011, Theorems 2.11 and 2.15)

Theorem A.1. Let {�t : Θ �→ R}t∈[T ] be a sequence of convex functions that are Gt-Lipschitz w.r.t. ‖ · ‖ and let R : S �→ R

be 1-strongly-convex. Then the regret of both FTRL
(R)
η,φ and OMD

(R)
η,φ is bounded by

RT ≤ BR(θ
∗||φ)
η

+ ηG2T

for all θ∗ ∈ Θ and G2 ≥ 1
T

∑T
t=1 G

2
t .

We next review the online algorithms we use for the meta-update. The main requirement here is logarithmic regret guarantees

for the case of strongly convex loss functions, which is satisfied by two well-known algorithms:

Definition A.7. Given a sequence of strictly convex functions {�t : Θ �→ R}t≥1, Follow-the-Leader (FTL) plays arbitrary
θ1 ∈ Θ and for t > 1 plays

θt = argmin
θ∈Θ

∑
s<t

�s(θ)

Definition A.8. Given a sequence of functions {�t : Θ �→ R}t≥1 that are αt-strongly-convex w.r.t. ‖ · ‖2, Adaptive OGD
(AOGD) plays arbitrary θ1 ∈ Θ and for t > 1 plays

θt+1 = ProjΘ

(
θt − 1

α1:t
∇f(θt)

)

Kakade & Shalev-Shwartz (2008, Theorem 2) and Bartlett et al. (2008, Theorem 2.1) provide for FTL and AOGD,

respectively, the following regret bound:

Theorem A.2. Let {�t : Θ �→ R}t∈[T ] be a sequence of convex functions that are Gt-Lipschitz and αt-strongly-convex w.r.t.
‖ · ‖. Then the regret of both FTL and AOGD is bounded by

RT ≤ 1

2

T∑
t=1

G2
t

α1:t
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One further useful fact about FTL and AOGD is that when run on a sequence of Bregman regularizers

BR(θ1||·), . . . ,BR(θT ||·) they will play points in the convex hull Conv({θt}t∈[T ]):

Claim A.2. Let R : Θ �→ R be 1-strongly-convex w.r.t. ‖ · ‖ and consider any θ1, . . . , θT ∈ Θ∗ for some convex subset
Θ∗ ⊂ Θ. Then for loss sequence α1BR(θ1||·), . . . , αTBR(θT ||·) for any positive scalars α1, . . . , αT ∈ R+, if we assume
φ1 ∈ Θ∗ then FTL will play φt ∈ Θ∗ ∀ t and AOGD will as well if we further assume R(·) = 1

2‖ · ‖2.

Proof. The proof for FTL follows directly from Claim A.1 and the fact that the weighted average of a set of points is in

their convex hull. For AOGD we proceed by induction on t. The base case t = 1 holds by the assumption φt ∈ Θ∗. In the

inductive case, note that BR(θt||φt) =
1
2‖θt − φt‖22 so the gradient update is φt+1 = φt +

αt

α1:t
(θt − φt), which is on the

line segment between φt and θt, so the proof is complete by the convexity of Θ∗  φt, θt.

A.3. Online-to-Batch Conversion

Finally, as we are also interested in distributional meta-learning, we discuss some techniques for converting regret guarantees

into generalization bounds, which are usually named online-to-batch conversions. We state some standard results below:

Proposition A.1. If a sequence of bounded convex loss functions {�t : Θ �→ R}t∈[T ] drawn i.i.d. from some distribution
D is given to an online algorithm with regret bound RT that generates a sequence of actions {θt ∈ Θ}t∈[T ] then for
θ̄ = 1

T θ1:T and any θ∗ ∈ Θ we have

E
DT

E
�∼D

�(θ̄) ≤ E
�∼D

�(θ∗) +
RT

T

Proof. Applying Jensen’s inequality and using the fact that θt only depends on �1, . . . , �t−1 we have

E
DT

E
�∼D

�(θ̄) ≤ 1

T
E
DT

T∑
t=1

E
�′t∼D

�′t(θt) =
1

T
E

{�t}∼DT

(
T∑

t=1

E
�′t∼D

�′t(θt)− �t(θt)

)
+

1

T
E

{�t}∼DT

(
T∑

t=1

�t(θt)

)

≤ 1

T

T∑
t=1

E
{�s}s<t∼Dt−1

(
E

�′t∼D
�′t(θt)− E

�t∼D
�t(θt)

)
+

RT

T
+

1

T

T∑
t=1

E
�∼D

�(θ∗)

=
RT

T
+ E

�∼D
�(θ∗)

Proposition A.2. If a sequence of loss functions {�t : Θ �→ [0, 1]}t∈[T ] drawn i.i.d. from some distribution D is given to an
online algorithm that generates a sequence of actions {θt ∈ Θ}t∈[T ] then the following inequalities each hold w.p. 1− δ:

1

T

T∑
t=1

E
�∼D

�(θt) ≤ 1

T

T∑
t=1

�t(θt) +

√
2

T
log

1

δ
and

1

T

T∑
t=1

E
�∼D

�(θt) ≥ 1

T

T∑
t=1

�t(θt)−
√

2

T
log

1

δ

Note that Cesa-Bianchi et al. (2004) only prove the first inequality; the second follows via the same argument but applying

the symmetric version of the Azuma-Hoeffding inequality (Azuma, 1967).

Corollary A.1. If a sequence of loss functions {�t : Θ �→ [0, 1]}t∈[T ] drawn i.i.d. from some distribution D is given to an
online algorithm with regret bound RT that generates a sequence of actions {θt ∈ Θ}t∈[T ] then

E
t∼U [T ]

E
�∼D

�(θt) ≤ E
�∼D

�(θ∗) +
RT

T
+

√
8

T
log

1

δ
w.p. 1− δ

for any θ∗ ∈ Θ.

Proof. By Proposition A.2 we have

1

T

T∑
t=1

E
�∼D

�(θt) ≤ 1

T

T∑
t=1

�t(θ
∗) +

RT

T
+

√
2

T
log

1

δ
≤ E

�∼D
�(θ∗) +

RT

T
+

√
8

T
log

1

δ
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B. Proofs of Theoretical Results
In this section we prove the main guarantees on task-averaged regret for our algorithms, as, lower bounds showing that the

results are tight up to constant factors, and online-to-batch conversion guarantees for statistical LTL. We first define some

necessary definitions, notations, and general assumptions.

Setting B.1. Using the data given to Algorithm 2 define the following quantities:

• convenience coefficients σt = Gt
√
mt

• the sequence of update parameters {θ̂t ∈ Θ}t∈[T ] with average update parameter φ̂ = 1
σ1:T

∑T
t=1 σtθ̂t

• a sequence of reference parameters {θ′t ∈ Θ}t∈[T ] with average reference parameter φ′ = 1
σ1:T

∑T
t=1 σtθ

′
t

• a sequence {θ∗t ∈ Θ}t∈[T ] of optimal parameters in hindsight

• we will say we are in the “Exact” case if θ̂t = θ′t = θ∗t ∀ t and the “Approx” case otherwise

• κ ≥ 1,Δ∗t ≥ 0 s.t.
∑T

t=1 αtBR(θ
∗
t ||φt) ≤

∑T
t=1 αtΔ

∗
t + κ

∑T
t=1 αtBR(θ̂t||φt) for some nonnegative αt

• ν ≥ 1,Δ′ ≥ 0 s.t.
∑T

t=1 σtBR(θ̂t||φ̂) ≤ Δ′ + ν
∑T

t=1 σtBR(θ
′
t||φ′)

• Δmax ≥ 0 s.t. 1
2‖θ′t − θ̂t‖2 ≤ Δmax ∀ t ∈ [T ]

• average deviation D̄2 = 1
σ1:T

∑T
t=1 σtBR(θ

′
t||φ′) of the reference parameters; assumed positive

• task diameter D∗ = maxθ,φ∈Conv({θ′t}t∈[T ])

√BR(θ||φ); assumed positive

• action diameter D2 = max{D∗2,maxθ∈Θ BR(θ||φ1)} in the Exact case or maxθ,φ∈Θ BR(θ||φ) in the Approx case

• universal constant C ′ s.t. ‖θ‖ ≤ C ′‖θ‖2 ∀ θ ∈ Θ and �2-diameter D′ = maxθ,φ ‖θ − φ‖2 of Θ

• upper bound G′ on the Lipschitz constants of the functions {BR(θ̂t||·)}t∈[T ] over Conv({θ̂t}Tt=1)

• we will say we are in the “Nice” case if BR(θ||·) is 1-strongly-convex and β-strongly-smooth w.r.t. ‖ · ‖ ∀ θ ∈ Θ

• in the general case META is FTL; in the Nice case META may instead be AOGD re-initialized at θ∗1

• convenience indicator ι = 1META=FTL

• effective meta-action space Θ̂ = Conv({θ̂t}t∈[T ]) if META is FTL or Θ if META is AOGD

• TASKη,φ = FTRL
(R)
η,φ or OMD

(R)
η,φ

We make the following assumptions:

• the loss functions �t,i are convex ∀ t, i
• at time t = 1 the update algorithm META plays φ1 ∈ Θ satisfying maxθ∈Θ BR(θ||φ1) <∞
• in the Approx case R is β-strongly-smooth for some β ≥ 1
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B.1. Upper Bound

We first prove a technical result on the performance of FTL on a sequence of Bregman regularizers. We start by lower

bounding the regret of FTL when the loss functions are quadratic.

Lemma B.1. For any θ1, . . . , θT ∈ S and positive scalars α1, . . . , αT ∈ R+ define φt =
1

α1:t

∑t
s=1 αtθt and let φ0 be

any point in S. Then
T∑

t=1

αt‖θt − φt−1‖22 −
T∑

t=1

αt‖θt − φT ‖22 ≥ 0

Proof. We proceed by induction on T . The base case T = 1 follows directly since φ1 = θ1 and so the second term is zero.

In the inductive case we have
T−1∑
t=1

αt‖θt − φt−1‖22 −
T−1∑
t=1

αt‖θt − φT−1‖22 ≥ 0

so it suffices to show

φT−1 = argmin
θT

T∑
t=1

αt‖θt − φt−1‖22 −
T∑

t=1

αt‖θt − φT ‖22
in which case φT = φT−1 and both added terms are zero, preserving the inequality. The gradient and Hessian are

2αT (θT − φT−1) +
2αT

α1:T

T−1∑
t=1

αt(θt − φT )− 2αT (θT − φT )

(
1− αT

α1:T

)

2αT

(
1− αTα1:T−1

α2
1:T

− 1 +
2αT

α1:T
− α2

T

α2
1:T

)
I =

2α2
T

α1:T
I � 0

so the problem is strongly convex and thus has a unique global minimum. Setting the gradient to zero yields

0 = θT − φT−1 +
1

α1:T

T−1∑
t=1

αtθt − 1

α1:T

T−1∑
t=1

αtφT − θT +
αT

α1:T
θT + φT − αT

α1:T
φT = φT − φT−1 =⇒ θT = φT−1

We use this to show logarithmic regret of FTL when the loss functions are Bregman regularizers with changing first

arguments. Note that such functions are in general only strictly convex, so the bounds from Theorem A.2 cannot be applied

directly.

Lemma B.2. Let BR be a Bregman regularizer on S w.r.t. ‖ · ‖ and consider any θ1, . . . , θT ∈ S. Then for loss sequence
α1BR(θ1||·), . . . , αTBR(θT ||·) for any positive scalars α1, . . . , αT ∈ R+ we have regret bound

RT ≤ G2
R + 1

2

T∑
t=1

αt

α1:t

where GR is the Lipschitz constant of the Bregman regularizer BR(θt||·) for any t ∈ [T ] on S w.r.t. the Euclidean norm.

Proof. Defining φ̄ = 1
α1:T

∑T
t=1 αtθt, we apply Claim A.1 and Lemma B.1 to get

RT =

T∑
t=1

αtBR(θt||φt)−min
φ∈S

T∑
t=1

αtBR(θt||φ)

≤
T∑

t=1

αtBR(θt||φt)−
T∑

t=1

αtBR(θt||φ̄) + 1

2

T∑
t=1

αt‖θt − φt‖22 −
1

2

T∑
t=1

αt‖θt − φ̄‖22

=

T∑
t=1

αtBR(θt||φt) +
αt

2
‖θt − φt‖22 −min

φ∈S

T∑
t=1

αtBR(θt||φ) + αt

2
‖θt − φ‖22

Since Bregman regularizers are convex in the second argument, the above is the regret of playing FTL on a sequence of

at-strongly-convex losses. Applying Kakade & Shalev-Shwartz (2008, Theorem 2) yields the result.
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The following result is our main theorem; Theorems 2.1 and 3.1 will follow as corollaries.

Theorem B.1. In Setting B.1, Algorithm 2 has TAR bounded as

R̄ ≤ 1

T

(
(2κD + ε)σ1 +

κC

ρD∗

T∑
t=1

σ2
t

σ1:t
+ κ

(
νD̄2

ρD∗
+ γ(ρD∗ + E) + ε

)
σ1:T

)

+
1

T

⎛
⎜⎝Δ∗1:T

ε
+

κΔ′

ρD∗
+

�logγ
ρD∗+E

ε �∑
k=0

(
κ(ρD∗ + E)

γkε
+ γkε

)
σtk

⎞
⎟⎠

for C = G′2
2 in the Nice case or otherwise C = C′D′(G′+1)

2 , ρ = 1 in the Exact case or ρ = 2
√
β in the Approx case, and

E = 2
√
2βΔmax.

Proof. We first use the β-strong-smoothness of R to provide a bound in the Approx setting of the distance from the

initialization to the update parameter at each time t ∈ [T ]:

BR(θ̂t||φt) ≤ β

2
‖θ̂t − φt‖2 ≤ β

(
‖θ̂t − θ′t‖2 + ‖θ′t − φt‖2

)
≤ β

(
‖θ̂t − θ′t‖2 +max

s<t
2‖θ′t − θ′s‖2 + 2‖θ′s − θ̂s‖2

)
≤ 4βD∗2 + 4βmax

t
‖θ′t − θ̂t‖2

≤ 4βD∗2 + 8βΔmax

Combining this bound with the Exact setting assumption yields BR(θ̂t||φt) ≤ ρ2D∗2 + 8βΔmax ≤ ρ2D∗2 + E2 ∀ t ∈ [T ].
We now turn to analyzing the regret by defining two “cheating” sequences: φ̃t = φt on all t except t = 1, when we set

φ̃1 = θ∗1 ; similarly, D̃t = Dt on all t except t = 1 and any t s.t. BR(θ̂t||φt) > D2
t , when we set D̃t = ρD∗ + E . In order to

do this we add outside of the summation the corresponding regret of the true sequences whenever one of them is not the

same as its “cheating” sequence. Note that by this definition all upper bounds of BR(θ̂t||φt) also upper bound BR(θ̂t||φ̃t).
Furthermore the times t s.t. BR(θ

∗
t ||φt) > D2

t corresponds exactly to the times that the violation count k is incremented in

Algorithm 2 and thus this occurs at most logγ
ρD∗+E

ε times, as we multiply the diameter guess by γ each time it happens,

which together with Lemma A.2 ensures that φt remains within max{γ(ρD∗ + E), ε} of all the reference parameters θ′t.
We index these times by k = 0, . . . , so that at each k the agent uses ηtk set using γkε.

R̄T =
T∑

t=1

BR(θ
∗
t ||φt)

ηt
+ ηtG

2
tmt

≤ Δ∗1:T
ε

+

T∑
t=1

(
κBR(θ̂t||φt)

Dt
+Dt

)
σt (substitute ηt =

Dt

Gt
√
mt

and Dt ≥ ε)

≤
(
κBR(θ̂1||φ1)

D1
+D1

)
σ1 +

Δ∗1:T
ε

(substitute cheating sequence)

+
T∑

t=1

(
κBR(θ̂t||φ̃t)

D̃t

+ D̃t

)
σt +

�logγ
ρD∗+E

ε �∑
k=0

(
κBR(θ̂tk ||φtk)

γkε
+ γkε

)
σtk

≤ ((κ+ 1)D + ε)σ1 +
Δ∗1:T
ε

+ κ
T∑

t=1

(
BR(θ̂t||φ̃t)

D̃t

+ D̃t

)
σt +

�logγ
ρD∗+E

ε �∑
k=0

(
κ(ρD∗ + E)

γkε
+ γkε

)
σtk
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We now bound the third term. For any t ∈ [T ] define B2
t = BR(θ̂t||φ̃t) and ft(x) =

B2
t

x + x. Its derivative ∂xft = 1− B2
t

x2

is nonnegative on x ≥ Bt. Thus when D̃t ≤ ρD∗ + E we have f(D̃t) ≤ f(ρD∗ + E), as by definition both are

greater than Bt and so ft is increasing on the interval between them. On the other hand, for D̃t ≥ ρD∗ + E , either

D̃t ≤ γ(ρD∗ + E) by the tuning rule or, if we initialized ε > ρD∗ + E , then D̃t = ε ∀ t ∈ [T ], so either way we have

ft(D̃t) ≤ B2
t

ρD∗ +max{γ(ρD∗ + E), ε} ∀ t ∈ [T ]. Since γ > 1 this bounds f(D̃t) in the previous case D̃t ≤ ρD∗ + E as

well, so we have

R̄T ≤ ((1 + κ)D + ε)σ1 +
Δ∗1:T
ε

+ κ
T∑

t=1

(
BR(θ̂t||φ̃t)

D̃t

+ D̃t

)
σt +

�logγ
ρD∗+E

ε �∑
k=0

(
κ(ρD∗ + E)

γkε
+ γkε

)
σtk

≤ (2κD + ε)σ1 +
Δ∗1:T
ε

+ κ
T∑

t=1

(
BR(θ̂t||φ̃t)

ρD∗
+ γ(ρD∗ + E) + ε

)
σt +

�logγ
ρD∗+E

ε �∑
k=0

(
κ(ρD∗ + E)

γkε
+ γkε

)
σtk

≤ (2κD + ε)σ1 +
Δ∗1:T
ε

+
κ

ρD∗

T∑
t=1

(
BR(θ̂t||φ̃t)− BR(θ̂t||φ̂)

)

+ κ

T∑
t=1

(
BR(θ̂t||φ̂)

ρD∗
+ γ(ρD∗ + E) + ε

)
σt +

�logγ
ρD∗+E

ε �∑
k=0

(
κ(ρD∗ + E)

γkε
+ γkε

)
σtk

≤ (2κD + ε)σ1 +
Δ∗1:T
ε

+
κC

ρD∗

T∑
t=1

σ2
t

σ1:t
+

κΔ′

ρD∗
(Thm. A.2 and Lem. B.2)

+ κ
T∑

t=1

(
νBR(θ

′
t||φ′)

ρD∗
+ γ(ρD∗ + E) + ε

)
σt +

�logγ
κ(ρD∗+E)

ε �∑
k=0

(
κ(ρD∗ + E)

γkε
+ γkε

)
σtk

= (2κD + ε)σ1 +
Δ∗1:T
ε

+
κC

ρD∗

T∑
t=1

σ2
t

σ1:t
+

κΔ′

ρD∗

+ κ

(
νD̄2

ρD∗
+ γ(ρD∗ + E) + ε

)
σ1:T +

�logγ
ρD∗+E

ε �∑
k=0

(
κ(ρD∗ + E)

γkε
+ γkε

)
σtk

The following result corresponds to the general case of Theorem 2.1.

Corollary B.1. In the Exact case of Setting B.1, if Gt = G,mt = m ∀ t ∈ [T ], the FAL variant of Algorithm 2 has TAR

R̄ ≤
⎛
⎝2D + 2ε+ C

D∗ (1 + log T ) + γ
γ−1

(
D∗2
ε +D∗

)
T

+
D̄2

D∗
+ γD∗ + ε

⎞
⎠G

√
m

If we assume known D, picking ε = D 1+log T
T and γ = 1+log T

log T yields

R̄ ≤
((

6D +
C

D∗

)
1 + log T

T
+

9

2
D∗
)
G
√
m

Proof. For K = �logγ D∗
ε � we have

K∑
k=0

(
D∗2

γkε
+ γkε

)
=

(γK+1 − 1)(D∗2 + γKε2)

γK(γ − 1)ε
≤ γ

γ − 1

(
D∗2

ε
+D∗

)

The result follows by noting that in the exact case we have κ = ν = ρ = 1,Δ∗1:T = Δ′ = Δmax = 0, and substituting∑T
t=1

1
t ≤ (1 + log T ).
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B.2. Lower Bound

The following lower bound, which extends Theorem 4.2 of Abernethy et al. (2008) to the multi-task setting, shows that the

previous TAR guarantees are optimal up to a constant multiplicative factor. Note that while the result is stated in terms of

the task divergence D∗, since D∗ ≥ D̄ the same lower bound holds for the average task deviation as well.

Theorem B.2. Suppose the action space is Θ ⊂ R
d for d ≥ 3 and for each task t ∈ [T ] an adversary must play a a

sequence of mt convex Gt-Lipschitz functions �t,i : Θ �→ R whose optimal actions in hindsight argminθ∈Θ
∑mt

i=1 �t,i(θ)
are contained in some fixed �2-ball Θ∗ ⊂ Θ with center φ∗ and diameter D∗. Then the adversary can force the agent to
have task-averaged regret at least D∗

4T

∑T
t=1 Gt

√
mt.

Proof. Let {θt,i}mi=1 be the sequence of actions of the agent on task t. Define c(θ) = Gt

2 max{0, ‖θ − φ∗‖2 − D∗},
which is 0 on Θ∗ and an upward-facing cone with vertex

(
φ∗,−GtD

∗
2

)
and slope Gt

2 on the complement. The strategy

of the adversary at round i of task t will be to play �t,i(θ) = 〈∇t,i, θ − φ∗〉 + c(θ), where ∇t,i satisfies ‖∇t,i‖2 = Gt

2 ,

〈∇t,i, θt,i − φ∗〉 = 0, and 〈∇t,i,∇t,1:i−1〉 = 0. Such a ∇t,i always exists for d ≥ 3. Note that these conditions imply that

along any direction from φ∗ the total loss
∑mt

i=1 �t,i(θ) is increasing outside Θ∗ and so is minimized inside Θ∗, so we have

min
θ∈Θ

mt∑
i=1

�t,i(θ) = min
θ∈Θ∗

mt∑
i=1

〈∇t,i, θ − φ∗〉 = min
‖θ−φ∗‖2≤D∗

2

〈θ − φ∗,∇t,1:mt
〉 = −D∗

2
‖∇t,1:mt

‖2

Note that the condition 〈∇t,i, θt,i − φ∗〉 = 0 and the nonnegativity of c(θ) implies that the loss of the agent is at least 0, and

so the agent’s regret on task t satisfies Rmt
≥ D∗

2 ‖∇t,1:mt
‖2. By the condition 〈∇t,i,∇t,1:i−1〉 = 0 we have that

‖∇t,1:i‖22 = ‖∇t,i +∇t,1:i−1‖22 = ‖∇t,i‖22 + ‖∇t,1:i−1‖22 =
G2

t

4
+ ‖∇t,i−1‖22

and so by induction on i with base case ‖∇t,1‖2 = Gt

2 we have ‖∇t,1:mt
‖2 = Gt

2

√
mt =⇒ Rmt

≥ GtD
∗

4

√
mt.

Substituting the regret on each task into R̄ = 1
T

∑T
t=1 Rmt

completes the proof.
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B.3. Task-Averaged Regret for Approximate Meta-Updates

For the Approx variants of FMRL we need a bound on the distance between the last or average iterate of FTRL/OMD and

the best parameter in hindsight. This necessitates further assumptions on the loss functions besides convexity, as a task may

otherwise have functions with very small losses, even far away from the optimal parameter, in which case the last iterate of

FTRL/OMD will be far away if the initial point is far away from the optimum. Here we make use of the α-QG assumption

on the average loss functions to obtain stability of the estimates w.r.t. the true loss.

Lemma B.3. Let �1, . . . , �m be a sequence of convex losses on Θ with L(θ) = 1
m

∑m
i=1 �(θ) being α-QG w.r.t. ‖ · ‖ and

define θ̂ = argminθ∈Θ BR(θ||φ) + ηmL(θ) to be the last iterate of running FTRL
(R)
η,φ for η > 0, φ ∈ Θ, and R : Θ �→ R

1-strongly-convex w.r.t. ‖ · ‖. Then the closest minimum θ∗ ∈ Θ of L to θ̂ satisfies

1

2
‖θ∗ − θ̂‖2 ≤ BR(θ

∗||φ)− BR(θ̂||φ)
αηm

Proof. We have by definition of θ′ and θ̂ that

BR(θ
∗||φ) + ηmL(θ∗) ≥ BR(θ̂||φ) + ηmL(θ̂)

On the other hand since L is α-QG we have that

L(θ̂) ≥ L(θ∗) +
α

2
‖θ∗ − θ̂‖2

Multiplying the second inequality by ηm and adding it to the first yields the result.

Proposition B.1. In Setting B.1 , if for each task t ∈ [T ] the losses �t,1, . . . , �t,mt satisfy the α-QG condition as in
Lemma B.3 and ε ≥ maxt

4βGt

α
√
mt

, then for θ̂t set according to the FLI-Online algorithm and θ∗t = θ′t ∀ t ∈ [T ] we have

κ = 4β, Δ∗t = 0 ∀ t ∈ [T ], ν = 3β, Δ′ =
6βD2

αε

T∑
t=1

Gtσt√
mt

, Δmax = max
t

D2Gt

αε
√
mt

Proof. Applying the triangle inequality, Jensen’s inequality, and Lemma B.3 yields the first two values:

‖θ∗t − φt‖2 ≤ 2‖θ∗t − θ̂t‖2 + 2‖θ̂t − φt‖2 ≤ 4BR(θ
∗
t ||φt)

αηtmt
+ 4BR(θ̂t||φt) ≤ 2β

αηtmt
‖θ∗t − φt‖2 + 4BR(θ̂t||φt)

=⇒ BR(θ
∗
t ||φt) ≤ β

2
‖θ∗t − φt‖2 ≤ 2βBR(θ̂t||φt)

1− 2β
αηtmt

≤ 4βBR(θ̂t||φt)

Here in the last step we used the fact that ε ≥ 4βGt

α
√
mt

=⇒ ηt ≥ 4β
αmt

∀ t ∈ [T ]. For the next two values, noting that for

FLI-Online, θ∗t = θ′t ∀ t ∈ [T ] we have by the triangle inequality and Titu’s lemma that

‖φ′ − φ̂‖2 =
1

(σ1:T )2

∥∥∥∥∥
T∑

t=1

σtθ
′
t −

T∑
t=1

σtθ̂t

∥∥∥∥∥
2

≤ 1

(σ1:T )2

(
T∑

t=1

σt‖θ′t − θ̂t‖
)2

≤ 1

σ1:T

T∑
t=1

σt‖θ′t − θ̂t‖2

Therefore since η ≥ ε
σt

and BR(θ
∗
t ||φt) ≤ D2 we have that

T∑
t=1

σtBR(θ̂t||φ̂) ≤ 3β

2

T∑
t=1

σt(‖θ̂t − θ′t‖2 + ‖θ′t − φ′‖2 + ‖φ′ − φ̂‖2) ≤ 3β

T∑
t=1

σt

(
2BR(θ

∗
t ||φt)

αηtmt
+ BR(θ

′
t||φ′)

)

The last value follows directly by Lemma B.3, ηt ≥ ε
σt

, and the bound D2 on the maximum Bregman divergence.

The following upper bound yields Theorem 3.1:



Provable Guarantees for Gradient-Based Meta-Learning

Corollary B.2. In the Approx. case of Setting B.1, if Gt = G,mt = m ∀ t ∈ [T ], γ = 1+log T
log T , and ε = 4βG

α 6
√
m

+D 1+log T
T

then the FLI-Online variant of Algorithm 2 has TAR

R̄ = O
(

D

D∗

(
log T

T
+

1
6
√
m

)
+D∗

)
G
√
m

Proof. Substitute Proposition B.1 into Theorem B.1 and simplify.

Lemma B.4. Let �1, . . . , �m : Θ �→ [0, 1] be a sequence of convex losses on Θ drawn i.i.d. from some distribution D with
risk E�∼D � being α-QG w.r.t. ‖ · ‖ and let θ∗ ∈ argminθ∈Θ

∑m
i=1 �i(θ) be any of the optimal actions in hindsight. Then

w.p. 1− δ the closest minimum θ′ ∈ Θ of E�∼D � to θ∗ satisfies

1

2
‖θ∗ − θ′‖2 ≤

√
8

α2m
log

2

δ

Proof. By definition of θ∗ and θ′ we have w.p. 1− δ that

α

2
‖θ∗ − θ′‖2 ≤ 1

m
E

{�i}∼Dm

m∑
i=1

�i(θ
∗)− 1

m
E

{�i}∼Dm

m∑
i=1

�i(θ
′) (apply α-QG)

≤ 1

m

m∑
i=1

�i(θ
∗)− 1

m

m∑
i=1

�i(θ
′) +

√
8

m
log

2

δ
(apply Prp. A.2 twice)

≤
√

8

m
log

2

δ
(definition of θ∗)

Lemma B.5. Suppose ∀ t ∈ [T ] the r.v. Qt satisfies 0 ≤ Qt ≤ B a.s. and Qt ≤
√

8
mt

log 2
δ w.p. 1− δ for any δ ∈ (0, 1).

Then for nonnegative α1, . . . , αT we have w.p. 1− γ for any γ ∈ (0, 1) that

T∑
t=1

αtQt ≤ 2Bαmax

3
log

1

γ
+ 2

T∑
t=1

αt

√
1 + 4 log(Bmt)

mt

(
1 + log

1

γ

)

Proof. Define convenience coefficients βt =
αt

α1:T
, the auxiliary sequence Zt = βtQt ∀ t ∈ [T ], the martingale sequence

Y0 = 0, Yt = Z1:t − EZ1:t ∀ t ∈ [T ] and the associated martingale difference sequence Xt = Yt − Yt−1 ∀ t ∈ [T ]. By

substituting δ = 2
Bmt

we then have

Et−1X
2
t = Et−1(Yt − Yt−1)

2 = β2
t E(Qt − EQt)

2 ≤ β2
t EQ2

t ≤ β2
t

(
8

mt
log

2

δ
+ δB

)
≤ 2 + 8 log(Bmt)

mt
β2
t

Note further that using δ = 2√
Bmt

and Jensen’s inequality we have

EQt ≤
√

8

mt
log

2

δ
+ δB ≤

√
4 + 8 log(Bmt)

mt

Noting that Qt ≤ B a.s. =⇒ Xt ≤ B a.s., we have by Freedman’s inequality (Freedman, 1975, Theorem 1.6) that

P

⎛
⎝ T∑

t=1

βtQt ≥ τ + 2

T∑
t=1

βt

√
1 + 2 log(Bmt)

mt

⎞
⎠ ≤ P

(
T∑

t=1

βtQt ≥ τ +

T∑
t=1

βt EQt

)
≤ exp

(
− τ2

2σ2 + 2Bβmax

3 τ

)

for τ ≥ 0, σ2 =
∑T

t=1
2+8 log(Bmt)

mt
β2
t . Substituting τ = 2βmax

3 log 1
γ +

√
2σ2 log 1

γ yields

P

⎛
⎝ T∑

t=1

βtQt ≥ 2Bβmax

3
log

1

γ
+ 2

T∑
t=1

βt

√
1 + 2 log(Bmt)

mt
+

√√√√2 log
1

γ

T∑
t=1

2 + 8 log(Bmt)

mt
β2
t

⎞
⎠ ≤ γ
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Proposition B.2. In Setting B.1, if for each task t ∈ [T ] the losses �t,1, . . . , �t,mt
and reference parameter θ′t satisfy

the α-QG condition as in Lemma B.4, then for θ̂t = θ∗t set according to the FAL algorithm we have w.p. 1 − δ that
κ = 1, ν = 3β,

Δ∗t = 0 ∀ t ∈ [T ], Δ′ =
4β

α

(
σmax log

2

δ
+ 3

T∑
t=1

σt

√
1 + 4 logmt

mt

(
1 + log

2

δ

))
, Δmax =

4

α

√
1

mmin
log

2T

δ

Proof. κ = 1 and Δ∗t = 0 ∀ t ∈ [T ] because θ̂t = θ∗t ∀ t ∈ [T ]. Applying Titu’s lemma as in the proof of Proposition B.1

yields the values of ν and Δ′ w.p. 1− 2δ:

T∑
t=1

σtBR(θ̂t||φ̂) ≤ 3β

2

T∑
t=1

σt(‖θ∗t − θ′t‖2 + ‖θ′t − φ′‖2 + ‖φ′ − φ̂‖2)

≤ 3β

T∑
t=1

σt

(‖θ∗t − θ′t‖2 + BR(θ
′
t||φ′)

)

≤ 4βσmax

α
log

1

δ
+

12β

α

T∑
t=1

σt

√
1 + 4 logmt

mt

(
1 + log

2

δ

)
+ 3β

T∑
t=1

σtBR(θ
′
t||φ′)

Here in the last step we applied Lemma B.5 on Qt =
α
2 ‖θ∗t − θ′t‖2, which is 1-bounded by Lemma B.4. The value of Δmax

follows directly by Lemma B.4 w.p. 1− 2δ.

The following upper bound yields the FAL result in Theorem 3.1:

Corollary B.3. In the Approx. case of Setting B.1, if Gt = G,mt = m ∀ t ∈ [T ], γ = 1+log T
log T , and ε = D 1+log T

T then the
FAL variant of Algorithm 2 has TAR

R̄ = O
(

D

D∗

(
log T

T
+

√
1

3
√
m

log
Tm

δ

)
+D∗

)
G
√
m

Proof. Substitute Proposition B.2 into Theorem B.1 and simplify.

Lemma B.6. Let �1, . . . , �m : Θ �→ [0, 1] be a sequence of Gi-Lipschitz convex losses on Θ drawn i.i.d. from some
distribution D with risk E�∼D � being α-QG w.r.t. ‖ · ‖ and define θ̂ = 1

mθ1:m to be the the average iterate of running
FTRL

(R)
η,φ or OMD

(R)
η,φ on �1, . . . , �m for η > 0, φ ∈ Θ, and R : Θ �→ R 1-strongly convex w.r.t. ‖ · ‖. Then w.p. 1− δ the

closest minimum θ′ ∈ Θ of E�∼D � to θ̂ satisfies

1

2
‖θ′ − θ̂‖2 ≤

BR(θ
′||φ) + η2G2m+ η

√
8m log 2

δ

αηm

where G2 = 1
m

∑m
i=1 G

2
i .

Proof. By definition of θ̂ and θ′ we have w.p. 1− δ that

α

2
‖θ̂ − θ′‖2 ≤ 1

m
E

{�i}∼Dm

m∑
i=1

�i(θi)− 1

m
E

{�i}∼Dm

m∑
i=1

�i(θ
′) (apply α-QG and Jensen’s inequality)

≤ 1

m

m∑
i=1

�i(θi)− 1

m

m∑
i=1

�i(θ
′) +

√
8

m
log

2

δ
(apply Prp. A.2 twice)

≤
1
ηBR(θ

′||φ) + ηG2m

m
+

√
8

m
log

2

δ
(substitute the regret of FTRL/OMD)



Provable Guarantees for Gradient-Based Meta-Learning

Proposition B.3. In Setting B.1, if for each task t ∈ [T ] the losses �t,1, . . . , �t,mt
and reference parameter θ′t satisfy the

α-QG condition as in Lemma B.6 and ε ≥ maxt
24βGt

α
√
mt

, then for θ̂t set according to the FLI-Batch algorithm we have w.p.
1− δ that κ = 12β, ν = 3β,

Δ∗t =
3β

α

(
1 +

4βGt

αε

)(
2αmax

3αtT
log

3

δ
+ 2

√
1 + 4 logmt

mt

(
1 + log

3

δ

))
+

12βG2
t (D + ε)

αmt
∀ t ∈ [T ]

Δ′ =
4βσmax

α
log

3

δ
+

12β

α

T∑
t=1

(√
1 + 4 logmt

mt

(
1 + log

3

δ

)
+

(D2 + ε)Gt

2ε
√
mt

)
σt, Δmax =

1

α

√
8

mmin
log

6T

δ

Proof. Applying the triangle inequality, Jensen’s inequality, Lemma B.4, and Lemma B.6 yields w.p. 1− δ

‖θ∗t − φt‖2 ≤ 3‖θ∗t − θ′t‖2 + 3‖θ′t − θ̂t‖2 + 3‖θ̂t − φt‖2

≤ 3

α

√
8

mt
log

2

δ
+

6

αηtmt

(
BR(θ

′
t||φt) + η2tG

2
tmt + ηt

√
8mt log

2

δ

)
+ 6BR(θ̂t||φt)

≤ 9

α

√
8

mt
log

2

δ
+

12β

αηtmt
(‖θ′t − θ∗t ‖2 + ‖θ∗t − φt‖2) + 6G2

t (D + ε)

αmt
+ 6BR(θ̂t||φt)

≤ 3

α

(
1 +

4βGt

αε

)√
8

mt
log

2

δ
+

12β

αηtmt
‖θ∗t − φt‖2 + 6G2

t (D + ε)

αmt
+ 6BR(θ̂t||φt)

where we have used the uniqueness of the reference parameter θ′t. The above implies

BR(θ
∗
t ||φt) ≤ β

2
‖θ∗t − φt‖2 ≤ 3β

α

(
1 +

4βGt

αε

)√
8

mt
log

2

δ
+

12βG2(D + ε)

αmt
+ 12βBR(θ̂t||φt)

Here in the last step we used the fact that ε ≥ 24βGt

α
√
mmin

=⇒ ηt ≥ 24β
αmt

∀ t ∈ [T ]. Thus by Lemma B.5 w.p. 1− 3δ

T∑
t=1

αtBR(θ
∗
t ||φt) ≤ 3β

α

(
1 +

4βGt

αε

)(
2αmax

3
log

3

δ
+ 2

T∑
t=1

αt

√
1 + 4 logmt

mt

(
1 + log

3

δ

))

+
12βG2

t (D + ε)

α

T∑
t=1

αt

mt
+ 12β

T∑
t=1

αtBR(θ̂t||φt)

This yields the values of κ and Δ∗t ∀ t ∈ [T ]. We next have by applying Titu’s lemma as in the proof of Proposition B.1

T∑
t=1

σtBR(θ̂t||φ̂) ≤ 3β
T∑

t=1

σt(‖θ̂t − θ′t‖2 + BR(θ
′
t||φ′))

≤ 6β

α

T∑
t=1

σtBR(θ
′
t||φt)

ηtmt
+ σtηtG

2 + σt

√
8

mt
log

2

δ
+ 3β

T∑
t=1

σtBR(θ
′
t||φ′))

≤ 4βσmax

α
log

3

δ
+

12β

α

T∑
t=1

(√
1 + 4 logmt

mt

(
1 + log

3

δ

)
+

(D2 + ε)Gt

2ε
√
mt

)
σt + 3β

T∑
t=1

σtBR(θ
′
t||φ′)

This yields the values of ν and Δ′. The value of Δmax follows directly by Lemma B.4 w.p. 1− 3δ.

The following final upper bound yields the FLI-Batch result in Theorem 3.1:

Corollary B.4. In the Approx. case of Setting B.1, if Gt = G,mt = m ∀ t ∈ [T ], γ = 1+log T
log T , and ε = 24βG

α
√
m

+D 1+log T
T

then the FLI-Batch variant of Algorithm 2 has TAR

R̄ = O
(

D

D∗

(
log T

T
+

√
1

3
√
m

log
Tm

δ

)
+D∗

)
G
√
m

Proof. Substitute Proposition B.3 into Theorem B.1 and simplify.
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B.4. Online-to-Batch Conversion for Task-Averaged Regret

The following yields a bound on the expected transfer risk when randomizing over the output of any TAR-minimizing

algorithm when in the setting of statistical LTL.

Theorem B.3. Let Q be a distribution over distributions P over convex loss functions � : Θ �→ [0, 1]. A sequence of
sequences of loss functions {�t,i}t∈[T ],i∈[m] is generated by drawing m loss functions i.i.d. from each in a sequence of
distributions {Pt}t∈[T ] themselves drawn i.i.d. from Q. If such a sequence is given to an meta-learning algorithm with
task-averaged regret bound R̄ that has states {st}t∈[T ] at the beginning of each task t then we have w.p. 1 − δ for any
θ∗ ∈ Θ that

E
t∼U [T ]

E
P∼Q

E
Pm

E
�∼P

�(θ̄) ≤ E
P∼Q

E
�∼P

�(θ∗) +
R̄

m
+

√
8

T
log

1

δ

where θ̄ = 1
mθ1:m is generated by randomly sampling t ∈ U [T ], running the online algorithm with state st, and averaging

the actions {θi}i∈[m].

Proof. Applying Proposition A.1, linearity of expectations, the fact that the regret over 1-bounded loss functions is

m-bounded, and Proposition A.2 yields

E
t∼U [T ]

E
P∼Q

E
Pm

E
�∼P

�(θ̄) ≤ E
P∼Q

(
E

�∼P
�(θ∗) +

Rm(st)

m

)
≤ E
P∼Q

E
�∼P

�(θ∗) +
1

T

T∑
t=1

E
P∼Q

(
Rm(st)

m

)

= E
P∼Q

E
�∼P

�(θ∗) +
2

T

T∑
t=1

E
P∼Q

(
Rm(st)

2m
+

1

2

)
− 1

≤ E
P∼Q

E
�∼P

�(θ∗) +
R̄

m
+

√
8

T
log

1

δ
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C. Computing the Quadratic Growth Factor
For our analysis of the FLI variants of Algorithm 2 we consider a class of functions related to strongly convex functions that

satisfy the quadratic growth (QG) condition:

α

2
‖θ − θ∗‖2 ≤ f(θ)− f(θ∗) (6)

By Theorem 2 of Karimi et al. (2016), in the convex case QG is equivalent, up to multiplicative constants, with the Polyak-

Łojaciewicz (PL) inequality (Polyak, 1963). Using the latter condition, Karimi et al. (2016) further show that functions of

form f(Aθ) for f strongly-convex satisfy the PL inequality, and thus also QG, with constant α = Ω(σmin(A)). This provides

data-dependent guarantees for a variety of practical problems, including least-squares and logistic regression. Garber (2019)

shows a similar result for expectations of such functions with the QG constant depending now on λmin(EATA); in order to

do so they assume the constraint set is a polytope, e.g. an �1 or �∞ ball.

For our results we require a stronger condition, namely that if L is a sum of m convex losses then L satisfies αm-QG.

While this additive property holds directly if the losses are strongly-convex, in the general case it does not. Furthermore,

the spectral lower bound on α studied by Karimi et al. (2016) and Garber (2019) is an underestimate; for example, in the

strongly-convex case, where ATA is the identity, the lower bound will be 1 even though their sum is m-QG.

Here we derive an alternative approach for verifying α-QG for a convex Lipschitz function f constrained to a ball of radius

B. Note that since the functions are Lipschitz, we can focus on computing the minimal difference between f(θ) and f(θ∗)
over all θ located some fixed distance δ away from any minimizer θ∗ of f over the ball:

εδ = min f(θ)− f(θ∗)

s.t. ‖θ − θ∗‖22 ≥ δ2

‖θ‖2 ≤ B

Then if f is α-QG, Equation 6 implies that αδ = 2εδ
δ2 should be a constant, or equivalently that εδ = Ω(δ2). While the

above problem is non-convex due to the first constraint, note that

δ2 ≤ ‖θ − θ∗‖22 = ‖θ‖22 − 2〈θ, θ∗〉+ ‖θ∗‖22 ≤ B2 − 2〈θ, θ∗〉+ ‖θ∗‖22
which is a linear constraint since θ∗ is constant. Therefore we have

εδ ≥ min f(θ)− f(θ∗)

s.t. 2〈θ∗, θ〉 ≤ B2 − δ2 + ‖θ∗‖22
‖θ‖2 ≤ B

which is a convex program amenable to standard solvers; we employ the Frank-Wolfe method (Frank & Wolfe, 1956).
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D. Experimental Details
D.1. Constructing Mini-Wikipedia

We briefly describe the construction of Mini-Wiki. Starting with the raw corpus of the Wiki3029 dataset of Arora

et al. (2019), we select those Wikipedia pages whose titles correspond to lemmas in the WordNet corpus (Fellbaum,

1998). We then use the hypernymy structure in this corpus to separate the pages into four semantically meaningful meta-

classes; this is necessary when using linear classification as the task similarity only depends on the classifier and not

the representation. Finally, we take the longest sentences from each page to construct m-shot tasks of 4m samples each,

for m = 1, 2, 4, . . . , 32. We have made MiniWiki available here: https://github.com/mkhodak/FMRL/blob/
master/data/miniwikipedia.tar.gz.

D.2. Complete Deep Learning Results

Below are plots for all evaluations on Omniglot and Mini-ImageNet. As our algorithm generalizes the Reptile method of

Nichol et al. (2018), we use code they make available at https://github.com/openai/supervised-reptile
and vary the parameters train-shots and inner-iters.

Figure 7. Performance of the FLI variant of Ephemeral with OGD within-task (Reptile) on 5-way Mini-ImageNet when varying the

number of task samples and the number of iterations per training task. In the left-hand plots we use 1-shot at meta-test time; in the

right-hand plots we use 5-shots. 50 iterations are used at meta-test time in both cases.

Figure 8. Performance of the FLI variant of Ephemeral with OGD within-task (Reptile) on 5-way Omniglot when varying the number of

task samples and the number of iterations per training task. In the left-hand plots we use 1-shot at meta-test time; in the right-hand plots

we use 5-shots. 50 iterations are used at meta-test time in both cases.

Figure 9. Performance of the FLI variant of Ephemeral with OGD within-task (Reptile) on 20-way Omniglot when varying the number of

task samples and the number of iterations per training task. In the left-hand plots we use 1-shot at meta-test time; in the right-hand plots

we use 5-shots. 50 iterations are used at meta-test time in both cases.


