Proceedings of Machine Learning Research 93:139-154, 2019 International Conference on Grammatical Inference

Inferring Program Extensions from Traces

Roman Manevich ROMANM@CS.BGU.AC.IL
Department of Computer Science

Ben-Gurion University of the Negev

Beer-Sheva 8410501, Israel

Sharon Shoham SHARON.SHOHAM@CS.TAU.AC.IL
School of Computer Science

Tel Aviv University

Tel Aviv 6997801, Israel

Editors: Olgierd Unold, Witold Dyrka, and Wojciech Wieczorek

Abstract

We present an algorithm for learning a non-trivial class of imperative programs. The al-
gorithm accepts positive traces—input stores followed by a sequence of commands—and
returns a program that extends the target program. That is, it behaves the same as the
target program on all valid inputs—inputs for which the target program successfully ter-
minates, and may behave arbitrarily on other inputs. Our algorithm is based on a quotient
construction of the control flow graph of the target program. Since not all programs have
a quotient in a convenient form, the ability to infer an extension of the target program
increases the class of inferred programs. We have implemented our algorithm and applied
it successfully to learn a variety of programs that operate over linked data structures and
integer arithmetic.

Keywords: Learning, Program Extensions, Traces

1. Introduction

We address the problem of inferring an imperative program from a set of example executions.
This problem has many potential applications, including learning robotic tasks—a form of
imperative programs—from experiences (experiences are essentially an input configuration
followed by a sequence of actions) (Mokhtari et al., 2017), generalizing plans generated by
automated planners to form procedures that handle similar planning problems (Srivastava
et al., 2012), computing models of opague code (Heule et al., 2015)—code which is executable
but whose code is unavailable, and programming by demonstration (Biermann et al., 1975;
Lau et al., 2003). Inferring programs from traces may also serve as a good starting point for
synthesizing programs from input-output examples, by first synthesizing candidate traces
for each input-output example and then inferring a program for those traces.

Learning Program Extensions. A major problem in learning programs from examples
is that programs are often not defined over all possible inputs. That is, they represent
partial functions from inputs to outputs. Executing a program on an invalid input may
result in unpredictable (i.e., non-deterministic) behavior, crashing, or getting stuck (possibly
in an infinite loop). It is therefore not realistic to expect negative traces—example traces

© 2019 R. Manevich & S. Shoham.

INFERRING PROGRAM EXTENSIONS FROM TRACES

starting from invalid inputs. Under the assumption that negative traces are unavailable,
a learning algorithm cannot be expected to learn a program whose functional semantics is
equivalent to that of the target program, as that would imply learning an acceptor of all
valid inputs from only positive examples. Our observation is that this is typically also not
the intent. The intent is to learn a program whose functional representation matches that
of the target program only on the valid inputs. In other words, we aim to learn a program
whose functional representation extends that of the target program. A program extension
is not unique, thus our learning criterion is different from the usual criterion, which requires
full semantic equivalence.

Control-flow Inference and Guard Inference. We represent programs by an automa-
ton whose transitions are labelled by guards and commands (similar to control-flow graphs,
used by compilers). There are two components to learning a program from traces: 1) in-
ferring a control structure—an automaton that is isomorphic to an extension of the target
program, up to the guards labeling its transitions; and 2) inferring correct guards, for which
we adapt algorithms for learning decision trees.

The main contributions of this paper are as follows:

e We identify a new learning criterion for computational models whose semantics is
a partial function: learning semantic extensions—programs that are behaviorally-
equivalent to the target program on the domain of the function (i.e., valid inputs).
While a computation model may not admit a canonical form sought by a given infer-
ence algorithm, one of its extension may. This provides the inference algorithm with
greater flexibility, allowing it to increase the class of models it can infer.

e We present an algorithm for inferring extensions of a non-trivial class of programs
from traces. Our algorithm is generic in the underlying language and makes very
weak assumptions about it, namely an access to an interpreter. The interpreter is
used to compute intermediate stores and to evaluate basic Boolean expressions, which
is needed to infer the guards. The worst-case running time is exponential due to a
search over an exponential space of quotients. Since part of the quotient is known, the
effective search space is not large in practice. In our experiments, the search always
succeeds without backtracking, leading effectively to a polynomial run time.

e We have implemented our algorithm for a Java-like language with dynamic object
allocation and integer arithmetic and empirically evaluated the algorithm on a suite
of benchmarks. Our experiments show that, in practice, the number of examples
needed to infer the target program is quite small and the running time is low. We
have made our tool and experiments publicly available.!

Outline. The rest of the paper is organized as follows. Section 2 formalizes programs and

states the learning problem. Section 3 defines the class of programs addressed in this paper.

Section 4 presents the overall structure of our inference algorithm. Section 5 defines our

guard inference algorithm and puts together all the components of our algorithm. Section 6

contains our empirical evaluation. Section 7 discusses related work and concludes the paper.
We defer additional details and proofs to the full version of the paper.

1. https://github.com/rumster/program-extension-synthesis.

140

https://github.com/rumster/program-extension-synthesis

INFERRING PROGRAM EXTENSIONS FROM TRACES

2. Programs and Problem Statement

In this section, we formalize programs and the learning problem addressed by this paper.

Definition 1 (Program Automaton) A program automaton (Grd, Cmd, Q,d, qo,qr) con-
sists of a finite non-empty set of guard symbols Grd, a finite non-empty set of command
symbols Cmd, a finite non-empty set of locations), an initial location gy € @; a final
location qr € Q; and a transition function § : (Q \ {gr}) x (Grd x Cmd) — Q.

The program automaton can be understood as the control-flow graph of the program.
We define the location transition relation as follows: ¢ = ¢’ < ¢’ € 6(q, a).
We define the set of actions as Action & Grd x Cmd and denote an action as g/c

(g € Grd, c € Cmd).

Definition 2 (Program Semantics) A program semantics (Store, G,C) consists of a set
of stores Store; a guard evaluation function G : Grd — Store — {0,1}; and a command
evaluation function C : Cmd — Store — Store.

A program P £ (M, Sem) € Prog consists of a program automaton M and a semantics
Sem. In the sequel, we will often equate P with M; the semantics will be clear from the
context. We will also use the shorthand notations g(s) for G(g)(s) and ¢(s) for C(c)(s)
where g € Grd, ¢ € Cmd and s € Store. An action a = g/c denotes a partial function
Store — Store defined as a(s) = ¢ if g(s) = 1 and ¢(s) = s’. Finally, the meaning of a
sequence of commands (respectively, actions) is given by sequential composition.

A program is deterministic if the guards labeling the outgoing transitions of any location
are mutually exclusive. That is, at most one holds for any store. In the sequel, we consider
only deterministic programs as our target programs (the programs we aim to learn).

A state of P is a pair (q,s) € @ x Store. We define labeled transitions between states
as follows:

(¢,8) Zp (¢, a(s)) if ¢ =d0(g,a) Aa(s) # L .

For deterministic programs, we will also write (g, s) —p (¢, ¢(s)) to denote that (g, s) = p
(¢',a(s)) for a = g/c where g is the unique guard such that 6(q,a) = ¢’. These definitions
naturally extend to sequences of actions (respectively, commands) by composition. In the
sequel, we will drop the subscript P where no confusion is likely.

A command trace, or trace for short, is a pair (sp,¢) € Store x Cmd* where sy is an
input store and ¢ = ¢1 - ... ¢, is a finite sequence of commands. A trace (sp,¢) belongs

to P if there exist ¢1,...,9n, € Grd such that (qo, so) Mc—"—)p (qr,-). When P is
deterministic, these guards are unique. We denote the set of traces of a program P by
Traces(P).

The size of a trace (sg,c1 - ... ¢p), denoted as |(sp,c1 - ... - ¢p)|, is n. Note that while
d-paths in the program automaton are oblivious to the store, command traces depend on
the store. Consequently, some §-paths might not correspond to any trace.

We define the output of (so,c1-...-c,) € Traces(P) to be s € Store such that C(cy - .. .-
cn)(s0) = s.

The set of precondition stores of P is pre(P) < {sq € Store | Je. (s0,¢) € Traces(P)}.

141

INFERRING PROGRAM EXTENSIONS FROM TRACES

Syntax
x, ... € Var Program variables
f, ... €Field Class fields
[Class names
nez Integer constant
Cmd := z=Expr | z.f=Expr
| z=new ¢() | return z
Expr = z|n|null | Expr.f | Expr Op Expr
Op == +[-[*]|/
Grd = true | Expr == Expr | Expr < Expr
| Grd && Grd | Grd || Grd | !Grd

Stores
StoreJminor def (Env x Heap) U {error}
Env def Var =~ Z
Heap % 7 ¢ Field =~ 7

Objects are represented
by their integer addresses.

Semantics

. def : . .
Jminor & (Sto,—eJmlnor’nglnor7CJm|nor)

Figure 1: Elements of Jminor: commands and guards (left) and program semantics (right).

true/x=x-1

x#1l/y=y*x

true/y=1
o > q; >
\\{:;l/return %

'o.

Figure 2: The factorial program.

A deterministic program defines a partial function Store — Store that maps every sg €
pre(P) to the output of the trace (so,¢) € Traces(P). Note that determinism ensures that

this trace is unique.

Our algorithm is parametric in the semantics. To exemplify our algorithm, we proceed by
defining an instance semantics inspired by the semantics of the Java programming language.

The Jminor Semantics.

Fig. 1 defines the sets of guards, commands, and stores for a

small Java-like language, which we have used for our experiments. The evaluation functions
GIminor and ¢Iminor match the semantics of Java. The command return a is treated as res=a
(the res variable holds the return value), followed by dropping all variables except res from

the store.

Fig. 2 shows the program factorial, which computes the factorial of x with Jminor.

Example 1 The following are example traces of factorial?:

Efa,cto'r'ia,l =

def { ([z—2]
([z—1]

The precondition of factorial is as follows:

pre(factorial) =

’y:zl . y::y*m- x:=x-1- return y)
,y:=1-return y)

{[t = n]|n>0}.

That is, running factorial on a zero or negative input yields an infinite loop.

2. Since factorial does not access heap objects, we only depict the Env component of the store.

142

INFERRING PROGRAM EXTENSIONS FROM TRACES

2.1. The Learning Problem

We say that a program P’ & ((Grd,Cmd, @', ¢, q, ¢f), Sem) extends a program P o
((Grd,Cmd, Q, 4, qo, g7), Sem), denoted P’ € extension(P), if the following holds:

Vso, s¢ € Store. Ve € Cmd™. (qo, so) Sp (qr,s7) = (), S0) S (¢ s5) -

This implies that pre(P) C pre(P’), and that P’ produces the same set of outputs on
s € pre(P) as P. In fact, it ensures a stronger property, namely that P’ follows the same
sequences of commands as P on every input store s € pre(P).

Example 2 The program inferred from Efoctoriar by our algorithm uses the guards = > 1
and © < 1. It therefore extends factorial by mapping zero and negative inputs to 1.

We now formalize the problem addressed by this paper.

Definition 3 (Identifying Program Extensions in the Limit from Traces) We say
that an algorithm Learn : pfi,(Store x Cmd*) — Prog identifies program extensions in the
limit, if for any program P and any enumeration of its traces {1;};2,, there exists an index
n such that Learn({r;}}_,) € extension(P) and ¥Ym > n. Learn({7;}_,) = Learn({m}I",).

3. A Class of Programs

In this section, we define the class of programs inferred by our algorithm. For the sequel,
we fix a deterministic program P < (M, Sem) where M S (Grd,Cmd, Q, 9, g0, qF)-

In order to uniquely infer locations from traces that only consist of commands, we
require a stronger notion of determinism:

Definition 4 A program is strongly deterministic if it is deterministic and the commands
labeling its outgoing transitions are unique:

Vq,q1,92 € Q. g1,92 € Grd. c € Cmd. §(q,91/c) = 1 N6(q, 92/¢) =2 = @1 =q2 -

We only consider strongly deterministic programs as our target programs. This is not
a serious limitation, since in many cases, if a location g violates strong determinism, i.e.,

it has outgoing transitions ¢ M q1 and q 92—/C> q2, the two transitions can be merged,
thereby deferring the split between ¢; and g2 to the next step by adapting the guards ¢;
and go, which recovers strong determinism.

3.1. k-Signature Programs

Let Halt ¢ Cmd be a special command symbol, meaning that the program terminated.

Definition 5 The k-signature of a location q, denoted sig(q), is defined as follows:

sig(q) = {ez|I(so,c1- 2 - c3) € Traces(P). (qo,s0) = (q,-) Alez] = kU

{(cz - Halt""1= | (s, 71 - @) € Traces(P). (qo,50) — (q,-) A [ez] < k} .

143

INFERRING PROGRAM EXTENSIONS FROM TRACES

Intuitively, sig,(¢q) includes the sequences of commands that can be observed after visit-
ing ¢ in a trace of P. These may be a strict subset of the §-paths of the program automaton
from ¢, due to the ability of guards to examine the store. Next, we define the class of pro-
grams AllSigs;, where program locations can be uniquely identified by their k-signatures.

Let AllSigs;,(P) and MazSigs, (P) define the set of all k-signatures appearing in P and
their maximal elements (w.r.t the subset relation):

AllSigs,(P) = {sigy(q) | ¢ € Q}
MazSigs,(P) = {sg € AllSigs,(P) | Vg € Q. sg ¢ sigi(q)} -

Definition 6 We say that P is k-signature, denoted P € Sigy, if the following holds:

Va1, q2 € Q. sigyp(q1) C sigr(q) = ¢ =q2 -

Equivalently: AllSigs,(P) = MaxzSigs,(P) AVsg € MaxSigs,(P). Iq € Q.sigy(q) = sg.>

o0
We say that P is in signature form, denoted P € Sig, if P € |J Sig,, holds.
k=1

Example 3 The following list of signatures shows that factorial € Sig;:

sigi(q0) = {y=1} ,
sigi(q1) = {y=y*z, return y} ,
sigi(qz) = {z=z-1} ,
sigi(qs) = {Halt} .

To enable our algorithm to observe the k-signature of each location in the examples, we
need to further constraint the class of programs.

3.2. k-Regular Programs

For a sequence of commands ¢1 and a location ¢ € @), we define the sequences of commands
generated by ¢1 for q as follows:

Gen(er,q) = {& € Cmd* |
Jso € Store. Ie3 € Cmd*. (sp,¢1 - G2 - G3) € Trace(P) A (qo, 50) —=p (q,.)} -

Definition 7 (k-Regular Transition Tree) We say that a transition g % ¢ of P has a
k-regular transition tree if there exists a prefix of commands ¢ € Cmd* such that sig,(q1) C
Gen(c,q1) and sig,(q2) C Gen(c- a,q2).

Intuitively, the command prefix ¢ generates both the k-signature of the pre-location of the
transition, ¢1, as well as the k-signature of its post-location, g2 (in the sense that appending
them to € results in a prefix of commands that can be observed on some input store s).

Definition 8 A program P is k-regular, denoted P € Reg, if there exists a k-regular
transition tree for every transition qp N qo.

3. The quantifier 3! stands for “exists exactly one”.

144

INFERRING PROGRAM EXTENSIONS FROM TRACES

Example 4 The following prefizes show that factorial € Reg,:

transition prefix
true/y=1

Q ——q1 €
z!=1/y=y*z
— 2 y=1

- true/z=z-1 @ y=1 . p=p—1

z=1/return y

g ————q3 y=1

The class of programs satisfying all needed conditions for a value of k is defined as

SigReg, = {P € Reg,, strongly deterministic |
AP’ € Sig;, N extension(P). AllSigs,(P') = MaxSigs,(P)} .

Intuitively, SigReg;, is defined such that the extension P’ of P is a “quotient” of P.
The class of programs inferred by our algorithm is then

def

SigReg = {P |3k > 0. IP" € SigReg,,. Traces(P) = Traces(P’)} .

4. Control-flow Inference

Our algorithm PETI (for Program Extension Trace Inference), shown in Fig. 4, searches
for a “semantic program automaton”, which, intuitively, is a program automaton that has
the same “control structure” as an extension P’ of the target program and whose guards
are sets of stores (semantic guards). For each semantic program automaton, it employs the
procedure InfGuards to infer the actual guards from the semantic guards.

4.1. Semantic Program Automata

A semantic program automaton M¥* = {pg,(Store), Cmd, @, 67, qo, qr) is a program automa-
ton where the set of guards is p(Store), i.e., the guards are semantic. We say that a semantic
program automaton M7 represents the program automaton M’ = (Grd,Cmd, Q, d, qo, ¢r)
of a program P’ = (M’ Sem) if for every ¢1,¢2 € Q and ¢ € Cmd the following holds:

Vg € Grd. §(q1,9/c) = go = 3S € p(Store). 67 (q1,5/c) = g2 NS C G(g9)"(1); and
VS € p(Store). 67 (q1,5/¢) = go = 3g € Grd. 6(q1,9/c) = 2 A S C G(g9) (D).

where G(g)~1(1) = {s € Store | G(g)(s) = 1} is the set of stores that satisfy the guard g.

A semantic program automaton is well defined if whenever 67 (q,S1/c1) = ¢ and
67(q,Sa/c2) = qo for q1 # o, it holds that S; N Sy = (. If the automaton is not well
defined, denoted as M# = 1, it is impossible to assign guards to the transitions such
that the obtained program automaton M’ will be deterministic. As such, throughout the
algorithm, we make sure to produce semantic automata that are well defined.

145

INFERRING PROGRAM EXTENSIONS FROM TRACES

{[x~2], [x~11}/ {x>2,y-1]Y/ {x>2,y-2]Y/ {lres>2]Y/
y=1 m y=y*x m x=x-1 return y
Yo q; \q-y a3 @
\I/ {x~1,y-1]}/

return y O
s

Figure 3: Prefix tree for Fractorial-

4.2. From Prefix Trees to Semantic Quotients

The goal of control-flow inference is to infer a semantic program automaton that represents
an extension M’ of the target program. To that end, we start by constructing a prefix tree
automaton from the given set of traces F.

Definition 9 (Prefix Tree) Let E C Traces be a finite set of traces. The prefix tree of E
is the semantic program automaton T* (except that it has a set of final locations), defined
as follows:

T < (o(Store), Cmd, QT 67, ¢, F)
QT = {ge | (s0,e1-7 € E)}

5" (Ger, 5/0) = dere if S = {€i(s0) | (50,1 ¢ @) € B} # 0
F < {g|(s0,0) € E)} .

That is, the locations of the prefix tree automaton correspond to the prefixes of command
sequences in E and transitions connect consecutive prefixes. The semantic guards accumu-
late the stores observed along trace prefixes in each location.

We assume that all the locations in F' are sink locations, i.e., have no outgoing transi-
tions. This holds if there cannot be (s,¢), (s',¢-¢/) € E where ¢ € Cmd*. In programs this
assumption can be obtained, e.g., by appending a “return” command to each trace.

Example 5 The prefix tree for Example 1 appears in Fig. 3.

Next, we merge locations in T% = (p(Store),Cmd, Q7,87 g, F) in order to obtain a
semantic program automaton. Merging is performed based on a partition of the locations,
which is parameterized by k (where k starts from 1 and increases when necessary).

In the sequel, given a semantic program automaton (e.g., the prefix tree automaton Tﬁ)
with locations Qﬁ, we write m = Bj_, to denote a partition of the set of locations QTj into a
set of blocks such that the set of final locations comprises one of the blocks. We denote the
block containing the location ¢ by [¢] € 7. We say that a partition 7’ coarsens a partition
7 (alternatively 7 refines '), denoted 7 C 7', if VB € 7. 3B’ e #/. B C B'.

Definition 10 (Semantic Quotient) Let M# = (p(Store), Cmd, Q%, 6%, qo, F) be a se-
mantic program automaton (with a set of sink final locations) and let m be a partition of
its locations where F € w. The quotient of M with respect to w, denoted M# /m, is the
(possibly non-deterministic) semantic program automaton defined as follows:

M#/x = (p(Store), Cmd, 7,69, [qo], F)
59(B,S'fe) X (B[S =U(S |30 € B. 2 € B'. 6¥(q1,5/¢) = o} # 0} -

146

INFERRING PROGRAM EXTENSIONS FROM TRACES

That is, M7 /7 is obtained from M7 by the standard definition of quotients, possibly
introducing non-determinism, where the semantic guards aggregate guards from the indi-
vidual locations in each block. Since F' comprises a separate block in 7, and since all the
locations in F' are sink locations, the quotient maintains the property that its final location
is a sink location.

Computing Signatures for Semantic Automata. Since a prefix tree T% is constructed
out of examples, the k-signature of each location can be directly computed by taking the
k-length 67-paths for each location. Since a semantic automaton M7 is constructed from
a quotient of a prefix tree T%, the k-signature for each location ¢ is the union of the k-
signatures of all the locations in [¢]. Once the k-signatures are available, we can compute
AliSigs;, and MazSigs;, for T* and M7,

Computing a Partition. We define MaxSigPartition, (M#) to be the partition induced
by the following equivalence relation:

q~q = sigy(q) = sigy(q) € MazSigs,(M¥) .

The procedure MergeBySig starts with the partition 7 = MaxSigPartition, (T*), which
groups locations with the same maximal k-signatures into a single block and leaves all
other locations in their own block. If P € Sig, then the locations with the same maximal
k-signatures represent the same locations in its (quotient) extension.

To complete the partition, the algorithm must match each location ¢ with a non-maximal
k-signature with a location ¢’ such that sig,(q) C sig,(¢’). The admissibility criteria for
each such completed partition 7’ are: (1) it does not change the set of maximal k-signatures
(since these are the only signatures that exist in the extension program), (2) the induced
automaton is strongly-deterministic, and (3) that appropriate guards can be inferred. To
achieve this, the algorithm searches the space of partitions {7’ | 7’ J 7} and, for each
candidate partition, computes the quotient automaton T*/n’ and applies determinization
(i.e., det(T* /") merges locations violating strong determinism). The search space is expo-
nential in the worst-case. We therefore apply heuristics to accelerate the search. In our
experiments, the search always succeeds without having to backtrack.

Definition 11 (Control-flow Complete Sets) Let P = (M, Sem) be a program in SigReg;,.
We say that a finite set of traces E C Traces(P) is control-flow complete for P if it contains
a k-reqular transition tree for each transition of M.

The size of a control-flow complete set E for P € SigReg,, is in O(|Q|?> x |Cmd|¥).*

Theorem 12 For every program P = (M, Sem) € SigReg,,, if E is control-flow complete
for P, then the following properties hold: (1) M' = MergeBySig(PrefixTree(E), k) € Sigy,,
and (2) M' represents some (M", Sem) € extension(P).

Example 6 In Fig. 3, sig,(q;) is mazimal for i = 0,1,2,4,5, but not for i = 3. The algo-
rithm starts with MaxSigPartition, (T*) = {{qo}, {a1}, {a2}, {3}, {qs, g5} }. It then merges g3
into q1, which results in a semantic automaton that represents an extension of factorial.

4. The number of bits in E is unbounded, as the shortest trace to any given location is generally unbounded.

147

INFERRING PROGRAM EXTENSIONS FROM TRACES

1 PETI(E : p(Trace)) { 1 MergeBySig(Tﬁ, E:N) {
2> T« PrefixTree(E) > 7 < MaxSigPartition, (T*)
s if TH—1 { 3 foreach n' J7 {
4 return L . M#% « dei(T*/7")
s) if MazSigs,(M#) = MazSigs, (T*) {
¢ for k=0 to r?%|t| { M < InfGuards(M#)
€

7 M < MergeBySig(T*, k)

s if M#£L {

5

6

7 if M#£L1 {
8 return M
9

9 return M !
10 }
0} k o}
1 } 12 return L
12 } 13 }

Figure 4: Pseudo-code for PETI.

5. Guard Inference

In this section, we describe how to convert a semantic program automaton into a program
automaton represented by it, by inferring the guards for each transition.

The idea is to: (1) extract from the outgoing transitions of each location a store clustering
function SC' : Cmd — @(Store), which maps each command (outgoing transition) to a set
of stores on which the command should be executed, and (2) assign guards that respect the
sets of stores in each cluster.

Definition 13 (Valid Guard Assignment) We say that a function I'gep, : Cmd — Grd
is a valid guard assignment for a store clustering SC : Cmd — @(Store), relative to the
semantics Sem, if the following condition holds:

Ve € Cmd. Vs € SC(c). Tgem(c)(s) =1
Ver,co € Cmd. Vs € Store. (Dgem(c1)(s) = 1A Lgem(c2)(s) =1) = c1 =c2 .

Intuitively, I'ge, assigns a guard to each command such that all the stores mapped to the
command satisfy the guard assigned to it and every pair of guards is mutually exclusive. In
the sequel, we will drop the semantics subscript when no confusion is likely.

A store clustering SC : Cmd — p(Store) is deterministic if the following holds:

Vep,co € Cmd. SC(e1) NSC(eg) # 0 = ¢1 = ca.

Note that a valid guard assignment can only exist when SC' is deterministic.
We say that InfGuards : (Cmd — p(Store)) — (Cmd — Grd) is a guard inference procedure
if it returns a valid guard assignment when its input is deterministic, and 1 otherwise.

Definition 14 (Inferring Guards in the Limit) We say that a guard inference proce-
dure InfGuards : (Cmd — @(Store)) — (Cmd — Grd) infers guards in the limit if for ev-
ery store clustering SC : (Cmd — @(Store)) and any enumeration of its sub-functions
{8C; : (Cmd — p(Store)) | Ve. SCi(c) C SC(c)}52,, there exists an index n > 0 such that
Vm > n.InfGuards(SC,,) is a valid guard assignment for SC.

148

INFERRING PROGRAM EXTENSIONS FROM TRACES

Note that this definition does not ensure that Vm > n. InfGuards(SC,,,) = InfGuards(SC,,),
i.e., the guard assignment may not stabilize. We explain how to handle this in the sequel.

Guard Inference for Jminor. To infer guards for Jminor, we incrementally grow a set of
basic Boolean expressions and apply a decision tree algorithm to infer a Boolean combination
of these expressions for each abstract command (action).

Let Expr,, < {e € Expr | |¢] < m} be the set of terms of size m or less,” and let
Grd,, = Bool(F,,) consist of all Boolean expressions over the following set of propositions:

Fm ={e1 = ez | e1,e2 € Expr,, Atype(er) = type(ez)} U
{a1 < ay | a1, a9 € Expr,, Atype(ar) = type(az) = int} .

Let dtree : (D — o(F)) = ((L — p(D)) — (L — Bool(F))) be a decision tree procedure
such that given a mapping of data points D (stores in our case) to sets of Boolean attributes
F (Fy in our case) that hold in them, converts a mapping of labels L (commands in our
case) to sets of data points assigned to them into a mapping of each label (command)
to a Boolean formula over the feature expressions such that all the data points assigned
to I € L satisfy the corresponding formula, and every pair of formulas is disjoint. Let
s2f,, : Store — p(F,,) map stores to the set of propositions from F,, they satisfy. Then:

InfGuards’™ " (SC) < min,, {dtree(s2f,,)(SC) # L} .

Program Automaton Construction. Given the semantic program automaton M7# =
(p(Store), Cmd, Q*, 6% qo, qr) inferred in the previous step, we define the program automa-
ton M’ = (Grd,Cmd, Q*, 6, qo, gr) returned by PETI(E) as follows.

We define the store clustering of location ¢ € @ as SC,; : Cmd — p(Store), where for ev-
ery c € Cmd, SC,(c) = S if §%(q, S/c) is defined. Recall that M# is strongly deterministic,
hence ¢ uniquely identifies an outgoing transition of ¢ (i.e., no two outgoing transitions are
labeled by the same command). Furthermore, recall that M# is well defined, hence SCy is
deterministic (and a valid guard assignment may exist).

We define the transition relation é of the program automaton M’ as follows:

d(q1,9/c¢) &t g if 6#(q1, _/c) = q2 A InfGuards(SCy,) (c) = g.

Stabilization. Recall that extensions are not unique, which means that our algorithm
may alternate between different extensions. To handle this, we define StablePET]I as follows.
StablePETI({e1.,,}) runs PETI({e1 n}) for m = 1..n and returns the first automaton that
is consistent with {e,+1.,} (i-e., {€m+1.n} belong to its set of traces).

Theorem 15 For every P € SigReg, StablePETI identifies an extension of P in the limit.

Proof [sketch] Assume that P = (M, Sem) € SigReg,, and let {7;}°; be an enumeration
of Traces(P). For a large enough index n, E, o {7}, is control-flow complete. Define

T = PrefixTree(E,,) and M,, j e I\/IergeBySig(Tﬁ, k). There are two cases to consider for
the loop in line 6 of PETI.

5. For efficiency, we only consider the (finite set of) integer constants appearing in commands.

149

INFERRING PROGRAM EXTENSIONS FROM TRACES

Case 1: Assume k = m. Then, by Theorem 12, M, ,, € Sig,, represents an extension
of P. Therefore, k never increases. Since |Sigy| is finite, for a large enough n' > n,
MergeBySig(Tﬁ,,m) belongs to a set of automata that, up to the guard assignments, is
finite. Since InfGuards infers guards in the limit, there exists an index n” > n such that for
all n”” > n”, we have that M, ,,, belongs to a finite set of automata that extend P.

Case 2: Assume the loop stabilizes on a value k& < m. Recall that |Sig,| is finite.
Repeating the same arguments as above, we have that for a large enough index n’ > n,
M, belongs to a finite set of automata. Additionally, Traces(M, j, Sem) 2 Traces(P)
(otherwise, k would increase), meaning that (M, i, Sem) € extension(P). [|

6. Empirical Evaluation

We have implemented our algorithm in Java. Our tool accepts a specification, which includes
Jminor classes (akin to C structs), a method signature, and a set of traces. The tool then
infers a program automaton and a generates a Java implementation from the automaton.®

Validation. The system allows specifying test traces, which are not used during the in-
ference phase, and are used to check for membership in the inferred program. Since manual
construction of traces is tedious and error-prone, the user may optionally write the target
program (in an extension of Jminor with sequencing, if-then-else statements, and while-
loops) and specify input stores. The system then generates traces by executing the program
on the input stores.

We experimented” on the benchmark programs shown in Table 1. The number locations
in the inferred automata range from 3 to 12. While the benchmarks are small, their stores
and guards can be quite complex For example, the guard for s11_reverse merge has the
form first==null || first!=null && second!=null && second.d<first.d. Given this,
we are encouraged that the number of examples needed to successfully infer program ex-
tensions is quite small.

The algorithm can sometimes efficiently infer correct program extensions from few ex-
amples, even when they are not control-flow complete (e.g., all examples where |E| = 1).
If a sufficient subset of the k-signatures appears in the prefix tree, merging them induces
further merges due to strong determinization. This sometimes reveals the desired maximal
signatures, which has the effect of reducing the space of partitions that need to be searched
as well as leading to a cascade of merges towards a program extension.

7. Related Work

In this section, we address the most relevant works from the following research fields.

6. The implementation maintains the current location and executes a loop that, on every step, evaluates
the guards labeling the outgoing transitions from the current location, executes the command for the
found transition, and updates the current location to the next location. The loop terminates if the final
location is reached. We also implemented transformations to “compress” sub-automata to if-then-else
statements and while loops whenever possible.

7. On a Yoga 1 64bit laptop with a Core i7 processor, 8GB of RAM, running Java 10 on Windows 10.

150

INFERRING PROGRAM EXTENSIONS FROM TRACES

Program Description |E| max [t| Time £k Ext.
factorial The running example 2 7 <0.1 1 yes
ged Euclid’s algorithm 2 10 <1 1 no
sqrt_slow Integer square root via linear search 3 6 <0.1 1 no
s11 fill Setting a value to all cells 1 9 <0.1 1 no
s1l_find Searching for a key 1 6 <0.1 1 no
s11 max Finding the maximal key 4 9 <0.1 1 no
sll reverse merge Reverse-merging two sorted lists 3 27 2 1 mno
sll_reverse List reversal 1 11 <0.1 1 no
sll find root Find the root of a cycling list 1 14 <0.1 2 no
s1ll_bubble_sort Bubble sort 5 54 3 1 no
bst_find Searching for a key 5 8 <0.1 1 no
bfs BF'S over graph nodes with two fields 4 36 <0.1 1 no

Table 1: Benchmark programs. |E| is the number of examples, max |t| is the maximal exam-
€

ple trace length, time is measured in seconds, k is the value for which MergeBySig
succeeded, Ext. indicates whether the inferred program extends the target pro-
gram. sll stands for singly-linked lists and bst stands for binary search tree.

Automata Learning. Biermann (1972) presents a heuristic algorithm for synthesizing
Turing machines from traces including both commands and conditions.

A Mealy machine can be learned from input/output examples by adapting the RPNI
algorithm (Oncina and Garcia, 1992). Giantamidis and Tripakis (2016) present an algorithm
for identifying Moore machines in the limit from input-output traces. Oncina et al. (1993)
present an algorithm for identifying a class of regular transducers in the limit. A major
difference between these works and ours is that in the case of transducers, the transition
guards are obvious from the examples. We cope with the missing guards by requiring strong
determinism and separately inferring them.

Cassel et al. (2016) developed an active learning algorithm to infer register automata.
The examples in register automata are abstract relative to the commands in our setting,
since they expose the reaction of the environment but not the register assignments. On the
other hand the set of guards in our setting is much more expressive.

One important difference between our setting and that of automata learning is that a
program may contain two locations that cannot be distinguished by any trace, which is an
assumption made by many automata inference algorithms.

Program Synthesis. Lau et al. (2003) present a framework for learning programs from
traces containing varying amounts of detail. For our definition of traces their approach is
restricted to single-loop programs where the loop body is a fixed-size sequence of commands.
Heule et al. (2015) present an algorithm for learning from traces where the store is
partially observable and variables names are missing from commands. Their algorithm is
an adaptation of a Metropolis-style search for a program that admits the example traces.
The programming languages community has been intensively working on synthesizing
programs from input/output examples. See Gulwani (2010); Gulwani et al. (2015) for recent

151

INFERRING PROGRAM EXTENSIONS FROM TRACES

surveys. These approaches either assume that the program is loop-free or take as input a
control structure template (Solar-Lezama, 2008).

Inductive Programming. Inductive programming (IP) is the problem of inferring a re-
cursive program (either functional or logical) from examples given by input/output pairs
or traces. The objects manipulated by the program belong to a language of terms (Kitzel-
mann and Schmid, 2006; Kitzelmann, 2008). See Kitzelmann (2009) for a survey of IP and
Hofmann et al. (2009) for a comparison of several prominent IP systems. IP algorithms
differ by the restrictions on the class of learned programs and learning bias. The restrictions
sometimes allow to efficiently generate likely traces from input/output examples and can
have the advantage of ensuring pleasing properties of the inferred programs, e.g., termi-
nation and “simplicity”. Our algorithm assumes restrictions in order to narrow the space
of programs that need to be considered and to ensure identification in the limit, which as
far as we know is not guaranteed by existing algorithms. Another difference is that our
algorithm does not assume any structure on the stores. This allows us to infer, e.g., graph
programs (BFS), but makes generating likely traces and ensuring termination very hard.

Generalized Planning. In automated planning, learning from input/goal examples is
called “generalized planning”. Aguas et al. (2016) reduce the problem of generalized plan-
ning to (non-generalized) planning. Srivastava et al. (2012) generalizes plans over an un-
bounded number of objects into programs that ensure loop termination. Mokhtari et al.
(2017) employs heuristics to search for a likely (global) loop. Schmid and Kitzelmann (2011)
provide evidence that inductive programming can be useful for generalized planning.

Acknowledgments

We would like to thank the anonymous reviewers for their constructive comments. We
thank Alexander Shkatov for implementing the first version of the guard inference and
Dana Fisman for helpful discussions. This publication is part of a project that has received
funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No [759102-SVIS]). The research
was partially supported by Len Blavatnik and the Blavatnik Family foundation, and by the
Blavatnik Interdisciplinary Cyber Research Center, Tel Aviv University.

References

J. S. Aguas, S. J. Celorrio, and A. Jonsson. Generalized planning with procedural domain
control knowledge. In ICAPS 2016, London, UK, June 12-17, pages 285-293, 2016.

A. W. Biermann. On the inference of turing machines from sample computations. Art. Int.,
3:181-198, 1972.

A. W. Biermann, R. I. Baum, and F. E. Petry. Speeding up the synthesis of programs from
traces. IEEE Trans. Computers, 24(2):122-136, 1975.

S. Cassel, F. Howar, B. Jonsson, and B. Steffen. Active learning for extended finite state
machines. Formal Asp. Comput., 28(2):233-263, 2016.

152

INFERRING PROGRAM EXTENSIONS FROM TRACES

G. Giantamidis and S. Tripakis. Learning Moore machines from input-output traces. In
FM 2016: Formal Methods - 21st International Symposium, Limassol, Cyprus, November
9-11, 2016, Proceedings, pages 291-309, 2016.

S. Gulwani. Dimensions in program synthesis. In Proceedings of 10th International Confer-
ence on Formal Methods in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland,
October 20-23, page 1, 2010.

S. Gulwani, J. Hernandez-Orallo, E. Kitzelmann, S. H. Muggleton, U. Schmid, and B. G.
Zorn. Inductive programming meets the real world. Commun. ACM, 58(11):90-99, 2015.

S. Heule, M. Sridharan, and S. Chandra. Mimic: computing models for opaque code.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, Bergamo, Italy, pages 710-720, 2015.

M. Hofmann, E. Kitzelmann, and U. Schmid. A unifying framework for analysis and eval-
uation of inductive programming systems. pages 55-60, Mar 2009.

E. Kitzelmann. Analytical inductive functional programming. In Logic-Based Program
Synthesis and Transformation, 18th International Symposium, LOPSTR 2008, Valencia,
Spain, July 17-18, 2008, Revised Selected Papers, pages 87-102, 2008.

E. Kitzelmann. Inductive programming: A survey of program synthesis techniques. In
Approaches and Applications of Inductive Programming, Third International Workshop,
AAIP 2009, Edinburgh, UK, September 4, 2009. Revised Papers, pages 50-73, 2009.

E. Kitzelmann and U. Schmid. Inductive synthesis of functional programs: An explanation
based generalization approach. Journal of Machine Learning Research, 7:429-454, 2006.

T. A. Lau, P. M. Domingos, and D. S. Weld. Learning programs from traces using version
space algebra. In Proceedings of the 2nd International Conference on Knowledge Capture
(K-CAP 2003), October 23-25, 2003, Sanibel Island, FL, USA, pages 3643, 2003.

V. Mokhtari, L. Seabra Lopes, and A. J. Pinho. Learning robot tasks with loops from
experiences to enhance robot adaptability. Pattern Recognition Letters, 99:57-66, 2017.

J. Oncina and P. Garcia. Identifying regular languages in polynomial time. In Advanced in
Structural and Syntactic Pattern Recognition, Volume 5 of Series in Machine Perception
and Artificial Intelligence, pages 99-108. World Scientific, 1992.

J. Oncina, P. Garcia, and E. Vidal. Learning subsequential transducers for pattern recog-
nition interpretation tasks. IEFEE Trans. Pattern Anal. Mach. Intell., 15(5):448-458,
1993.

U. Schmid and E. Kitzelmann. Inductive rule learning on the knowledge level. Cognitive
Systems Research, 12(3-4):237-248, 2011.

A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis, University of California,
Berkeley, 2008.

153

INFERRING PROGRAM EXTENSIONS FROM TRACES

S. Srivastava, N. Immerman, and S. Zilberstein. Applicability conditions for plans with
loops: Computability results and algorithms. Artif. Intell., 191-192:1-19, 2012.

154

	Introduction
	Programs and Problem Statement
	The Learning Problem

	A Class of Programs
	k-Signature Programs
	k-Regular Programs

	Control-flow Inference
	Semantic Program Automata
	From Prefix Trees to Semantic Quotients

	Guard Inference
	Empirical Evaluation
	Related Work

