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Abstract
We consider optimization of composite objec-
tive functions, i.e., of the form f(x) = g(h(x)),
where h is a black-box derivative-free expensive-
to-evaluate function with vector-valued outputs,
and g is a cheap-to-evaluate real-valued function.
While these problems can be solved with standard
Bayesian optimization, we propose a novel ap-
proach that exploits the composite structure of the
objective function to substantially improve sam-
pling efficiency. Our approach models h using a
multi-output Gaussian process and chooses where
to sample using the expected improvement eval-
uated on the implied non-Gaussian posterior on
f , which we call expected improvement for com-
posite functions (EI-CF). Although EI-CF can-
not be computed in closed form, we provide a
novel stochastic gradient estimator that allows its
efficient maximization. We also show that our
approach is asymptotically consistent, i.e., that
it recovers a globally optimal solution as sam-
pling effort grows to infinity, generalizing pre-
vious convergence results for classical expected
improvement. Numerical experiments show that
our approach dramatically outperforms standard
Bayesian optimization benchmarks, reducing sim-
ple regret by several orders of magnitude.

1. Introduction
We consider optimization of composite objective functions,
i.e., of the form f(x) = g(h(x)), where h is a black-
box expensive-to-evaluate vector-valued function, and g
is a real-valued function that can be cheaply evaluated.
We assume evaluations are noise-free. These problems
arise, for example, in calibration of simulators to real-world
data (Vrugt et al., 2001; Cullick et al., 2006; Schultz &
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Sokolov, 2018); in materials and drug design (Kapetanovic,
2008; Frazier & Wang, 2016) when seeking to design a
compound with a particular set of physical or chemical
properties; when finding maximum a posteriori estima-
tors with expensive-to-evaluate likelihoods (Bliznyuk et al.,
2008); and in constrained optimization (Gardner et al., 2014;
Hernández-Lobato et al., 2016) when seeking to maximize
one expensive-to-evaluate quantity subject to constraints
on others (See Section 2 for a more detailed description of
these problems.).

One may ignore the composite structure of the objective
and solve such problems using Bayesian optimization (BO)
(Brochu et al., 2010), which has been shown to perform well
compared with other general-purpose optimization methods
for black-box derivative-free expensive-to-evaluate objec-
tives (Snoek et al., 2012). In the standard BO approach, one
would build a Gaussian process (GP) prior over f based
on past observations of f(x), and then choose points at
which to evaluate f by maximizing an acquisition function
computed from the posterior. This approach would not use
observations of h(x) or knowledge of g.

In this paper, we describe a novel BO approach that lever-
ages the structure of composite objectives to optimize them
more efficiently. This approach builds a multi-output GP on
h, and uses the expected improvement (Jones et al., 1998)
under the implied statistical model on f as its acquisition
function. This implied statistical model is typically non-
Gaussian when g is non-linear. We refer to the resulting
acquisition function as expected improvement for compos-
ite functions (EI-CF) to distinguish it from the classical
expected improvement (EI) acquisition function evaluated
on a GP posterior on f .

Intuitively, the above approach can substantially outperform
standard BO when observations of h(x) provide information
relevant to optimization that is not available from observa-
tions of f(x) alone. As one example, suppose x and h(x)
are both one-dimensional and g(y) = y2. If h is continuous,
h(0) < 0, and h(1) > 0, then our approach knows that
there is a global minimum in the interval (0, 1), while the
standard approach does not. This informational benefit is
compounded further when h is vector-valued.

While EI-CF is simply the expected improvement under
a different statistical model, unlike the classical EI acqui-
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sition function, it lacks a closed-form analytic expression
and must be evaluated through simulation. We provide a
simulation-based method for computing unbiased estima-
tors of the gradient of the EI-CF acquisition function, which
we use within multi-start stochastic gradient ascent to allow
efficient maximization. We also show that optimizing using
EI-CF is asymptotically consistent under suitable regularity
conditions, in the sense that the best point found converges
to the global maximum of f as the number of samples grows
to infinity.

In numerical experiments comparing with standard BO
benchmarks, EI-CF provides immediate regret that is several
orders of magnitude smaller, and reaches their final solution
quality using less than 1/4 the function evaluations.

2. Related Work
2.1. Related Methodological Literature

We work within the Bayesian optimization framework,
whose origins date back to the seminal work of Močkus
(1975), and which has recently become popular due to its
success in hyperparameter optimization of machine learning
algorithms (Snoek et al., 2012; Swersky et al., 2013).

Optimizing composite functions has been studied in first-
and second-order optimization (Shapiro, 2003; Drusvyatskiy
& Paquette, 2016). This literature differs from our paper
in that it assumes derivatives are available, and also often
assumes convexity and that evaluations are inexpensive. In
this setting, leveraging the structure of the objective has been
found to improve performance, just as we find here in the
setting of derivative-free optimization. However, to the best
of our knowledge, ours is the first paper to study composite
objective functions within the BO framework and also the
first within the more general context of optimization of
black-box derivative-free expensive-to-evaluate functions.

Our work is related to Marque-Pucheu et al. (2017), which
proposes a framework for efficient sequential experimental
design for GP-based modeling of nested computer codes. In
contrast with our work, that work’s goal is not to optimize
a composite function, but instead to learn it as accurately
as possible within a limited evaluation budget. A predic-
tive variance minimization sampling policy is proposed and
methods for efficient computation are provided. Moreover,
it is assumed that both the inner (h) and outer (g) functions
are real-valued and expensive-to-evaluate black-box func-
tions, while our method uses the ease-of-evaluation of the
outer function for substantial benefit.

Our work is also similar in spirit to Overstall & Woods
(2013), which proposes to model an expensive-to-evaluate
vector of parameters of a posterior probability density func-
tion using a multi-output GP instead of the function directly

using a single-output GP. The surrogate model is then used
to perform Bayesian inference.

Constrained optimization is a special case of optimization
of a composite objective. To see this, take h1 to be the
objective to be maximized and take hi, for i > 1, to be the
constraints, all of which are constrained to be non-negative
without loss of generality. Then, we recover the original
constrained optimization problem by setting

g(y) =

{
y1, if yi ≥ 0 for all i > 1,

−∞, otherwise.

Moreover, when specialized to this particular setting, our
EI-CF acquisition function is equivalent to the expected
improvement for constrained optimization as proposed by
Schonlau et al. (1998) and Gardner et al. (2014).

Within the constrained BO literature, our work also shares
several methodological similarities with Picheny et al.
(2016), which considers an augmented Lagrangian and mod-
els its components as GPs instead of it directly as a GP. As
in our work, the expected improvement under this statistical
model is used as acquisition function. Moreover, it is shown
that this approach outperforms the standard BO approach.

Our method for optimizing the EI-CF acquisition function
uses an unbiased estimator of the gradient of EI-CF within
a multistart stochastic gradient ascent framework. This
technique is structurally similar to methods developed for
optimizing acquisition functions in other BO settings with-
out composite objectives, including the parallel expected
improvement (Wang et al., 2016) and the parallel knowledge-
gradient (Wu & Frazier, 2016).

2.2. Related Application Literature

Optimization of composite black-box derivative-free
expensive-to-evaluate functions arises in a number of appli-
cation settings in the literature, though this literature does
not leverage the composite structure of the objective to opti-
mize it more efficiently.

In materials design, it arises when the objective is the com-
bination of multiple material properties via a performance
index (Ashby & Cebon, 1993), e.g., the specific stiffness,
which is the ratio of Young’s modulus and the density, or
normalization (Jahan & Edwards, 2015). Here, h(x) is
the set of material properties that results from a particular
chemical composition or set of processing conditions, x,
and g is given by the performance index or normalization
method used. Evaluating the material properties, h(x), that
result from a materials design typically requires running
expensive physical or computational experiments that do
not provide derivative information, for which BO is appro-
priate (Kapetanovic, 2008; Ueno et al., 2016; Ju et al., 2017;
Griffiths & Hernández-Lobato, 2017).
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Optimization of composite functions also arises in calibra-
tion of expensive black-box simulators (Vrugt et al., 2001;
Cullick et al., 2006; Schultz & Sokolov, 2018), where the
goal is to find input parameters, x, to the simulator such
that its vector-valued output, h(x), most closely matches a
vector data observed in the real world, yobs. Here, the ob-
jective to be minimized is g(h(x)) = ||h(x)− yobs||, where
|| · || is often the L1 norm, L2 norm, or some monotonic
transformation of the likelihood of observation errors.

If one has a prior probability density p on x, and the log-
likelihood of some real-world observation error, ε, is pro-
portional to ||ε|| (as it would be, for example, with indepen-
dent normally distributed errors taking || · || to be the L2

norm), then, finding the maximum a posteriori estimator of
x (Bliznyuk et al., 2008) is an optimization problem with a
composite objective: the log-posterior is equal to the sum of
a constant and g(h(x)) = −β||h(x) − yobs||2 + log(p(x))
(In this example, g is actually a function of both h(x) and
x. Our framework extends easily to this setting as long as g
remains a cheap-to-evaluate function.).

3. Problem Description and Standard
Approach

As described above, we consider optimization of objectives
of the form f(x) = g(h(x)), where h : X → Rm is a
black-box expensive-to-evaluate continuous function whose
evaluations do not provide derivatives, g : Rm → R is a
function that can be cheaply evaluated, and X ⊂ Rd. As is
common in BO, we assume that d is not too large (< 20)
and that projections onto X can be efficiently computed.
We also place the technical condition that E [|g(Z)|] <∞,
where Z is an m-variate standard normal random vector.
The problem to be solved is

max
x∈X

g(h(x)). (1)

As discussed before, one can solve problem (1) by applying
standard BO to the objective function, f := g ◦ h. This
approach models f as drawn from a GP prior probability
distribution. Then, iteratively, indexed by n, this approach
would choose the point xn ∈ X at which to evaluate f next
by optimizing an acquisition function, such as the EI ac-
quisition function (Močkus, 1975; Jones et al., 1998). This
acquisition function would be calculated from the posterior
distribution given {(xi, f(xi))}ni=1, which is itself a GP,
and would quantify the value of an evaluation at a partic-
ular point. Although h(x) would be observed as part of
this standard approach, these evaluations would be ignored
when calculating the posterior distribution and acquisition
function.

4. Our Approach
We now describe our approach, which like the standard BO
approach is comprised of a statistical model and an acquisi-
tion function. Unlike standard BO, however, our approach
leverages the additional information in evaluations of h,
along with knowledge of g. We argue below and demon-
strate in our numerical experiments that this additional infor-
mation can substantially reduce the number of evaluations
required to find good approximate global optima.

Briefly, our statistical model is a multi-output Gaussian pro-
cess on h (Alvarez et al., 2012) (Section 4.1), and our acqui-
sition function, EI-CF, is the expected improvement under
this statistical model (Section 4.2). This acquisition func-
tion, unfortunately, cannot be computed in closed form for
most functions g. In Section 4.3, under mild regularity con-
ditions, we provide a technique for efficiently maximizing
EI-CF. We also provide a theoretical analysis showing that
EI-CF is asymptotically consistent (Section 4.4). Finally,
we conclude this section by discussing the computational
complexity of our approach (Section 4.5).

4.1. Statistical Model

We model h as drawn from a multi-output GP distribution
(Alvarez et al., 2012), GP(µ,K), where µ : X → Rm is
the mean function, K : X × X → Sm++ is the covariance
function, and Sm++ is the cone of positive definite matrices.
Analogously to the single-output case, after observing n
evaluations of h, h(x1), . . . , h(xn), the posterior distribu-
tion on h is again a multi-output GP, GP(µn,Kn), where
µn and Kn can be computed in closed form in terms of µ
and K (Liu et al., 2018).

4.2. Expected Improvement for Composite Functions

We define the expected improvement for composite func-
tions analogously to the classical expected improvement,
but where our posterior on f(x) is given by the composition
of g and the normally distributed posterior distribution on
h(x):

EI-CFn(x) = En

[
{g(h(x))− f∗n}

+
]
, (2)

where f∗n = maxi=1,...,n f(xi) is the maximum value
across the points that have been evaluated so far, x1, . . . , xn,
En indicates the conditional expectation given the avail-
able observations at time n, {(xi, h(xi))}ni=1, and a+ =
max(0, a) is the positive part function.

When h is scalar-valued and g is the identity function,
EI-CFn is equivalent to the classical expected improvement
computed directly from a GP prior on f , and has an analytic
expression that makes it easy to compute and optimize. For
general nonlinear functions g, however, EI-CFn cannot be
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computed in closed form. Despite this, as we shall see next,
under mild regularity conditions, EI-CFn can be efficiently
maximized.

Figure 1 illustrates the EI-CF and classical EI acquisition
functions in a setting where h is scalar-valued, f(x) =
g(h(x)) = h(x)2, we have evaluated h and f at four points,
and we wish to minimize f . The right-hand column shows
the posterior distribution on f and EI acquisition function
using the standard approach: posterior credible intervals
have 0 width at points where we have evaluated (since eval-
uations are free from noise), and become wider as we move
away from them. The classical expected improvement is
largest near the right limit of the domain, where the pos-
terior mean computed using observations of f(x) alone is
relatively small and has large variance.

The left-hand column shows the posterior distribution on
h, computed using a GP (single-output in this case, since h
is scalar-valued), the resulting posterior distribution on f ,
and the resulting EI-CF acquisition function. The posterior
distribution on f(x) (which is not normally distributed)
has support only on non-negative values, and places higher
probability on small values of f(x) in the regions x ∈
[−2,−1]∪ [2.5, 3.5], which creates a larger value for EI-CF
in these regions.

Examining past observations of h(x), the points with high
EI-CF (x ∈ [−2,−1] ∪ [2.5, 3.5]) seem substantially more
valuable to evaluate than the point with largest EI (x = 5).
Indeed, for the region [−2,−1], we know that h(x) is below
0 near the left limit, and is above 0 near the right limit. The
continuity of h implies that h(x) is 0 at some point in this
region, which in turn implies that f has a global optimum
in this region. Similarly, f is also quite likely to have a
global optimum in [2.5, 3.5]. EI-CF takes advantage of this
knowledge in its sampling decisions while classical EI does
not.

4.3. Computation and Maximization of EI-CF

We now describe computation and efficient maximization
of EI-CF. For any fixed x ∈ X , the time-n posterior dis-
tribution on h(x) is multivariate normal. (By the “time-n
posterior distribution”, we mean the conditional distribu-
tion given {(xi, h(xi))}ni=1.) We let µn(x) denote its mean
vector and Kn(x) denote its covariance matrix. We also let
Cn(x) denote the lower Cholesky factor of Kn(x). Then,
we can express h(x) = µn(x) + Cn(x)Z, where Z is a
m-variate standard normal random vector under the time-n
posterior distribution, and thus

EI-CFn(x) = En

[
{g(µn(x) + Cn(x)Z)− f∗n}

+
]
. (3)

Thus, we can compute EI-CFn(x) via Monte Carlo, as sum-
marized in Algorithm 1. We note that (3) and the condition

E[|g(Z)|] <∞ imply that EI-CFn(x) is finite for all x ∈ X .

Algorithm 1 Computation of EI-CF

Require: point to be evaluated, x; number of Monte Carlo
samples, L

1: for ` = 1, . . . , L do
2: Draw sample Z(`) ∼ Nm(0m, Im) and compute

α(`) :=
{
g
(
µn(x) + Cn(x)Z(`)

)
− f∗n

}+
3: end for
4: Estimate EI-CFn(x) by 1

L

∑L
`=1 α

(`)

In principle, the above is enough to maximize EI-CFn using
a derivative-free global optimization algorithm (for non-
expensive noisy functions). However, such methods typi-
cally require a large number of samples, and optimization
can be typically performed with much greater efficiency if
derivative information is available (Jamieson et al., 2012;
Swisher et al., 2000). The following proposition describes a
simulation-based procedure for generating such derivative
information. A formal statement and proof can be found in
the supplementary material.
Proposition 1. Under mild regularity conditions, EI-CFn

is differentiable almost everywhere, and its gradient, when
it exists, is given by

∇EI-CFn(x) = En [γn(x, Z)] , (4)

where

γn(x, Z) =

{
0, if g(µn(x) + Cn(x)Z) ≤ f∗n,
∇g(µn(x) + Cn(x)Z), otherwise.

(5)

Thus, γn provides an unbiased estimator of ∇EI-CFn. To
construct such an estimator, we would draw an indepen-
dent standard normal random vector Z and then compute
γn(x, Z) using (5), optionally averaging across multiple
samples as in Algorithm 1. To optimize EI-CFn, we then
use this gradient estimation procedure within stochastic
gradient ascent, using multiple restarts. The final iterate
from each restart is an approximate stationary point of the
EI-CFn. We then use Algorithm 1 to select the stationary
point with the best value of EI-CFn.

4.4. Theoretical Analysis

Here we present two results giving insight into the properties
of the expected improvement for composite functions. The
first result simply states that, when g is linear, EI-CF has a
closed form analogous to the one of the classical EI.
Proposition 2. Suppose that g is given by g(y) = w>y for
some fixed w ∈ Rm. Then,

EI-CFn(x) = ∆n(x)Φ

(
∆n(x)

σn(x)

)
+ σn(x)ϕ

(
∆n(x)

σn(x)

)
,
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(a) Posterior on h used by our EI-CF acquisition function
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(b) Implied posterior on f used by our EI-CF acquisition function
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(c) Posterior on f used by the classical EI acquisition function
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Figure 1. Illustrative example of the EI-CF and classical EI acquisition functions, in a problem where h is scalar-valued and g(h(x)) =
h(x)2. Observations of h(x) provide a substantially more accurate view of where global optima of f reside as compared with observations
of f(x) alone, and cause EI-CF to evaluate at points much closer to these global optima.
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where ∆n(x) = w>µn(x) − f∗n, σn(x) =
√
w>Kn(x)w,

and ϕ and Φ are the standard normal probability density
function and cumulative distribution function, respectively.

This result can be easily verified by noting that, since the
time-n posterior distribution of h(x) is m-variate normal
with mean vector µn(x) and covariance matrix Kn(x), the
time-n posterior distribution of w>h(x) is normal with
mean w>µn(x) and variance w>Kn(x)w. Proposition 2
does not, however, mean that our approach is equivalent to
the classical one when g is linear. This is because, in general,
the posterior distribution given observations of h(x) is dif-
ferent from the one given observations ofw>h(x) . We refer
the reader to the supplementary material for a discussion.

Our second result states that, under suitable conditions, our
acquisition function is asymptotically consistent, i.e., the
solution found by our method converges to the global opti-
mum when the number of evaluations goes to infinity. An
analogous result for the classical expected improvement was
proved by Vazquez & Bect (2010).

Theorem 1. Let {xn}n∈N be the sequence of evaluated
points and suppose there exists n0 ∈ N such that for all
n ≥ n0,

xn+1 ∈ arg max
x∈X

EI-CFn(x).

Then, under suitable regularity conditions and as n→∞,

f∗n → max
x∈X

f(x).

A formal statement and proof of Theorem 1 can be found in
the supplementary material.

4.5. Computational Complexity of Posterior Inference

The computation required to maximize the classical EI ac-
quisition function is dominated by the computation of the
posterior mean and variance and thus in principle scales as
O(n2) (with a pre-computation of complexity O(n3)) with
respect to the number of evaluations (Shahriari et al., 2016).
However, recent advances on approximate fast GP training
and prediction may considerably reduce the computational
burden (Pleiss et al., 2018).

In our approach, the computational cost is again dominated
by the computation of the posterior mean and covariance
matrix, µn(x) and Kn(x), respectively. When the outputs
of h are modeled independently, the components of µn(x)
and Kn(x) can be computed separately (Kn(x) is diagonal
in this case) and thus computation of the posterior mean and
covariance scales as O(mn2). This allows our approach to
be used even if h has a relatively large number of outputs.
However, in general, if correlation between components
of h is modeled, these computations scale as O(m2n2).
Therefore, in principle there is a trade-off between modeling

correlation between components of h, which presumably
allows for a faster learning of h, and retaining tractability in
the computation of the acquisition function.

5. Numerical Experiments
We compare the performance of three acquisition functions:
expected improvement (EI), probability of improvement (PI)
(Kushner, 1964), and the acquisition function that chooses
points uniformly at random (Random), both under our pro-
posed statistical model and the standard one, i.e., modeling
h using a multi-output GP and modeling f directly using a
single-output GP, respectively. We refer the reader to the
supplementary material for a formal definition of the prob-
ability of improvement under our statistical model, and a
discussion of how we maximize this acquisition function
in our numerical experiments. To distinguish each acquisi-
tion function under our proposed statistical model from its
standard version, we append ”-CF” to its abbreviation; so if
the classical expected improvement acquisition function is
denoted EI, then the expected improvement under our statis-
tical model is denoted EI-CF, as previously defined. We also
include as a benchmark the predictive entropy search (PES)
acquisition function (Hernández-Lobato et al., 2014) under
the standard statistical model, i.e., modeling f directly using
a single-output GP. For all problems and methods, an ini-
tial stage of evaluations is performed using 2(d+ 1) points
chosen uniformly at random over X .

For EI-CF, PI-CF, and Random-CF, the outputs of h are
modeled using independent GP prior distributions. All GP
distributions involved, including those used by the standard
BO methods (EI, PI, Random, and PES), have a constant
mean function and ARD squared exponential covariance
function; the associated hyperparameters are estimated un-
der a Bayesian approach. As proposed in Snoek et al. (2012),
for all methods we use an averaged version of the acquisi-
tion function, obtained by first drawing 10 samples of the
GP hyperparameters, computing the acquisition function
conditioned on each of these hyperparameters, and then
averaging the results.

We calculate each method’s simple regret at the point it
believes to be the best based on evaluations observed thus
far. We take this point to be the point with the largest (or
smallest, if minimizing) posterior mean. For EI-CF, PI-CF,
and Random-CF, we use the posterior mean on f implied by
the GP posterior on h, and for EI, PI, Random, and PES we
use the GP posterior on f . Error bars in the plots below show
the mean of the base-10 logarithm of the simple regret plus
and minus 1.96 times the standard deviation divided by the
square root of the number of replications. Each experiment
was replicated 100 times.

Our code is available at Astudillo (2019).
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Problem X g m

1 [0, 1]4 g(y) = −‖y − yobs‖22 5
2 [0, 1]3 g(y) = −

∑
j exp(yj) 4

Table 1. Description of GP-generated test problems

5.1. GP-Generated Test Problems

The first two problems used functions h generated at random
from GPs. Each component of h was generated by sampling
on a uniform grid from independent GP distributions with
different fixed hyperparameters and then taking the resulting
posterior mean as a proxy; the hyperparameters were not
known to any of the algorithms. The details of each problem,
including the function g used, are summarized in Table 1.

Results are shown on a logarithmic scale in Figures 2 and 3,
where the horizontal axis indicates the number of samples
following the initial stage. EI-CF outperforms the other
methods significantly. Regret is smaller than the best of the
standard BO benchmarks throughout and by several orders
of magnitude after 50 evaluations (5 orders of magnitude
smaller in test 1, and 2 in test 2). It also requires substantially
fewer evaluations beyond the first stage to reach the regret
achieved by the best of the standard BO benchmarks in
100 evaluations: approximately 30 in test 1, and 10 in test
2. Random-CF performs surprisingly well in type-2 GP-
generated problems, suggesting that a substantial part of
the benefit provided by our approach is the value of the
additional information available from observing h(x). In
type-1 problems it does not perform as well, suggesting
that high-quality decisions about where to sample are also
important.
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Figure 2. Expected log10(regret) in type-1 GP-generated test prob-
lems, estimated from 100 independent replications. These prob-
lems use X = [0, 1]4, g(y) = −||y − yobs|22, and m = 5. EI-CF
outperforms other methods by a large margin.
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Figure 3. Expected log10(regret) in type-2 GP-generated test prob-
lems, estimated from 100 independent replications. These prob-
lems use X = [0, 1]3, g(y) = −

∑
j exp(yj), and m = 4.

5.2. Standard Global Optimization Test Problems

We assess our approach’s performance on two standard
benchmark functions from the global optimization literature:
the Langermann (Surjanovic & Bingham, a) and Rosenbrock
(Surjanovic & Bingham, b) functions. We refer the reader
to the supplementary material for a description of how these
functions are adapted to our setting.

Results of applying our method and benchmarks to these
problems are shown on a logarithmic scale in Figures 4 and
5. As before, EI-CF outperforms competing methods with
respect to the final achieved regret. PI-CF and Random-CF
also perform well compared to methods other than EI-CF.
Moreover, in the Langermann test problem, PI-CF outper-
forms EI-CF during the first 20 evaluations.
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Figure 4. Expected log10(regret) in the Langermann test function,
estimated from 100 independent replications.
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Figure 5. Expected log10(regret) in the Rosenbrock test problem,
estimated from 100 independent replications.

5.3. Environmental Model Function

The environmental model function was originally proposed
by Bliznyuk et al. (2008) and is now a well-known test
problem in the literature of Bayesian calibration of expen-
sive computer models. It models a chemical accident that
has caused a pollutant to spill at two locations into a long
and narrow holding channel, and is based on a first-order
approach to modeling the concentration of substances in
such channels under the assumption that the channel can be
approximated by an infinitely long one-dimensional system
with diffusion as the only method of transport. This leads to
the concentration representation

c(s, t;M,D,L, τ) =
M√
4πDt

exp

(
−s2

4Dt

)
+

I{t > τ}M√
4πD(t− τ)

exp

(
−(s− L)2

4D(t− τ)

)
,

where M is the mass of pollutant spilled at each location,
D is the diffusion rate in the channel, L is the location of
the second spill, and τ is the time of the second spill.

We observe c(s, t;M0, D0, L0, τ0) in a 3× 4 grid of values;
specifically, we observe {c(s, t;M0, D0, L0, τ0) : (s, t) ∈
S × T}, where S = {0, 1, 2.5}, T = {15, 30, 45, 60}, and
(M0, D0, L0, τ0) are the underlying true values of these
parameters. Since we assume noiseless observations, the
calibration problem reduces to finding (M,D,L, τ) so that
the observations at the grid minimize the sum of squared
errors, i.e., our goal is to minimize∑
(s,t)∈S×T

(c(s, t;M0, D0, L0, τ0)− c(s, t;M,D,L, τ))2.

In our experiment, we take M0 = 10, D0 = 0.07, L0 =
1.505 and τ0 = 30.1525. The search domain isM ∈ [7, 13],

D ∈ [0.02, 0.12], L ∈ [0.01, 3] and τ ∈ [30.01, 30.295].

Results from this experiment are shown in Figure 6. As
above, EI-CF performs best, with PI-CF and Random-CF
also significantly outperforming benchmarks that do not
leverage the composite structure.
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Figure 6. Expected log10(regret) in the environmental model func-
tion test problem, estimated from 100 independent replications.

6. Conclusion and Future Work
We have proposed a novel Bayesian optimization approach
for objective functions of the form f(x) = g(h(x)), where
h is a black-box expensive-to-evaluate vector-valued func-
tion, and g is a real-valued function that can be cheaply eval-
uated. Our numerical experiments show that this approach
may substantially outperform standard Bayesian optimiza-
tion while retaining computational tractability.

There are several relevant directions for future work. Per-
haps the most evident is to understand whether other well-
known acquisition functions can be generalized to our set-
ting in a computationally tractable way. We believe this to
be true for predictive entropy search (Hernández-Lobato
et al., 2014) and knowledge gradient (Scott et al., 2011).
Importantly, these acquisition functions would allow noisy
and decoupled evaluations of the components of h, thus
increasing the applicability of our approach. However, in
the standard Bayesian optimization setting, they are already
computationally intensive and thus a careful analysis is
required to make them computationally tractable in our set-
ting.
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