Proceedings of Machine Learning Research 93:44-53, 2019 International Conference on Grammatical Inference

Suffix Classification Trees

Wojciech Wieczorek WOJCIECH.WIECZOREK@QUS.EDU.PL
Faculty of Computer Science and Materials Science

University of Silesia in Katowice

Zytm'a 12, 41-205 Sosnowiec, Poland

Olgierd Unold OLGIERD.UNOLD@QPWR.EDU.PL
Department of Computer Engineering

Wroctaw University of Science and Technology

Janiszewskiego 11/17, 50-372 Wroctaw, Poland

Lukasz Strak LUKASZ.STRAKQ@QUS.EDU.PL
Faculty of Computer Science and Materials Science

University of Silesia in Katowice

Zytm'a 12, 41-205 Sosnowiec, Poland

Editors: Olgierd Unold, Witold Dyrka, and Wojciech Wieczorek

Abstract

In this paper, a new method for generating acyclic word graph is proposed. The essential
characteristics of the method are: the construction of the data structure in linear time
with respect to the size of an input and gathering factor frequencies. Moreover, it has been
shown through a computational experiment that the proposed approach surpasses—with
respect to AUC score—similar grammatical inference algorithms on the sequences from a
real biological dataset.

Keywords: Suffix Trees, Classification, Amyloidogenicity

1. Introduction

There are a few ways to divide inference algorithms. We may be faced with infinite data and
output finite state acceptor (see Garcia et al., 2008) or with finite data and output acyclic
or cyclic finite state acceptor. Acyclic acceptors (see Rulot and Vidal, 1987) represent
finite sets of sequences, while cyclic acceptors (see Coste and Fredouille, 2003) represent
infinite sets of sequences. Since our aim is to get a classifier for biological data, namely
amyloidogenic (as examples) and non-amyloidogenic sequences (as counter-examples), we
are interested in generating acyclic acceptors based on finite samples.

In the present paper, the concept of a suffix classification tree (SCT) is proposed and an
algorithm for its generation is devised. In essence, an SCT is a rooted tree whose edges are
labeled by strings, while vertexes store factor frequencies, i.e., how many times a certain
factor occurs in examples and how many times in counter-examples. What is more, every
factor that can be found on input will be included in an obtained tree. Notice how inefficient
would be a straightforward solution consisting in the examination of all factors over all
sequences. In general, the genetic code specifies 20 standard amino acids, which makes
an alphabet of cardinality 20. For example, in order to find the frequencies of all factors

© 2019 W. Wieczorek, O. Unold & L. Strak.

SUFFIX CLASSIFICATION TREES

of length six in a set of 10000 strings of length 30, we would have to perform about 10'°
elementary instructions. Our main contribution is the method of building the desired data
structure in the efficient, linear way by means of Ukkonen (1995) algorithm for suffix trees.
Thanks to that, the same information can be gained using only about 107 instructions. We
also propose the definition of a function that maps a new sequence (a string) to a value
that denotes the chance that the string can be a new example. An SCT together with the
evaluation function establish a classifier, its quality has been verified against the classical
algorithms of a similar characteristic: error-correcting grammatical inference (Rulot and
Vidal, 1987), alignment-based learning (van Zaanen, 2000), and automatic distillation of
structure (Solan et al., 2005). We also included to experiments two state merging algorithms:
Blue-fringe (Lang et al., 1998) and Traxbar (Lang, 1992).

This paper is organized into four sections. The next (second) section introduces the
notion of suffix trees and also discusses a way to use them to get information about un-
known sequences. The third section describes the experimental results. The last section
summarizes results collected.

2. Suffix Classification Trees

The basic data structure which will be used for classification is an SCT (suffix classification
tree). We will propose a method for its construction that is based on a suffix tree known
from classical algorithms on strings (Gusfield, 1997). So let us start with the definitions of
a suffix tree and a suffix classification tree.

2.1. Basic Definitions and Concepts

First, we will introduce basic definitions on strings.

Definition 1 A string S is an ordered nonempty list of characters written contiguously from
left to right. A substring of a string S is a string S|i..j] that occurs in S from position i to
position j. Prefix and suffix are special cases of substring. If m is the number of characters
in string S, then S[1..7] (1 < i < m) is the prefix of string S that ends at position i, and
Sli.m] (1 <i<m) is the suffiz of string S that begins at position i.

Substrings are also called factors. To simplify our notation, ith character of S will be
denoted by S(i). The list of all substrings of the string S = apple would be apple, appl,
pple, app, ppl, ple, ap, pp, pl, le, a, p, I, e; S(1) = a, S[3..4] = pl.

Definition 2 Let @ be a string of length n. The number of occurrences of QQ in a string S
is equal to the number of different positions i for which Si..(i +n—1)] = Q.

Definition 3 A suffiz tree T for an m-character string S is a rooted directed tree with
exactly m leaves numbered 1 to m. Each edge is labeled with a substring of S. No two edges
starting out of a node can have string-labels beginning with the same character. FExcept
for the root, every internal node has at least two children. Finally, the string obtained by
concatenating all the string-labels found on the path from the root to leaf i spells out suffiz
S[i..m], for i from 1 to m.

45

SUFFIX CLASSIFICATION TREES

Since such a tree does not exist for all strings, we assume (as is true in Figure 1) that
the last character of S appears nowhere else in the string (usually denoted $). This ensures
that no suffix is a prefix of another, and that there will be m leaf nodes, one for each of the
m suffixes of S. Since all internal non-root nodes are branching, there can be at most m —1
such nodes, and m + (m — 1) + 1 = 2m nodes in total (m leaves, m — 1 internal non-root
nodes, 1 root).

suffirtree$

uffixtree$

ixtree$

ztree$

tree$

Figure 1: Suffix tree for string suffiztree$. The root is the leftmost node, while leaves are
numbered from 1 to 11.

A suffix tree for a string S of length m can be built in O(m) time (Gusfield, 1997,
chap. 6). It can be used to solve a large number of string problems that occur in text-
editing, free-text search, computational biology and other application areas. Primary ap-
plications include: (i) finding the longest common substring in linear time, and (ii) finding
an occurrence of any unknown string x in S or determine that x is not contained in S in
O(n) time (but with initial O(m) time required to build the suffix tree for string S), where
n is the length of x.

Definition 4 A sample D will be an ordered pair D = (D4, D_) where Dy, D_ are finite
sets of strings with an empty intersection (have no common string). D will be called the
positive part of D (examples), and D_ the negative part of D (counter-examples).

Definition 5 A suffiz classification tree T for a sample D is a rooted directed tree with
each edge being string-labeled. No two edges starting out of a node can have string-labels
beginning with the same character. Fvery string obtained by concatenating all the string-
labels found on the path from the root to a node (the path-label of a node) spells out some
substring x = S[i..j|, where S is an element of D (either Dy or D_). If x is the substring
of an example or a counter-ezample, then there exists exactly one node with path-label x or
with path-label wwy, where x = uw and wy s the string-label of the last edge on the path.

46

SUFFIX CLASSIFICATION TREES

Fach node, other than the root, stores two values (factor frequencies): the number (n_) of
occurrences of the path-label of that node in D_ and the number (ny) of occurrences of the
path-label of that node in D .

2.2. From Suffix Trees to Suffix Classification Trees

Let a sample be Dy = {x1,29,...,2,} and D_ = {y1,¥2,...,ys} for r,s > 1. Create
string S = x11xal - 2, 1y10y20 - - - Y08, assuming that the characters 0, 1, and $ (special
characters) are not seen in the sample. Please observe that a suffix classification tree Tp for
sample D = (D4, D_) can be obtained from a suffix tree T for string S by using the below
given procedure. In fact, as far as a shape is concerned, T is a subgraph of T with the
same root. Notice also that in an implementation, instead of explicitly writing a substring
on an edge of the tree, it is enough only to write a pair of indexes on the edge, specifying
beginning and end positions of that substring in S. Since Ukkonen’s algorithm (for creating
Ts) has a copy of string S, it can locate any character in S using random access, i.e., in
constant time.
In order to transform T into Th do the following operations:

1. Let T be TS-
2. For every node v in T initiate ny(v) and n_(v) with zero.

3. Let a current node u be the root of T" and invoke the following recursive subroutine:
for every edge (u,v) let ¢ be its string-label and process the edge according to the
appropriate rule from (a) to (f).

(a) If £ =39 then remove from T" edge (u,v).

(b) If £ does not contain any 0 or 1, then recursively invoke the subroutine with v
as a new current node u.

(c) If £(1) = 0 then n_(u) :=n_(u) + k, next remove from T" edge (u,v) along with
t, where t is the subtree rooted at v and k is the number of leaves! in t.

(d) If £(1) = 1 then ny(u) := n4(u) + k, next remove from T edge (u,v) along with
t, where t is the subtree rooted at v and k is the number of leaves in ¢.

(e) Let 0 be the first encountered special character and suppose it was at position 4
in /; then label the edge with the prefix ¢[1..(i — 1)], n—(v) := n_(v) + k, remove
t from T, where t is the subtree rooted at v and k is the number of leaves in t.

(f) Let 1 be the first encountered special character and suppose it was at position i
in ¢; then label the edge with the prefix ¢[1..(i — 1)], n4(v) := n4(v) + k, remove
t from T, where t is the subtree rooted at v and k is the number of leaves in t.

4. Traverse T in postorder fashion updating factor frequencies of every node (except
the root) by incrementing ny and n_ using respective numbers from its sons (direct
descendants).

5. Let Tp be T.

1. A subtree with a single node (its root) has one leaf.

47

SUFFIX CLASSIFICATION TREES

Let us look at an example. For sample D = ({ab, ba}, {aa,bb}) string S = ablbalaa0bb0$
is created. Corresponding suffix tree is shown in Figure 2(a). After performing operations
from 1 to 3, we got a tree shown in Figure 2(b). The next step (4) is to update ny(v)
and n_(v) for every node v in the tree (except its root). The final suffix classification tree
(step 5) is shown in Figure 2(c). We can read from it that, for instance, the substring b
appears two times in counter-examples and two times in examples, while ab appears in no
counter-example and exactly once in examples.

1balaa0bb0$
alaa0bb0$
)
b0$
03
blbalaa0bb0$
1aa0bb0$
()
‘ a0bb0$

0bb03

balaa0bb0$
=
aa0bb0$

bb0$

()
$

(a) Suffix tree (b) Suffix tree after cuts

(¢) Suffix classification tree

Figure 2: The steps of the SCT construction based on Dy = {ab,ba} and D_ = {aa, bb}.

48

SUFFIX CLASSIFICATION TREES

An SCT is created in O(n) time, where n = Y 5 |wl|, regardless of the length of any
string w in sample D. Here are the reasons: Tyg is built in O(n) time and has size O(n),
while steps from 1 to 5 are bound by the size of the tree. Please observe also that finding
the first 0 or 1 in a string-label can be performed in O(1) time, provided a table with those
lowest positions of special characters is maintained. For the text ablbalaa0bb0$ from the
example, it is enough to have the table [3,3,3,6,6,6,9,9,9,12,12,12], which—naturally—
can be constructed once, in linear time.

2.3. Sequence Evaluation

Now we can proceed to the second part of our contribution, i.e., to the definition of a function
[T x T x N — [0, 1] that maps a new string S € ¥ to a real value that denotes the
chance that the string can be regarded as an example. X is a fixed alphabet, 7 is the set
of all SCTs over X, and N is the set of positive integer numbers. The idea is based on
substring frequencies. For a given SCT and positive integer k, we check for all k-length
substrings of S how many times they appear in the positive and negative part of a sample.
This ratio determines our prediction.
The following is an algorithm for calculating f(S, T, k):

1. Initiate sum and counter with 0, and n with |S]|.
2. For position:=1,2,...,n—k+ 1 do:

(a) x = S[position..(position + k — 1)];

(b) find in tree T node v with path-label x or with path-label vwy, where x = uw
and wy is the string-label of the last edge on the path;

(¢) if such a node v exists, then increment counter by 1 and sum by ny(v)/(ny(v)+

n_(v)).
3. Return sum/counter (for counter = 0 return 0).

So, in other words, f(S,T, k) determines a ratio that says whether in S are more substrings
appearing in examples (a value closer to 1) or in counter-examples (a value closer to 0).

3. Referenced Methods and Results

The algorithm for generating suffix classification trees (SCT with & = 3) has been tested
over a recently published amyloidogenic dataset (Wozniak and Kotulska, 2015). The dataset
is composed of 1476 strings that represent protein fragments. 439 are classified as being
amyloidogenic (examples), and 1037 as not (counter-examples). The shortest sequence
length is 4, the longest is 83. Such a wide range of sequence lengths was an additional
impediment to learning algorithms.

In order to compare our algorithm to other grammatical inference approaches, we took
the methods mentioned in the introductory section as a reference: error-correcting grammat-
ical inference (ECGI), alignment-based learning (ABL), automatic distillation of structure
(ADIOS), and two Kevin Lang’s state merging approaches (Blue-fringe and Traxbar).

49

SUFFIX CLASSIFICATION TREES

The experiments were conducted following ten replication of ten-fold cross-validation
(10 x 10 CV) and with 10 degrees of freedom test. This scheme, called corrected repeated
k-fold CV test, was proved to to have excellent replicability (Bouckaert and Frank, 2004)

and follows statistic)
_ 1/(k-r)>iq Z§:1 Lij

VA (k1) + nafny)é?
where z;; is the difference of the performance quality between two compared algorithms
on i-fold and j-run, nq is the number of instances used for training, me the number of
instances used for testing, 42 is the variance of the n differences. For performing all pairwise
comparisons Holm (1979) correction to p-value was applied.

In order to compare the binary classification we decided to compute Area Under the Re-
ceiver Operating Characteristic Curve (AUC). AUC is equivalent to two sample Wilcoxon
rank-sum statistic (Hanley and McNeil, 1982). The value of the AUC score ranges from 0
to 1, with a score of 0.5 corresponding to random guess and a score of 1.0 indicating perfect
separation of two classes (amyloids and non-amyloids). The AUC is prone to imbalanced
dataset. Such a choice allowed us to deal with target scores either being probability esti-
mates of the positive class (as an SCT with the f function) or non-thresholded measure of
decisions (as returned by ABL and other methods).

Obtained results are summarized in Table 1 and Figure 3. Table 2 gives adjusted by
Holm procedure p values for the comparison of the SCT as the control method with the
remaining GI algorithms. There are statistically significant performance differences between
SCT and all compared methods over AUC measure. Note that the new algorithm works in
reasonable time (see Table 1), taking into account run-time efficiency of the other methods.

C

Table 1: Comparison of SCT with other GI methods in terms of averaged AUC with the
standard deviation. The table is arranged in order of decreasing averaged AUC.

Method AUC CPU time [s]
SCT | 0.805 £ 0.036 3.92 £ 0.62
ABL | 0.597 &+ 0.036 | 549.52 + 182.10
Traxbar | 0.578 %+ 0.039 0.32 £ 0.06
Blue-fringe | 0.576 &+ 0.040 1.00 £ 0.14
ECGI | 0.547 £ 0.024 51.29 £ 9.89
ADIOS | 0.521 + 0.041 14.01 £ 7.93

The results show that SCT is a method which outperforms the remaining methods
as regards the AUC classification measure. All programs ran on an Intel i3-4010U, 1.7
GHz processor under Windows 10 operating system with 16 GB RAM. The computational
complexity of all the algorithms is polynomially bound, however, the differences in running
time were quite significant and our approach ranked among top three fastest methods. The
algorithm for SCT construction? was written in the Python 3 programming language. The

2. https://github.com/wieczorekw/wieczorekw.github.io/tree/master/SCT

50

https://github.com/wieczorekw/wieczorekw.github.io/tree/master/SCT

SUFFIX CLASSIFICATION TREES

@
[} _—
j
,
.
«© _|
o
7
h
.
1
1
1
> N PR
3 > e o
OO
=
3 _— _— —_—
2 ' 1
&) . o .
H
23 E B ;
< - ' _—
o '
,
7 .
: :
: ' E 1
—_ H j '
o _| ' ' |
o : ———
PR
1
PR
< o
3

T T T T T T
ABL ADIOS Blue—fringe ECGI SCT Traxbar

Figure 3: Performance comparison of ABL, ADIOS, Blue-fringe, ECGI, SCT, and Traxbar
methods. Boxplots represent the AUC values obtained from 10 x 10 cross-
validation.

Table 2: p-values for the comparison of SCT as a control method with the other methods.
The initial level of confidence o = 0.05 is adjusted by Holm procedure.

SCT versus | p-value adjusted by Holm
ABL 1.118275 e-51
Traxbar 1.821043 e-53
Blue-fringe 1.821043 e-53
ECGI 5.684131 e-67
ADIOS 4.933878 e-60

51

SUFFIX CLASSIFICATION TREES

languages of implementation for five successive methods were: Python (for ABL and ECGI),
Java (for ADIOS), and C (for Blue-fringe and Traxbar).

4. Conclusions

We proposed a new inference method called a suffix classification tree and applied it to
a real bioinformatics task, i.e., classification of amyloidogenic sequences. The evaluation
of generated SCT on an amyloidogenic dataset revealed its accuracy to predict amyloid
segments. We showed that the new inference algorithm gives the best AUC in comparison
to other automata or grammar learning methods that also are suitable for finite languages.

Acknowledgments

This research was supported by National Science Center, grant 2016/21/B/ST6,/02158.

References

Remco R Bouckaert and Eibe Frank. Evaluating the replicability of significance tests for
comparing learning algorithms. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 3—12. Springer, 2004.

Francois Coste and Daniel Fredouille. Unambiguous automata inference by means of state-
merging methods. In Machine Learning: ECML 2003, 14th European Conference on
Machine Learning, Cavtat-Dubrovnik, Croatia, September 22-26, 2003, Proceedings, pages
60-71, 2003.

Pedro Garcia, Manuel Vazquez de Parga, Gloria I. Alvarez, and José Ruiz. Universal
automata and nfa learning. Theor. Comput. Sci., 407(1-3):192-202, November 2008.
ISSN 0304-3975.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology. Cambridge University Press, New York, NY, USA, 1997. ISBN
0-521-58519-8.

James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, 143(1):29-36, 1982.

Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian journal
of statistics, pages 65-70, 1979.

K. J. Lang. Random DFA’s can be approximately learned from sparse uniform examples.
In Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pages
45-52. ACM, 1992.

K. J. Lang, B. A. Pearlmutter, and R. A. Price. Results of the Abbadingo One DFA learning
competition and a new evidence-driven state merging algorithm. In Proceedings of the 4th
International Colloquium on Grammatical Inference, pages 1-12. Springer-Verlag, 1998.

52

SUFFIX CLASSIFICATION TREES

Héctor Rulot and Enrique Vidal. Modelling (sub)string-length based constraints through
a grammatical inference method. In P. A. Devijver and J. Kittler, editors, Proc. of the
NATO Advanced Study Institute on Pattern Recognition Theory and Applications, pages
451-459. Springer-Verlag, 1987.

Zach Solan, David Horn, Eytan Ruppin, and Shimon Edelman. Unsupervised learning of
natural languages. Proceedings of the National Academy of Sciences of the United States
of America, 102(33):11629-11634, 2005.

Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.

Menno van Zaanen. ABL: Alignment-Based Learning. In Proceedings of the 18th Interna-
tional Conference on Computational Linguistics (COLING), pages 961-967. Association
for Computational Linguistics, Association for Computational Linguistics, 2000.

Pawel P. Wozniak and Malgorzata Kotulska. Amyload: Website dedicated to amyloidogenic
protein fragments. Bioinformatics, 31(20):3395-3397, 2015. doi: 10.1093/bioinformatics/
btv375.

53

	Introduction
	Suffix Classification Trees
	Basic Definitions and Concepts
	From Suffix Trees to Suffix Classification Trees
	Sequence Evaluation

	Referenced Methods and Results
	Conclusions

