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Stéphane Ayache firstName.lastName@lis-lab.fr
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Abstract

Understanding how a learned black box works is of crucial interest for the future of Machine
Learning. In this paper, we pioneer the question of the global interpretability of learned
black box models that assign numerical values to symbolic sequential data. To tackle that
task, we propose a spectral algorithm for the extraction of weighted automata (WA) from
such black boxes. This algorithm does not require the access to a dataset or to the inner
representation of the black box: the inferred model can be obtained solely by querying the
black box, feeding it with inputs and analyzing its outputs. Experiments using Recurrent
Neural Networks (RNN) trained on a wide collection of 48 synthetic datasets and 2 real
datasets show that the obtained approximation is of great quality.

Keywords: Black box interpretability, Spectral method, Weighted automata

1. Introduction

Recent successes of Machine Learning, in particular the so-called deep learning approach,
and their growing impact on numerous fields, have risen questions about the induced decision
process. Indeed, the most efficient models are often black boxes whose inner ruling system
is not accessible to human understanding. However, explainability and interpretability are
crucial issues for the future developments of Machine Learning: to be able to explain how
a learned black box works, or at least how it takes a decision on a particular datum, is a
needed element for the development of the field (Doshi-Velez and Kim, 2017), when it is
not a legal requirement (GDPR, 2016).

A large debate on the meaning and limitations of explainability is currently occurring in
Machine Learning (Lipton, 2016; Doshi-Velez and Kim, 2017). We follow in this paper the
recent survey from Guidotti et al. (2018) that describes two types of interpretability: the
local one, that aims at explaining how a decision is taken on a given datum, and the global
one, that tries to provide a general explanation of a black box model. In the framework
of feed-forward models, several ideas have been studied. A well-known example of local
interpretability would be to exhibit regions of a given image to justify its classification (Cruz-
Roa et al., 2013; Olah et al., 2018) based on saliency detection methods and/or attention
models. On the other hand, global interpretability could, for instance, take the form of the
extraction of a decision tree or of a sparse linear model that maps black box inputs to its
outputs (Freitas, 2014; Ribeiro et al., 2016), usually based on distillation or compression
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approaches (Hinton et al., 2015; Buciluǎ et al., 2006) that allow the learning of a possibly
lighter and more interpretable student model from a teacher one.

In this paper, we focus on the harder problem of global interpretability for black boxes
learned on sequential symbolic/categorial data. We also assume a general scenario where
we do not have access to its training samples.

Few related works exist in that framework, most of which aim at extracting a determin-
istic finite state automaton (DFA) from a particular type of black boxes called recurrent
neural network (RNN) (Jacobsson, 2005). For instance, Giles et al. (1992) propose a quan-
tization algorithm to extract DFA from second order RNN; Omlin and Giles (1996) use a
clustering algorithm on the output of a recurrent layer to infer a DFA; Wang et al. (2017)
empirically compare different algorithms to get a DFA from a second order RNN; Weiss
et al. (2018) query a RNN to get pairs of (input, output) and use a recursive procedure to
test the equivalence between their hypothesis and the RNN.

An important limitation of these works is that they all target RNN trained for binary
classification, since DFA are non-probabilistic language models: as RNNs are not usually
used for that task, this only gives some insights on the potential expressibility of RNNs,
not on the interpretation of an existing RNN. An exception is the extension of the work of
Omlin and Giles (1996) to the extraction of Weighted Automata (WA) from second-order
RNN (Lecorvé and Motĺıcek, 2012). However, this last paper only focuses on a particular
NLP task and lacks a general perspective.

The second important limitation of all these works is that they rely on finding a finite
partition of the latent representation generated and used by the black box model: they all
access the inside of the black box and differ mainly on the method to cluster this inner
representation, from which they determine the states of the DFA they are extracting.

The work presented here handles a more common type of black boxes: we aim at
extracting a finite state model from any black box that computes a real valued function on
sequential symbolic data. Moreover, our approach does not need to access the inside of the
black box: we use it as an oracle, feeding it an input to get an output that is then analyzed.

The core of the proposed algorithm relies on the use of a spectral approach that al-
lows the extraction of a Weighted Automaton from any black box of the considered type.
WAs (Mohri, 2009) admit a graphical representation (see Figure 1 for an example) while
being more expressive than widely used formalisms, like Hidden Markov’s Models (Denis
and Esposito, 2008). Furthermore, they have been heavily studied in theoretical computer
science and thus both their behavior and their gist are well-understood (Droste et al., 2009).

After introducing the necessary preliminary definitions in Section 2, we detail our algo-
rithm for the spectral extraction of a WA from a black box in Section 3. Section 4 presents
the type of black boxes we use for the experiments, the RNNs, together with the used
training protocol. Section 5 describes the experiments while Section 6 details the obtained
results. Finally, we discuss in Section 7 the limits and the potential impact of this work.

2. Preliminaries

2.1. Elements of Language Theory

In theoretical computer science, a finite set of symbols is called an alphabet and is usually
denoted by the Greek letter Σ. Language theory mainly deals with finite sequences on an
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alphabet that are called strings and are usually denoted by the letters w, v, or u. We
denote the set of all possible strings on Σ by Σ∗. For instance, the alphabet can be the
ASCII characters, the 4 main nucleobases of DNA, Part-of-Speech tags or lemmas from
Natural Language Processing, or even a set of symbols obtained by the discretization of a
time series (Dimitrova et al., 2010).

Throughout the paper, we will use other notions from language theory: the length of a
string w is the number of symbols of the sequence (denoted |w|); the string of length zero
is denoted λ; given 2 strings u and v we note uv their concatenation; if a string w is the
concatenation of u and v, w = uv, we say that u is a prefix of w and that v is a suffix of w.

2.2. Functions on sequences

In this paper, we consider functions that assign real values to strings: f : Σ∗ → R. These
functions are known under the name of rational series (Sakarovitch, 2009). In particu-
lar, probability distributions over strings are such functions. Each of these functions is
associated with a specific object that had been proven to be extremely useful:

Definition 1 (Hankel Matrix (Balle et al., 2014)) Let f be a rational series over Σ∗.
The Hankel matrix of f is a bi-infinite matrix H ∈ RΣ∗×Σ∗ whose entries are defined as
H(u, v) = f(uv), ∀u, v ∈ Σ∗. Rows are thus indexed by prefixes and columns by suffixes.

For obvious reasons, only finite sub-blocks of Hankel matrices are of interest. An easy
way to define such sub-blocks is by using a basis B = (P,S), where P,S ⊆ Σ∗. If we
note p = |P| and s = |S|, the sub-block of H defined by B is the matrix HB ∈ Rp×s with
HB(u, v) = H(u, v) for any u ∈ P and v ∈ S. We may write H if the basis B is arbitrary or
obvious from the context.

2.3. Weighted Automata

Definition 2 (Weighted automaton (Mohri, 2009)) A weighted automaton (WA) is
a tuple 〈Σ, Q, T , γ, ρ〉 such that: Σ is a finite alphabet; Q is a finite set of states; T :
Q × Σ × Q → R is the transition function; γ : Q → R is an initial weight function;
ρ : Q→ R is a final weight function.

A weighted automaton assigns weights to strings, that is, it computes a real value to each
element of Σ∗. WAs admit an equivalent representation using linear algebra:

Definition 3 (Linear representation (Balle et al., 2014)) A linear representation of
a WA A is a triplet 〈α0, (Mσ)σ∈Σ, α∞〉 where the vector α0 provides the initial weights (i.e.
the values of the function γ for each state), the vector α∞ is the terminal weights (i.e.
the values of function ρ for each state), and each matrix Mσ corresponds to the σ-labeled
transition weights (Mσ(q1, q2) = p⇐⇒ T (q1, σ, q2) = p).

Figure 1 shows the same WA using the two representations. In what follows, we will con-
found the two notions and consider that WAs are defined in terms of linear representations.

To compute the weight that a WA A assigns to a string w = σ1σ2 . . . σm us-
ing a linear representation, it suffices to compute the product A(w) = α>0 Mwα∞ =
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Figure 1: A WA in its graphical form and its equivalent linear representation.

α>0 Mσ1Mσ2 . . .Mσmα∞. This can be interpreted as a projection into Rr, where r is the
number of states of A, followed by a inner product (Rabusseau et al., 2017). Indeed,
α1 = α>0 is a vector that corresponds to the initial projection; each of the following steps
computes a new vector αi+1 in the same space, moving from one vector to the next one
by computing the product with the corresponding symbol matrix (αi+1 = αiMσi); the final
projection is αm+1 = α>0 Mw; the output of of the WA on w is given by the inner product
〈αm+1, α∞〉.

If a WA computes a probability distribution over Σ∗, it is called a stochastic WA. In
this case, it can easily be used to compute the probability of each symbol to be the next
one of a given prefix (Balle et al., 2014): the probability of σ being the next symbol of the
prefix w is given by α>0 MwMσα̃∞ = α|w|+1Mσα̃∞, where α̃∞ = (Id− (

∑
σ∈ΣMσ))−1α∞.

The following theorem is at the core of the spectral learning of WA (Hsu et al., 2009;
Bailly et al., 2009) and of our approach:

Theorem 4 (Carlyle and Paz (1971); Flies (1974)) A function f : Σ∗ → R can be
defined by a WA iff the rank of its Hankel matrix is finite. In that case this rank is equal
to the minimal number of states of any WA that computes f .

3. Extracting WA from a black box

We recall we want to extract a WA from a given black box. Our setting is such that we
only have access to an already learned model — the black box — but not to its training
samples.

3.1. From Hankel to WA

The proof of Theorem 4 is constructive: it provides a way to generate a WA from its Hankel
matrix H. Moreover, the construction can be used on particular finite sub-blocks of this
matrix: the ones defined by a complete and prefix-close basis. Formally, a basis B = (P,S)
is prefix-close iff for all w ∈ P, all prefixes of w are also elements of P; B is complete if the
rank of the sub-block HB is equal to the rank of H.

Explicitly, from such sub-block HB of H of rank r, one can compute a minimal WA
using a rank factorization PS = HB, with P ∈ Rp×r, S ∈ Rr×s. If we denote Hσ the
sub-block defines over B such that Hσ(u, v) = H(uσ, v), and hP,λ the p-dimensional vector
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with coordinates hP,λ(u) = H(u, λ), and hλ,S the s-dimensional vector with coordinates
hλ,S(v) = H(λ, v), then the WA A = 〈α0, (Mσ)σ∈Σ, α∞〉, with:

α>0 = h>λ,SS
+, α∞ = P+hP,λ, and, for all σ ∈ Σ, Mσ = P+HσS

+,

is a minimal WA1 whose Hankel matrix is exactly the initial one (Balle et al., 2014).
This procedure is the core of the theoretically founded spectral learning algorithm (Bailly

et al., 2009; Hsu et al., 2009; Balle et al., 2014), where the content of the sub-blocks is
estimated by counting the occurrences of strings in a learning sample. Contrary to that,
the work presented here uses an already trained black box to compute HB and Hσ on a
carefully selected basis B.

3.2. Proposed Algorithm

Our algorithm can be broken down into three steps: first, we build a basis B; second, we fill
the required sub-blocks HB and (Hσ)σ∈Σ with the values computed by a black box model
trained on some data; and third, we extract a WA from the Hankel matrix sub-blocks.

Algorithm 1: Extraction of a WA from a black box model on sequential data

Input : Black box model M, p, s numbers of prefixes and suffixes, r rank
approximation

Output: A, a Weighted Automaton
(P,S) ← Generate Basis(M, p, s);
HB, (Hσ)σ∈Σ ← Fill Hankels(M,P,S);
A ← Spectral Extraction(HB, (Hσ)σ∈Σ, r); // using equations from 3.1

return A;

Choosing the right basis B = (P,S) is an important task and different possibilities have
been studied in the context of spectral learning (Quattoni et al., 2017; Bailly, 2011). For
scalability reasons we chose to compute Generate Basis() by sampling. If the black box is
a generative device, we can use it to build a basis, for instance by recursively sampling a
symbol from the next symbol distribution given by the black box. Otherwise, we can obtain
a basis by using the uniform distribution on symbols and a maximum length parameter2,
or by sampling a dataset if available. Once a string is obtained, we add all its prefixes to
P (to be prefix-close) and all its suffixes to S. The process is reiterated until |P| ≥ p. If
needed, the set of suffixes is then completed in the same way until |S| ≥ s.

Once we have a basis B, the procedure Fill Hankels() uses the black box to compute
the content of the sub-blocks: it queries each string made of a selected prefix and suffix to
the black box and fill the corresponding cells in the sub-blocks with its answer.

Finally, a rank factorization HB = PS for a given rank parameter r, has to be obtained:
the function Spectral Extraction() performs a Singular Value Decomposition on HB and
truncated the result to obtain the needed rank factorization (see (Balle et al., 2014) for
details). It then generates a WA using the formulas described in Section 3.1.

1. As usual, N+ denotes the Moore-Penrose pseudo-inverse (Moore, 1920) of a matrix N .
2. To present the more general results possible, this is the path followed in this paper.
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4. Black Box Learning

This paper does not primarily focuses on learning a particular black box model: our ap-
proach is generic to any model that assigns real values to sequential symbolic data. However,
to evaluate the quality of our algorithm for WA extraction, we need to have beforehand a
learned model: we chose to use Recurrent Neural Network (RNN).

4.1. Recurrent Neural Network

Recurrent Neural Networks (RNNs) are artificial neural networks designed to handle se-
quential data. To do so, a RNN incorporates an internal state that is used as memory to
take into account the influence of previous elements of the sequence when computing the
output for the current one.

Two type of architecture units are mainly used: the widely studied Long Short Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the recent Gated Recurrent Unit
(GRU) (Cho et al., 2014). In both cases, these models realize a non-linear projection of
the current input symbol into Rd, where d is the number of neurons on the penultimate
layer: this vector is usually called the embedding or the latent representation of the part
of the sequence seen so far. The last layer — several layers can potentially be used here —
specializes the RNN to its targeted task from this final latent layer.

A RNN is often trained to perform the next symbol prediction task: given a prefix of a
sequence, it outputs the probabilities for each symbol to be the next symbol of the sequence
(a special symbol denoted o [resp. n] is added to mark the start [resp. the end] of a
sequence). Notice that it is easy to use such RNNs to compute the probability given to a
string w = σ1σ2 . . . σm: P (w) = P (o)P (σ1|o)P (σ2|o σ1) . . . P (n|o σ1σ2 . . . σm)

4.2. Training

We base the architecture on the work of Shibata and Heinz (2017), who won the SPiCe
competition (Balle et al., 2017), and of Sutskever et al. (2014). The architecture is quite
simple: it is composed of an initial embedding layer (with 3 ∗ |Σ| neurons), two GRU layers
with tanh activation, two dense layers using ReLU activations, followed by a final dense
layer with softmax activation composed of |Σ|+ 1 neurons.

Given this framework, we consider several hyper-parameters to tune. First, the number
of neurons in the recurrent layers and the following dense layer: for GRU layers, we tested
a number of neurons in 30, 50, 120, the first following dense layer uses half of it, the second
dense layer is set as the size of the input embedding layer. We trained our networks during
40 epochs. We do witness expected over-fitting before this limit, confirming that this is an
adequate number of maximum iterations. Finally, the model is trained using the categorical
cross-entropy objective function.

For each problem, we keep the model (number of neurons, epoch’s value) that scores
the best categorical cross-entropy on a validation set. The evaluation of this protocol shows
good learning results (see top left plot of Figure 2) but it is also clear that better learning
results could be obtained using RNNs on the chosen data. We decide to not push to its
limits this learning part since it is not central in this work. Moreover, having RNNs with

86



Explaining Black-Boxes on Sequential Data using Weighted Automata

various learning abilities is interesting from the standpoint of the evaluation of the WA
extraction: we expect the WA to be as good — or, thus, as bad — as the RNN.

5. Experimentations

5.1. Synthetic Data

We chose to primarily evaluate our approach on the data from the PAutomaC learning
competition (Verwer et al., 2014). The goal of the competition was to learn a model from
strings generated by a stochastic synthetic machine. The 48 instances of the competition
equally featured Deterministic Probabilistic Finite Automata (DPFA), non-deterministic
Probabilistic Finite Automata (PFA), and Hidden Markov’s Models (HMM), which are all
strictly less expressive than stochastic WA (Denis and Esposito, 2008). Their alphabet size
range from 4 to 23 and their number of states from 6 to 73. They are intended, and the
competition results proved it, to cover a wide range of difficulty levels.

For each of the 48 problems, we have access to a training set (20 000 or 100 000 se-
quences), that we use to learn the RNN, a test set, and a description of the target machine.

5.2. Real data

In addition to synthetic data, we test our approach on two different real-world datasets: En-
glish verbs at character level from the Penn Treebank (Marcus et al., 1994) and discretized
sensor signal of fuel consumption in trucks (Verwer et al., 2011). The first dataset contains
5 987 learning examples on 33 different symbols and was problem 4 of the SPiCe competi-
tion (Balle et al., 2017). The second one is made of 20 000 strings on an alphabet of size
18 and was used as PAutomaC Natural problem 2. In both cases, we use the preprocessed
version of these data given by the corresponding competition.

5.3. Metrics

On the synthetic data, in order to not bias the evaluation by picking a particular data
generator, we use two evaluation sets to compute the different metrics chosen to evaluate
the quality of the WA extraction. Stest is the test set given in PAutomaC, and SRNN
consists of generated sequences sampled using the learned RNN. Stest contains 1 000 strings
while SRNN is made of 2 000 elements.

For the real data, we use a set Stest of 2 000 sequences that we randomly selected from
the available data, and a set SRNN of 2 000 sequences that we sampled using the RNN.

We evaluate the quality of the extraction using two types of metrics.
The first one consists in evaluating the similarity between the probability distri-

bution PRNN of the RNN and the one of the WA, PWA. To do so we compute
the perplexity (as in PAutomaC) and the Kullback-Leibler divergence (KLD), where
Perplexity(PRNN , PWA) = 2−(

∑
w∈EvalSet PRNN (w)log(PWA(w))), and DKL(PRNN , PWA) =∑

w∈EvalSet PRNN (w)log(PRNN (w)
PWA(w) ).

The second type of metrics aims at evaluating the proximity of the two models on
the task that consists in guessing the next symbol in a sequence. We handle this part
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by computing the word error rate (WER)3, and normalized discounted cumulative gain
(NDCG, as in SPiCe). This last metrics is given by: for each prefix wi of an element in an

evaluation set, NDCGn(σ̂i1, ..., σ̂
i
n) =

∑n
k=0

PRNN (σ̂i
k|w

i)

log(k+1) /
∑n

k=0
PRNN (σi

k|w
i)

log(k+1) where σik [resp.

σ̂ik] is the k-th most likely next symbol following PRNN [resp. PWA]. The NDCGn score of
an extraction is the sum of NDCGn on each prefix in the evaluation set, normalized by the
number these prefixes. We compute NDCG1 and NDCG5 scores.

For completeness reasons, on the synthetic data we also compute these metrics to com-
pare the RNN and the WA with the target machine, whose distribution over strings is
denoted PTarget

5.4. Hyper-parameters for extraction

We test different values for the hyper-parameters of the extraction algorithm: size p and s
of the basis is taken between (300, 300), (400, 400), and (800, 800), the rank value ranges
from 1 to 100.

Some values of the size of the basis exceed what is reasonably computable on our limited
computation capacities for some datasets. However, as it is shown in Section 6, small values
already allow the extracted WA to be a great approximation of the RNN.

All experiments are conducted using the Scikit-SpLearn toolbox (Arrivault et al., 2017)
to handle WA and their extraction, and the Keras API (Chollet et al., 2015), running on
TensorFlow (Abadi et al., 2015) backend, for RNN learning.

6. Results

6.1. Overall behavior

As the value of the best possible perplexity depends on the problem (for instance, the
target perplexity for PAutomaC problem 47 is 4.12 while for problem 2 it is 168.33),
we look at the ratio between the perplexity of the RNN and the one of the WA:
Perplexity(PTarget, PRNN )/Perplexity(PTarget, PWA). Figure 2 shows the best obtained ra-
tio and NDCG5, both on SRNN and Stest

4.
The perplexity ratio shows a remarkable proximity between RNNs and WAs on all but

2 datasets (problems 9 and 18). In addition, this closeness between the 2 distributions
does not seem to depend on the quality of the learning process, given by the perplexity
ratio between the PAutomaC target model and the RNN. In particular, we can notice that
problems 11, 21 and 34 have a low Target/RNN perplexity ratio, whereas RNN/WA is closed
to the optimum, meaning that WA extraction works also well for poor RNN performances.

Regarding the distribution of NDCG5 scores over 48 PAutomaC problems, we note that
a large majority of the WA score higher than 0.9 and about 70% of problems with a score
higher than 0.8. This indicates that the WA estimations of next symbol probability are
close to the RNN outputs.

3. KL and WER are only reported in the Appendix due to lack of place.
4. Generally the parameters that allow these different best scores are different for each of the four tasks.

In Appendix, the same plots are given for each best parameters, showing the stability of these results.
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Figure 2: Perplexity ratio and NDCG5 for synthetic problems on the 2 evaluation sets.
Top-left plot shows ratios Perplexity(PTarget, PRNN )/Perplexity(PTarget, PWA)
in blue circles, and Perplexity(PTarget, PTarget)/Perplexity(PTarget, PRNN ) in or-
ange squares, both on the evaluation set Stest. Bottom-left plot shows ratio
Perplexity(PRNN , PRNN )/Perplexity(PRNN , PWA) on SRNN . The right plots
show the number of problems per NDCG5 decile on the 2 evaluation sets.

6.2. Influence of the hyper-parameters

We analyze in this section the impact of the sizes of P and S, as well as the rank for WA
extraction on 2 synthetic and the 2 real datasets.

Figure 3 shows the influence of rank on the quality of extracted WA, measured by the
perplexity. We give both Perplexity(PRNN , PRNN ) and Perplexity(PRNN , PWA). We notice
that Perplexity(PRNN , PRNN ) corresponds to the RNN’s entropy, that is, the best possible
score. We do not show results with rank values less than 5 in order to make the plots
readable: for instance, the perplexity at rank 1 was higher than 20, for PAutomaC Nat. 2.

As expected, it appears that the higher the rank is, the better the quality of WA
extraction becomes. Notice however that reasonable perplexity is obtained for small rank
values. Our extracted WAs seem almost optimal with as few as 25 states.

On real problem PAutomaC Nat. 2, the quality of the extracted WA behaves more
chaotically with rank variations, but still tends to converge to the optimum. We notice
that variations are negligible since a perplexity of 1.35 is already acceptable when the best
possible is 1.25.

Figure 4 illustrates the impact of the size of the basis B and of the rank used to extract
the WA. It appears that the quality of the WA approximation, measured in terms of NDCG5,
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Figure 3: Influence of the rank parameter on the perplexity of 3 problems. PAutomaC
Nat. 2 is the second real dataset presented in Section 5.2. PAutomaC 37 and
PAutomaC 3 both correspond to a PFA target: the first one has 69 states on 8
symbols, the second 25 on 4.

Figure 4: Influence of the size of the basis and the rank on NDCG5 for problem SPiCe 4
(NLP). Each curve correspond to a different size of basis.

seems to increase with the number of prefixes and suffixes in the basis. The difference
between configurations (300,300) and (400,400) is not significant, but doubling the basis
size significantly improves the NDCG5 score. This suggest that using even a larger basis
might be useful on some tasks.

7. Discussion

Experiments show that our approach allows good approximations of black boxes, demon-
strating that the linear projection defined by a WA can be close to the non-linear one of a
RNN. Furthermore, we want to emphasize the fact that we dis not chose the most favorable
framework: for instance, using RNNs to generate the basis could lead to better suited basis
and thus to better approximation (for this future work, we may need RNNs specifically
trained to generate sequences (Graves, 2013) to avoid the autoregressive behavior). Using
larger bases could also allow better results as our experiments tend to show (see Figure 4):
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this was not doable in reasonable time using our configuration (CPU, 4 cores, 25GB RAM)
but it is likely to not be a problem on state-of-the-art computers.

It is also worth noticing that, though we tested it on probabilistic models, the algo-
rithm works on any black boxes that assign real values to sequences (or that can emulate
this scheme, like the RNNs of our experiments) since WAs are not limited to probability
distributions.

Another point that needs to be discussed is the interpretability of WAs: though they
admit a graphical representation and are widely used in many fields, their non-deterministic
nature can make them hard to read when the number of states increases. A first answer to
that remark is that the algorithm described in this paper depends on a parameter, the rank,
that can be tweaked: as the approximations for small rank values are already of acceptable
quality, one can prefer readability to performance and chose a small rank value to obtain a
small WA (see the example of a low rank extracted WA in Appendix). Our algorithm can
then be seen as a way to compute a limited development of a black box function into WAs:
by fixing the rank, one decides how detailed, and thus how close to the learned model, the
extracted WA has to be.

A second answer to that point is that computing a weight (or the probability of the
next symbol) is less expensive with WAs than with black boxes like RNNs. Indeed, the
computation requires only matrix products, one per symbol in the input sequence, while
non-linear models necessitate for each symbol several such products and the computation
of non-linear functions. This is why the proposed algorithm share characteristics with
distillation processes (Hinton et al., 2015): from a complex, computationally costly model,
it generates a simpler and more efficient one whose abilities are comparable.
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R. Bailly. Méthodes spectrales pour l’inférence grammaticale probabiliste de langages stochas-
tiques rationnels. PhD thesis, 2011. Aix-Marseille Univ.

R. Bailly and F. Denis. Absolute convergence of rational series is semi-decidable. Inf.
Comput., 209(3):280–295, 2011.

R. Bailly, F. Denis, and L. Ralaivola. Grammatical inference as a principal component
analysis problem. In International Conference on Machine Learning, pages 33–40, 2009.

91

https://www.tensorflow.org/


Explaining Black-Boxes on Sequential Data using Weighted Automata

B. Balle and M. Mohri. Generalization bounds for learning weighted automata. Theor.
Comput. Sci., 716:89–106, 2018.

B. Balle, X. Carreras, F. Luque, and A. Quattoni. Spectral learning of weighted automata.
Machine Learning, 96(1-2):33–63, 2014.

B. Balle, R. Eyraud, F. M. Luque, A. Quattoni, and S. Verwer. Results of the sequence
prediction challenge (SPiCe): a competition on learning the next symbol in a sequence.
In Proc. of the International Conference on Grammatical Inference, volume 57 of PMLR,
pages 132–136, 2017.
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Appendix A. Example of an extracted WA

Figure 5 gives the graphical representation on a WA extracted from a RNN trained on
PAutomaC problem 24. This is not the best obtained WA on that dataset, but the metrics
show that it is still a good approximation of the RNN.

Appendix B. Metrics for best parameters

Figures 6, 7, 8, and 9 are analogues of Figure 2 where the best parameters for only one of
the experimental condition is given. For instance, Figure 6 gives the perplexity ratios and
the NDCG5 on the two evaluation sets for the parameters allowing the best perplexity ratio
on Stest.

Appendix C. Influence of WA negative weights

A known and intensively studied (Denis and Esposito, 2008; Bailly and Denis, 2011; Balle
et al., 2014; Arrivault et al., 2017; Balle and Mohri, 2018) behavior of Weighted Automata

94



Explaining Black-Boxes on Sequential Data using Weighted Automata

0
______
-0.98 >

3
______

0:0.22

4
______

1:0.05

1
______

0:-0.96

1:-0.30

1:0.05

2
______
> 0.17

1:-0.08

0:-0.061:0.96 3:0.34

4:0.94

0:-0.27 2:-0.10

3:-0.23

2:0.163:0.06

4:-0.15

2:0.98

2:-0.16

Figure 5: WA extracted for problem 24, at rank 5, with basis size 800x800. Its perplexity
ratio is 0.99849 while its NDCG5 is 0.99848. Input weights are given on state
before the > symbol, while output ones appear after >. Transitions with absolute
weight under 0.05 are not shown.

is their ability to assign negative weights to some strings. This is the counter-part of their
great expressive power: when the Hankel matrix is not complete, or when its rank is not
finite, or when its values are too noisy, the obtained WA might not represent exactly a
probability distribution. It is important to understand that the absolute value of a negative
weight does not carry any semantic: a negative weight for a WA approximating a probability
distribution is exactly equivalent to having a probability of 0.
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Figure 6: Perplexity ratio and NDCG5 for the PAutomaC problems on the 2 evaluation
sets using the parameter scoring the best perplexity ratio on Stest.

This has no impact on the computation of NDCG, but it causes problem for the one
of the perplexity since one needs to compute log(PWA(w)). As it cannot be replaced by 0
either, we follow a commonly accepted path and chose to replace all negative values by a
tiny ε. In the experiments presented here, we set ε = 10−30.

Figures 10 and 11 gives the evolution of the perplexity and the KL-divergence, respec-
tively, when the rank increases on 3 different datasets, together with the percentage of
epsilon use. On PAutomaC 37, almost no element of the evaluation is given a negative
weight, whatever the rank is. On PAutomaC 3, the number of zeros rapidly decreases and
tends to stabilize around 10%, which is an usually accepted rate.

On PAutomaC Natural Problem 2, the number of zeros increases with the rank, finishing
above the 40% rate for large rank values. However, the perplexity is not affected since it
stays close to the best possible perplexity (the one of the RNN, given by the flat orange
line). The natural explanation is that epsilons are given to extremely unlikely strings in
the RNN. Indeed, if the WA assigns a negative weight to a string w, ε is use for PWA(w),
which means that log(PWA) is negative with a huge absolute value. As Perplexity({w}) =
2−PRNN (w)log(PWA), if PRNN (w) is not exceptionally small, then this perplexity would be
extremely high, inexorably damaging the overall perplexity (it is not uncommon to witness
models with perplexity over a million on some benchmarks). The fact that it does not
happen here implies that PRNN (w) has to be small for strings of negative weights. Therefore,
by assigning a zero probability to these strings, the WA realizes a good approximation of
the RNN.
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Figure 7: Perplexity ratio and NDCG5 for the PAutomaC problems on the 2 evaluation
sets using the parameter scoring the best NDCG on Stest.

Appendix D. WER and NDCG1

Figure 12 shows the best WER and NDCG1 obtained on the evaluation sets on the synthetic
problems.
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Figure 8: Perplexity ratio and NDCG5 for the PAutomaC problems on the 2 evaluation
sets using the parameter scoring the best perplexity ratio on SRNN .

Figure 9: Perplexity ratio and NDCG5 for the PAutomaC problems on the 2 evaluation
sets using the parameter scoring the best NDCG on SRNN .
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Figure 10: Influence of the rank parameter on the perplexity of 3 datasets, together with
the number of zeros.

Figure 11: Influence of the rank parameter on the Kullback-Leibler divergence of 3 datasets,
together with the number of zeros.
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Figure 12: Results of WER and NDCG1 with best parameters for each task and each PAu-
tomaC problem.
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Appendix E. Best extraction parameters on PAutomaC

Tables 1 and 2 give, for each problem of the PAutomaC dataset, the extraction parameters
that obtain the best corresponding metric on Stest and SRNN , respectively. Columns Rank
and (P, S) contain respectively the rank value and the size of the basis that achieve the
Value. Column Zeros gives the percentage of negative weights obtained when parsing a
string of the evaluation set with the WA (see discussion about Figure 10 for details on that
matter).

Table 1: Parameters for best obtained WA for each PAu-
tomaC problems on Stest

Pb. Perplexity Ratio NDCG5

# Rank (P,S) Value Zeros Rank (P,S) Value

1 32 (1400,1400) 1.00009 4.2 % 96 (1400,1400) 0.95324

2 10 (1400,1400) 1.00162 2.2 % 12 (1400,1400) 0.92548

3 71 (800,800) 1.00012 5.0 % 75 (1400,1400) 0.99268

4 79 (800,800) 1.00073 2.1 % 42 (800,800) 0.99615

5 49 (800,800) 1.01140 0.6 % 51 (800,800) 0.98552

6 80 (1400,1400) 1.00114 6.5 % 57 (1400,1400) 0.98719

7 18 (800,800) 1.00296 0.0 % 17 (800,800) 0.99654

8 100 (1000,1000) 0.98765 15.2 % 100 (1400,1400) 0.91531

9 16 (1400,1400) 0.36845 24.6 % 19 (1400,1400) 0.79179

10 96 (1000,1000) 0.99008 30.5 % 39 (1400,1400) 0.71537

11 99 (1400,1400) 0.98284 36.4 % 98 (1400,1400) 0.61458

12 60 (1000,1000) 1.00044 8.6 % 35 (1400,1400) 0.97362

13 100 (1400,1400) 0.99040 8.0 % 58 (1400,1400) 0.97375

14 83 (800,800) 0.99967 5.0 % 47 (1000,1000) 0.94324

15 62 (1000,1000) 0.99979 23.0 % 32 (1400,1400) 0.76211

16 96 (1000,1000) 0.99283 19.3 % 88 (1000,1000) 0.83098

17 27 (1000,1000) 0.99520 14.3 % 28 (1000,1000) 0.83255

18 88 (1400,1400) 0.74500 24.2 % 95 (1000,1000) 0.59521

19 96 (1400,1400) 0.99375 18.3 % 100 (1400,1400) 0.83020

20 16 (1000,1000) 1.00102 30.1 % 65 (1000,1000) 0.90750

21 12 (800,800) 1.04705 37.1 % 69 (1400,1400) 0.54177

22 77 (1400,1400) 0.97386 36.6 % 97 (800,800) 0.57218

23 56 (1400,1400) 1.00000 9.4 % 76 (1400,1400) 0.94410

24 15 (800,800) 1.00030 0.0 % 39 (800,800) 0.99999

25 99 (800,800) 0.99996 17.0 % 95 (1400,1400) 0.81833

26 100 (1000,1000) 0.97447 14.6 % 89 (1400,1400) 0.88117

27 27 (1400,1400) 1.00174 11.9 % 21 (1000,1000) 0.87799

28 65 (1400,1400) 1.00000 3.3 % 95 (1400,1400) 0.98394

29 71 (1400,1400) 0.99554 7.8 % 95 (1400,1400) 0.95355

30 21 (1000,1000) 1.00051 3.5 % 43 (1400,1400) 0.96598
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31 38 (800,800) 1.00000 3.2 % 68 (1400,1400) 0.98993

32 86 (1000,1000) 0.99836 5.1 % 98 (1400,1400) 0.97969

33 8 (1400,1400) 1.00046 0.9 % 71 (1000,1000) 0.99381

34 96 (1400,1400) 0.99867 41.0 % 97 (1400,1400) 0.57356

35 84 (800,800) 0.93308 37.3 % 77 (1400,1400) 0.44417

36 14 (1000,1000) 1.00008 10.0 % 91 (1400,1400) 0.95274

37 11 (800,800) 1.00000 0.0 % 98 (1400,1400) 0.99914

38 5 (1000,1000) 1.00028 1.5 % 82 (1400,1400) 0.99774

40 84 (1000,1000) 0.99959 24.0 % 99 (1400,1400) 0.82376

41 6 (800,800) 1.00007 0.0 % 85 (800,800) 0.99998

42 8 (1000,1000) 1.00158 0.2 % 19 (800,800) 0.99515

43 11 (800,800) 1.00003 0.0 % 74 (800,800) 0.99999

44 5 (1000,1000) 1.00064 2.4 % 39 (1000,1000) 0.94511

45 2 (800,800) 1.00021 0.4 % 62 (1400,1400) 0.99904

46 33 (1400,1400) 1.00143 34.2 % 64 (1400,1400) 0.64332

47 84 (1400,1400) 0.93862 31.3 % 57 (1400,1400) 0.48529

48 15 (800,800) 1.00154 23.5 % 52 (1400,1400) 0.72140

Table 2: Parameters for best obtained WA for each PAu-
tomaC problems on SRNN

Pb. Perplexity Ratio NDCG5

# Rank (P,S) Value Zeros Rank (P,S) Value

1 90 (1400,1400) 0.99995 6.8 % 91 (1400,1400) 0.95030

2 65 (800,800) 0.99972 3.1 % 12 (1400,1400) 0.92548

3 92 (1000,1000) 0.99756 7.7 % 98 (1400,1400) 0.99232

4 94 (800,800) 0.99901 1.9 % 54 (1400,1400) 0.99407

5 32 (1000,1000) 0.99064 0.1 % 51 (800,800) 0.98552

6 100 (1400,1400) 0.99912 3.1 % 35 (1400,1400) 0.98669

7 29 (800,800) 0.98952 0.6 % 17 (800,800) 0.99654

8 100 (1400,1400) 0.97525 12.5 % 98 (1400,1400) 0.91287

9 16 (1400,1400) 0.31197 24.6 % 22 (1400,1400) 0.79165

10 70 (1400,1400) 0.97911 32.0 % 40 (1400,1400) 0.71336

11 66 (1400,1400) 0.98303 34.4 % 88 (1400,1400) 0.60401

12 93 (1400,1400) 0.99879 7.2 % 34 (1400,1400) 0.96598

13 89 (1000,1000) 0.96508 10.4 % 56 (1400,1400) 0.96758

14 53 (1400,1400) 0.99683 7.0 % 9 (1000,1000) 0.93522

15 100 (1400,1400) 0.99204 25.6 % 28 (1400,1400) 0.75812

16 97 (1400,1400) 0.96902 25.0 % 97 (1000,1000) 0.82633

17 72 (1000,1000) 0.97144 25.6 % 26 (1400,1400) 0.80701

18 88 (1400,1400) 0.63316 24.2 % 95 (1000,1000) 0.59521
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19 99 (800,800) 0.97982 23.2 % 100 (1400,1400) 0.83020

20 74 (800,800) 0.98953 30.8 % 98 (1000,1000) 0.88840

21 85 (1000,1000) 0.96581 39.9 % 69 (1400,1400) 0.54177

22 95 (1000,1000) 0.96631 39.7 % 100 (1000,1000) 0.56973

23 57 (800,800) 0.99905 13.3 % 68 (1400,1400) 0.93060

24 24 (1000,1000) 0.99993 0.0 % 32 (800,800) 0.99997

25 95 (1000,1000) 0.99921 19.6 % 99 (1400,1400) 0.81832

26 90 (1000,1000) 0.96623 14.1 % 81 (1400,1400) 0.87139

27 100 (1000,1000) 0.99796 18.6 % 63 (1400,1400) 0.85724

28 87 (800,800) 0.99932 12.0 % 97 (1400,1400) 0.98082

29 81 (1400,1400) 0.97509 7.3 % 97 (1400,1400) 0.94998

30 91 (1400,1400) 0.99976 5.3 % 80 (1000,1000) 0.95873

31 26 (1000,1000) 0.99650 4.3 % 95 (1400,1400) 0.98882

32 97 (1000,1000) 0.99303 9.5 % 99 (1400,1400) 0.97968

33 73 (1000,1000) 0.99998 11.5 % 77 (1000,1000) 0.98977

34 100 (1400,1400) 0.97584 37.4 % 92 (1400,1400) 0.56693

35 87 (1400,1400) 0.82007 40.2 % 62 (800,800) 0.44097

36 57 (800,800) 0.99997 11.3 % 100 (1400,1400) 0.95238

37 18 (800,800) 1.00000 0.1 % 100 (1400,1400) 0.99914

38 19 (1400,1400) 1.00000 7.2 % 93 (1400,1400) 0.99760

40 75 (800,800) 0.99560 27.6 % 100 (1400,1400) 0.82201

41 15 (800,800) 1.00000 0.0 % 83 (800,800) 0.99997

42 80 (800,800) 0.99968 6.4 % 7 (1000,1000) 0.99442

43 17 (1400,1400) 1.00000 0.0 % 72 (800,800) 0.99998

44 24 (800,800) 1.00000 6.1 % 99 (1000,1000) 0.94282

45 19 (1400,1400) 1.00000 0.2 % 4 (1400,1400) 0.99885

46 46 (1000,1000) 0.99110 37.2 % 72 (1400,1400) 0.64257

47 100 (1400,1400) 0.79781 33.7 % 57 (1400,1400) 0.48529

48 51 (800,800) 0.99561 37.6 % 50 (1400,1400) 0.71464
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