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Abstract

Causal inference is often taken to mean finding links between individual variables. However
in many real-world cases, such as in biological systems, relationships are more complex,
with groups of factors needed to produce an effect, or some factors only modifying other
relationships rather than producing outcomes alone. For instance, weight may alter the
efficacy of a drug without causing side effects itself. Such moderating factors may change
the timing, intensity, or probability of a causal relationship. Distinguishing moderators
from genuine causes can lead to more effective medical interventions, and better strategies
for bringing about a desired effect, since a moderator alone is ineffective. However, there
have not yet been algorithms to automatically infer moderators in a large-scale automated
way, and they cannot be easily read off from causal graphs. We introduce a set of temporal
logic rules to automatically identify the asymmetric roles of causes and moderators in a
computationally efficient manner. Experiments on simulated data demonstrate that even in
challenging cases we can find moderators and avoid confounding, and on real neurological
ICU data we show how the approach can find more descriptive and meaningful relationships
than the state of the art.

Keywords: causality, time series, health informatics

1. Introduction

As causal inference methods are applied to increasingly large datasets with many variables,
the resulting models can be prohibitively complex for people to reason with. Gene regulatory
networks have thousands of densely connected genes, and models of disease risk contain
many environmental and biological variables. Causal models are useful specifically because
they can guide interventions, yet a graph or set of pairwise relationships does not capture
the different roles of each variable. For example, race may moderate the effect of a particular
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drug, and exercise in the past 24 hours can moderate the effect of insulin in people with
diabetes, but these factors are not causal by themselves. On the other hand, genuine causes
can be manipulated to bring about effects. To successfully intervene we need to know
which factors are genuinely causal, and which intensify or weaken a relationship, but are
not necessary to produce an outcome.

For these reasons, analysis of moderating factors is routine in medical research, psy-
chology, statistics and other areas (Bauman et al., 2002; Kraemer et al., 2002). However,
these works are generally hypothesis-driven, beginning with an effect of interest, such as
the primary outcome of a randomized controlled trial or stress levels in a population, and
a set of measured potential causes whose role is being studied. In contrast, computational
inference focuses on finding relationships in a data-driven way, resulting in a model or set
of causal relationships that describe all causal links between pairs of measured variables.
However this does not distinguish between variables with different roles. While a cause is a
useful target to intervene on to produce an effect, a moderator alone is not. On the other
hand, applying existing methods for moderator analysis to all combinations of variables in
a large dataset is computationally prohibitive.

We introduce a method to efficiently find causal moderators: factors that act like control
knobs that strengthen or weaken a cause’s impact or change when an effect occurs. The
key is that causes and moderators have asymmetric roles in producing an effect: whether or
not a moderator is present, a cause will have an impact on its effect, while a moderator in
the absence of any causes will not. We show how criteria for finding moderators can be rep-
resented as logical formulas and can be efficiently tested, without increasing computational
complexity or testing all combinations of variables. After showing the correctness of the
approach on simulated data, we apply the method to neurological ICU data, demonstrating
that it can identify a larger number of more descriptive relationships of the physiology of
stroke recovery than existing methods for moderator analysis.

2. Related work

2.1 Moderator analysis

While a mediator can be viewed as a link in the chain between a cause and effect, modera-
tion is where a third variable affects the direction or strength of a causal relationship (Baron
and Kenny, 1986). Note that moderation (or an effect modifying variable) is not the same
as interaction, where two or more causes have a non-additive effect when combined (Van-
derWeele, 2009). Conceptually, finding moderators is related to finding subgroups where
effects differ, and understanding heterogeneity in causal effects (Wang and Ware, 2013).
To assess causal heterogeneity of treatment effects, commonly used nonparametric meth-
ods include nearest-neighbor matching (Crump et al., 2008), kernel methods (Lee, 2009),
and series estimation (Willke et al., 2012). However, these methods quickly break down
when the number of covariates of data increases. To address these limitations, Wager and
Athey (2017) proposed causal forests, which extend the random forest algorithm to estimate
heterogeneous treatment effects. This estimator can construct valid asymptotic confidence
intervals even as the number of covariates increases, but cannot handle latent variables. To
address latent heterogeneity, Pearl (2015) showed that one can assess heterogeneous events
without knowing the factors responsible for the heterogeneity. However, this relies on se-
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lecting the correct measurements, and accurately estimating the difference between treated
and untreated groups.

Most methods for moderator analysis assume that there is an effect of interest whose
causes and their roles are to be found. Methods are primarily based on regression, such
as Structural Nested Mean Models (SNMM) when treatments vary over time (Almirall
et al., 2010; Robins, 1994) or marginal structural models in other cases (Robins, 2000).
However, in data-driven causal inference, we aim to find all causes and effects, and need
computationally efficient strategies for finding moderators. Besides, regression-based meth-
ods (e.g. Fairchild and MacKinnon, 2009) share the same problem that convergence cannot
be guaranteed when sample size is small. Almirall et al. (2010) proposed a parametric two-
stage regression estimator (2-SE here) built on Robins’ structural nested models (SNMs)
to assess time varying effect moderation. This method outperforms Robins’ G-estimator
(Robins, 1994) but the two-state estimator requires more information about covariates, and
if this information is incorrect, results will be biased.

2.2 Data-driven causal inference

Causal inference on the other hand has focused on uncovering connections between variables
in a dataset, where the output is either a set of relationships or graph with edges from
causes to effects, such as a Bayesian network (BN) (Pearl, 2000; Spirtes et al., 2000) or its
dynamical (Voortman et al., 2010) or temporal (Eichler and Didelez, 2007; Song et al., 2009)
extensions. A BN along with a set of probability distributions encodes the probabilistic
dependencies in a dataset, and with some assumptions (causal Markov condition, sufficiency,
and faithfulness), is a causal model. These approaches have the advantage of not requiring
temporal data, though they become increasingly complex to infer as the number of variables
increases. One cannot easily read off complex moderating relationships from a BN and
probability tables, but such an analysis is required to avoid ineffective interventions on
a moderator alone. As shown in fig. 1c, if A causes E, with moderators B, C, and D,
one compatible graphical model is where each of the variables is a cause of E. However,
an intervention to produce E that doesn’t involve A will be totally ineffective because
moderators are not causes. This cannot be improved by adding more complex nodes such
as AB, AC and AD, as complex causes formed by a conjunction of factors mean the effect
only occurs in one state of the factor (e.g., A and B both true), whereas in moderating the
effect simply differs.

To address this, VanderWeele and Robins (2007) gave criteria for classifying direct
and indirect modification from a directed acyclic graph (DAG). However, identification
of moderators is not guaranteed, as it assumes that specific structures will result from
moderating, while multiple DAGs are compatible with the same relationships. Further,
this does not identify the strength of modifiers. Given the relationship between moderation
and finding subgroups, some approaches focus on more efficient subgrouping, though these
generally do not distinguish the roles of individual variables (Athey and Imbens, 2015)
or have not addressed complex time series data (Green and Kern, 2012). To distinguish
the different roles of variables, Videla et al. (2015) proposed a method to identify whether
a variable activates or inhibits another independently or if a third variable is required.
However, this approach cannot be applied to time series data and has high computational

3



Zheng, Claassen, and Kleinberg

D
A

EB
C

(a) Complex cause

B C D

E

A

(b) Mediating

C D

E

A B

(c) Many causes

B

E

C

D

A

(d) Moderating

Figure 1: In each case A causes E, but how best to intervene to produce E differs.

complexity due to the exhaustive search. Su et al. (2012) introduced the facilitating score
to handle confounding and interaction, using a recursive decomposition to create subgroups
where the causal effect is homogeneous, and to estimate individual and average causal
effects. That work does not distinguish between effect modification and interaction, even
though this is important for interventions, and it assumes strong ignorability, meaning
treatment assignment is independent of treatment response and unmeasured confounders.

Other works focus on finding causal structures from continuous variables when the
observed variables are influenced by low dimensional latent variables (Silva et al., 2006;
Kummerfeld and Ramsey, 2016; Monti and Hyvärinen, 2018), though these approaches
have not been applied to time series data. There is a relationship to moderator analysis, in
that these works look for factors other than observed causes that may affect the observed
variables, however, they assume that each measured variable is conditionally dependent on
a single latent variable and do not identify moderators specifically.

3. Methods

We propose that moderators can be more precisely represented as in fig. 1d, as control
knobs along causal arrows. The key is that a moderator does not play the same role as
a cause. We now show how the asymmetry of the relationship can be used to efficiently
identify moderators.

Notation: Throughout the paper we use uppercase letters to denote variables or sets
of variables (e.g., X, in eq. 3), and lowercase letters to denote specific values of variables
(e.g., c in eq. 3).

3.1 Definitions

Before introducing our approach for efficiently identifying moderators, we begin by distin-
guishing between ways two or more causes may work together, and moderation.

• Mediating is when causal influence flows through a variable (e.g., causal chain). In
total mediation, a mediator screens off cause and effect, so P (effect|mediator, cause) =
P (effect|mediator).
• Interaction is when two or more causes have a different outcome together than

individually. If two drugs have mild side effects when taken alone, but severe side
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effects when taken together, then P (e|d1, d2)� max(P (e|d1), P (e|d2)), but both drugs
are individually causal.
• Complex causes are a group of factors that must be present for an effect to oc-

cur, where each factor alone is insufficient. Thus, P (e|a, b) � 0 while P (e|a,¬b) =
P (e|b,¬a) = 0.
• Moderators attenuate or intensify a relationship, or change when an effect will occur,

but are not themselves causes.

3.2 Key observation

The key difference between a moderator and a mediator (fig. 1b) or complex cause (fig. 1a)
is that there is an asymmetry between cause and moderator, and we can use that to find
these relationships. This asymmetry is not present in the other types of causal relationships
defined above. Mediating relationships, for example, are akin to a causal chain, so if X
causes Z via Y there are causal relationships X → Y and Y → Z. Thus, X can be seen
as an indirect cause of Z, while Y is a direct cause. Each can bring about Z, though
interventions on Y may be more successful. In contrast, in a moderating relationship (e.g.,
Y moderates relationship X → Z), X does not bring about the moderator Y , and there
is a single causal relationship. Similarly, when X and Y are part of a complex cause that
produces Z, then removing X or removing Y means Z will fail to occur (or have low
probability). Here, neither X nor Y is a better strategy for bringing about Z, they are both
equally necessary for the effect. To distinguish between moderators and causes, we simply
need to test combinations of variables to find such asymmetries. That is, when X causes Z,
and Y is a moderator of this relationship, the probability, timing, or value (in continuous
cases) of Z will differ for X ∧ Y and X ∧ ¬Y , and ¬X ∧ Y will not be a significant cause
of Z.

3.3 Background

Our approach depends on two key factors: 1) efficiently testing combinations of variables
as causes, and 2) being able to directly compare the significance of causes. Thus, we build
on the temporal-logic approach to causal inference of Kleinberg (2012), rather than on
methods that find whole structures such as BNs or DBNs, as these methods have high
computational complexity and cannot efficiently recalculate significance of a relationship
after modifying a variable. We represent causal relationships as probabilistic computation
tree logic (PCTL) formulas, or PCTLc for relationships involving both continuous and
discrete variables (Kleinberg, 2011). This allows us to conveniently represent and test
conjunctions. A causal relationship where c and m cause e in 10-20 minutes with probability
0.9 is represented as:

c ∧m;
≥10,≤20
≥0.9 e, (1)

while raising the value of continuous variable e is:

c ∧m;
≥10,≤20
≥0.9 (e ≥ E[e]). (2)

Both cause and effect may be any PCTL or PCTLc formula. Then, causal significance is
measured with the average difference a cause makes to the probability (or expected value)
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of an effect, holding fixed each other possible cause of an effect. Formally, with a set of
discrete variables and time series data, for potential cause c of effect e, where X is the set
of possible causes of e (factors that raise the probability of e) causal significance is defined
by:

εavg(c, e) =

∑
x∈X P (e|c ∧ x)− P (e|¬c ∧ x)

|X\c|
. (3)

For continuous variables, the probabilities above are replaced with conditional expectation
(e.g., E[e|c ∧ x]), though the cause must be discretized. Holding fixed each x ∈ X in turn,
this finds the average difference the presence of the cause makes to the effect. Relationships
where εavg(c, e) > ε are considered ε-significant, and a threshold can be chosen using the
p-value. For statistically significant causes to be provably causal, we must assume there are
no hidden confounders, the data are faithful to the causal structure, and that relationships
are stationary.

3.4 Formalizing and inferring moderators

Using our observations about the asymmetry of moderators and temporal logic formulas, we
can formally define moderators and give algorithms for finding such relationships. Through-
out the paper, we make the same key assumptions needed for learning causal structures: no
hidden confounders, faithfulness (e.g., no canceling out of impact across multiple paths),
and stationarity.

Definition 1 A factor m moderates the causal relationship c;≥r,≤s≥p e when the following
all hold:

1. Effect is significantly modified With c ∧ m ;
≥r′,≤s′
≥p′ e and c ∧ ¬m ;

≥r′′,≤s′′
≥p′′ e,

then at least one of the following must be true:

• p′ 6= p′′ (probability modifier)

• [r′, s′] 6= [r′′, s′′] (timing modifier)

• E[e|c ∧m] 6= E[e|c ∧ ¬m] (intensity modifier).

2. c is a cause with or without m c ∧m, and c ∧ ¬m are significant causes of e
3. m is not a cause alone m ∧ ¬c is an insignificant cause of e

Rule 1 requires that there is a statistically significant difference – whether in timing
(when the effect occurs), probability (how likely the effect will occur), or value (how a con-
tinuous effect changes) – between the outcome of c occurring in the presence and absence
of moderator m. If there is no change regardless of the presence of m, then either it is not
a moderator, or it is an improperly specified factor (e.g., the true moderator is a combi-
nation of necessary factors). When moderator m is binary, m and ¬m are the occurrence
and nonoccurrence of m respectively. When m has multiple states (e.g., glucose can be
discretized as hypo-, hyper-, and euglycemia), m is a particular state (e.g., hypoglycemia)
and ¬m is all others (e.g., hyper- and euglycemia). Thus instead of a difference in outcome
when m is present or absent, in this case we require a difference when changing from one of
m’s states to another. For probability and intensity differences, this means the conditional
probability (or expected value) of e differs in the c∧m and c∧¬m cases, even after holding
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Algorithm 1 discover moderator(T )

Input:
T , time series data for variables V

Output:
A set M storing all moderating relationships

1: Apply the causal inference method of Kleinberg (2012) to T to find significant relation-
ships S

2: for each l (c;≥r,≤s e) in S do
3: for each m ∈ V \ {c, e} do
4: Test whether timing, intensity, or probability differ for c∧m; e and c∧¬m; e
5: If they differ significantly, calculate εavg for: c ∧m, c ∧ ¬m, and m ∧ ¬c
6: if only εavg(m ∧ ¬c, e) is insignificant, and the others are significant then
7: add m moderates c;≥r,≤s e to M
8: return M

fixed all other factors as in eq. (3). For timing differences, the probabilities may be exactly
the same, but c ∧m and c ∧ ¬m are significant at different times.

Rule 2 requires that no matter the state of m, c is still a significant cause of e. This
is to rule out complex causes, such as c ∧ m being a cause of e (while c ∧ ¬m is not a
cause), or XOR type relationships. For example, in some biological cases there are backup
mechanisms, such that c→ e, c→ ¬d, and d→ e. When c is not present, d will no longer
be inhibited, and will cause e (rule 3 fails). Here d is not a moderator, and this rule ensures
we will not identify it as one. We similarly rule out causal complexes, and these can be
identified as cases where rule 1 and 3 hold but 2 does not.

Finally, we require that m∧¬c does not cause e. If m were an effective cause alone, then
different behavior with c may be due to interaction rather than moderation. We do not
require exact independence, only that εavg(m ∧ ¬c, e) is less than a threshold (e.g., chosen
by p-value), since exact independence is a very strict condition in realistic datasets.

Algorithm 1 highlights the key steps: 1) find significant causal relationships, and 2) refine
relationships by finding moderators. We begin by identifying significant causal relationships
(c;≥r,≤s e, where εavg(c, e) > ε for some significance threshold) from time series data using
the method of Kleinberg (2012). For each significant relationship c ;≥r,≤s e, we test each
variable m ∈ V \c as a possible moderator by evaluating c ∧m, c ∧ ¬m, and m ∧ ¬c (see
Alg. 1). To compute the corresponding causal significance for each case, we now replace
the proposition in eq. (3) with each of the conjunctions. The truth condition for (c ∧m)t
is logical AND: ct ∧mt. For ¬(c ∧m)t, the truth condition is: ¬ct ∨ ¬mt. Then, c ∧m is a
significant cause for e if εavg(c∧m, e) > ε. Similarly, for testing other conjunctions c∧¬m,
and m ∧ ¬c, we use the same approach, replacing m with ¬m, and ¬c with c to compute
their corresponding causal significance εavg. Finally, we test each rule in def. 1 (change in
effect, significance with and without moderator, insignificance of moderator alone). When
all hold, the variable is a moderator.

See appendix A for proofs showing that all conditions hold when m is a moderator, and
that the conditions do not hold in any other case.
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Figure 2: Simulated difficult structures.

Table 1: Results of the proposed method on the common cause structure, with causal
significance (Sig.) of cause (A) and moderator (D) before (top) and after (bottom) applying
rules to discover moderators. * indicates statistical significance at all lags represented, and
† significance of subset. Dashes indicate spurious time lags (no true results).

Intensity Probability Timing
Relationship Sig. (true lags) Sig. (other lags) Sig. (true lags) Sig. (other lags) Sig. (true lags) Sig. (other lags)

A → B 1.45* .23 0.409* -0.001 0.255* 0.000
D → B – .26† – 0.047† – 0.024

A∧D → B 2.22* .04 0.510* 0.011 0.226* 0.001
A∧¬D → B 0.515* -0.118 0.357* -0.002 0.478* 0.000
¬A∧D → B – -.16 – 0.030 – -0.005

3.5 Complexity

This procedure significantly reduces the computational complexity of finding moderators
in a data-driven study. If we attempted to infer each as a complex cause (conjunction
of factors), with only pairwise relationships between N variables there are N3 possible
cause-effect-moderator triples, and testing causal significance of all of these is O(causes2 ×
effects) = O(N4 ×N) = O(N5).

Assuming that moderators will often be mistaken for causes, we only need to perform
causal inference (O(N3T )), then test our conditions for each pair of variables in the set of
significant causes S of each effect, O(S2NT ), where normally S � N . This assumption is
reasonable because our primary motive is refining the set of relationships inferred to better
understand complex causal structures and avoid confounding. When the assumption does
not hold, though, complexity after the initial causal inference is O(SN2T ), as we must test
each of the N variables as a possible moderator of each of the significant causes S of each
variable. However, as S � N , this is still feasible, and in the worst case, where every
variable causes every other, is O(N3T ), which is the same as the basic causal inference
approach and still two orders of magnitude faster than testing all triples.

4. Experiments

We first evaluate our approach and compare it to regression (Baron and Kenny, 1986) and
Structural Nested Mean Models (SNMM) (Almirall et al., 2010) on simulated data, demon-
strating that ignoring moderation leads to confounding, and that we can more accurately
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distinguish causes and moderators. Second, we apply our approach and SNMM to data
from stroke patients, showing that we can identify more moderators and that these provide
more information than a causal structure alone.

4.1 Simulated data

We begin with a description of the datasets created and our results, before examining results
obtained with other approaches. We use two simulated structures (common cause, fig. 2a,
and multiple moderators, fig. 2b), designed to test particularly difficult cases while allowing
ground truth for evaluation. In both, we simulate 5000 timepoints, and use a threshold of
p < 0.01 for determining causal significance. On average running time for our approach
was 2.9min per experiment. The probability for all relationships is 0.9 unless otherwise
specified. We simulate three types of moderators:

Intensity: These moderators change the expected value of the effect after the cause. For
example, in both datasets, one true relationship is A ;2,3 B. Without the occurrence of
a moderator m, E[B|A,¬m] = 2. When the cause and moderator occur, E[B|A,m] = 5.
In the multiple moderation case, m = E, and in the common cause case m = D. All
variables are discrete except for B, which is continuous. In the multiple moderation case,
two additional relationships are moderated, C ;4,5 B and D ;5,6 B, and their impact
doubles from 3 to 6 and 4 to 8 respectively.

Probability: The relationships and time windows are as in the intensity case, but now
the effect has probability 0.95 with the moderator, and 0.80 without.

Timing: Finally, these moderators change when the effect happens. For common cause,
the time windows are: A ∧ ¬D ;1,2 B, C ;3,4 A and C ;7,8 D. When the cause and
moderator occur: A ∧D ;5,6 B. For multiple moderators, windows are: A ∧ ¬E ;4,5 B,
C ∧¬E ;6,7 B and D ∧¬E ;7,8 B, and A∧E ;1,2 B, C ∧E ;3,4 B and D ∧E ;5,6 B.

4.1.1 Common causes

First, we simulate a common cause of both the moderator and the effect (see fig. 2a). We
add 4 other variables to the structure to act as noise. This is a challenging case, as the
moderator’s role may be confounded by the shared cause. Causes here have probability 0.2.
The time window between cause and effect varied for each relationship and was designed
to make the case more challenging (ensuring D happened temporally between A and B).

Table 1 has aggregated results. First, at the top is the result of applying the causal
inference approach of Kleinberg (2012) without moderator analysis. A is correctly found
significant at its actual time lags and insignificant at all others for all cases. For the intensity
changing moderator, D is initially found significant at A’s time lags. However, A’s strength
varies in the two scenarios (with and without D) (rule 1 holds in Def. 1) and both are
significant (rule 2 holds in Def. 1), while D is never significant without A (rule 3 holds in
Def. 1), allowing us to correctly classify A as a cause and D as a moderator of A ; B. In
the probability and timing change cases, results are similar, and we correctly find D makes
A more likely to cause B and changes the time lags respectively. We can exclude D as
a conjunct (part of a causal complex), since A is a significant cause without D and can
exclude interacting relationships as D is insignificant when A is absent.
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Table 2: Results of the proposed method on the multiple moderators structure, with signif-
icance shown for one relationship A; B with moderator E. Markers as in table 1.

Intensity Probability Timing
Relationship Sig. (true lags) Sig. (other lags) Sig. (true lags) Sig. (other lags) Sig. (true lags) Sig. (other lags)

A → B 1.41* 0.09 0.289* -0.007 0.201* 0.021
E → B – 0.35† – 0.019 – 0.036

A∧E → B 1.52* .14 0.334* -0.012 0.329* 0.028
A∧¬E → B .93* -0.01 0.239* 0.004 0.287* 0.026
¬A∧E → B – .30 – 0.025 – 0.008

After this result, which shows that we can correctly find that moderators are not simply
causal complexes, we then simulated data that did have causal complexes (see fig. 3). Here
the effect only occurs when all parts of the complex are present, as each alone is insufficient.
In that data, none of the components of the causal complex were identified as moderators.
Instead the only significant cause we identify (p < .01) is the combination of A, B, and C.
This shows that in addition to successfully discovering moderators, we do not find additional
moderators that we should not. This simulation tests the case when a moderator D and
cause A share a common cause C (fig. 2a), we also test the case when a moderator and an
effect share a common cause. See appendix B for details showing that we can still identify
the moderator correctly.

4.1.2 Multiple moderation

The second case we simulate is when a single moderator moderates multiple causes of the
same effect, as shown in fig. 2b. This type of situation is common in health related studies,
where there may be multiple causes of a condition such as a heart attack, and each may be
moderated by a demographic factor such as sex. This case is developed to challenge rule
3 of our definition, which is that the moderator has no effect alone. When it moderates
multiple causes then even if one is absent, it may still appear significant. Once again we
also include variables that act as noise, and are not involved in any causal relationships.
The probability for noise variables is 0.1 and for causes is 0.15, and we test time lags [1,8].

Table 2 summarizes results for one of the causal relationships. As shown in the ground
truth (fig. 2b), A causes B, moderated by E. With the moderator, the relationship is
stronger. Before we apply the rules for finding moderators, we test pairwise relationships,
and correctly find that A is a significant cause of E at all the true time lags, and not at
any other lags. E at any time lag is a spurious cause of B, and overall we find it has
low significance, though it was significant at one time lag, t = 5. Next, we test the three
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combinations of A and E (with A and E alternately negated). Now we find that A is
a significant cause of B in both scenarios (rule 2 holds in Def. 1), but that it is a much
stronger cause with E than without E (rule 1 holds in Def. 1). This is the correct finding,
and also provides more information on the relationship than the aggregated result found
with A alone. Further, we now find that E alone is not a significant cause at any time lag
(rule 3 holds in Def. 1) – correctly learning that its only role is moderating A’s impact. For
both the timing and probability change cases, the significance of the causes (A shown in
the table) is correctly found to vary with the presence/absence of the moderator, while the
moderator alone is insignificant.

4.1.3 Comparison with regression method

A common approach to moderator analysis is based on regression, testing the impact of
different variables alone and together by determining whether their coefficients differ sig-
nificantly from zero (Baron and Kenny, 1986). If X causes Y with moderator M , c in the
following equation should be nonzero:

Y = i+ aX + bM + cXM + ε. (4)

Using the data in the previous section, we test for moderation with: (1) linear regression,
(2) logistic regression, and (3) vector auto regression (VAR), calling a variable a moderator
when c differs significantly from zero. While c may be nonzero for other reasons such as
interaction, we do not penalize algorithms for that. Even using a more generous threshold
of p < 0.05, no value of c was significant for any case (common cause, multiple moderators)
for any time lag or regression method. Looking at the individual values for c, not their
significance, we see many false positives and negatives. For example, when moderator
D changes the probability of A ;2,3 B of the common cause case in fig. 2a, the linear
regression indicates c > 0 from time 2 to 7, and with VAR c > 0 from time lag 2 to 8.
However, the true time window is [2, 3]. Logistic regression had no positive value for c at
any time lag, for both datasets. Even though c is supposed to capture the change in effect
when moderator is true, while a and b capture the individual impacts, we see that these are
not being distinguished by the regression.

4.1.4 Comparison with Structural Nested Mean Models (SNMM)

Almirall et al. (2010) proposed a 2-Stage Regression Estimator of the Structural Nested
Mean Model (denoted 2-SE here) to assess time-varying causal effect moderation. This
method estimates the intermediate causal effect by conditioning on the tested moderators
and estimating the difference in causal effect. We selected this approach for comparison
as it outperforms Robins’ G-estimator (Robins, 1994) when the parameters are correctly
specified. When testing 2-SE, we use the true time lag of the simulated causal structure
rather than requiring the approach to identify the lags. For the causal model in fig. 2a
where D moderates relationship A → B, we have datasets with three possible types of
moderators (moderator D changes timing, probability, or value of relationship A → B).
When D changes the probability of A→ B, the 2-SE finds D as a moderator with p-value
0.12, which is above our highest threshold of 0.05. Similarly, when D moderates the value
of B, the 2-SE p-value for this relationship is 0.74. Finally, when D changes the timing

11



Zheng, Claassen, and Kleinberg

MAP

ICP

CPP

13 
6 

3 (50%
)

6 

5 (63%)

3 (23%)

4 

12 

4 (33%)

(a) Relationships among MAP, CPP,
ICP (days 4-7)

ETCO2

HR

TW%(BrK) PbtO2

Respiratory measures

Brain physiology

Cardiovascular measures

3 (43%)

7 

4 (57%
)

ICP

MAP

TMP

5 

3 
(6

0%
)

4 (80%)

4 (80%)

3 (
60

%) 3 

CPP

CVP

4 

BrT3 

3 6 

RR

3 

4 

3 

6 

3 

4 (57%)

4 (57%)

(b) Relationships where PbtO2 is cause or effect (days 4-7)

Figure 4: Results on NICU data with moderators found in > 3 patients. Percent shows pa-
tients with the causal relationship that also had the moderator. Thick black edges are found
only by our method, dashed by both, and dotted red only by 2-SE. Numbered edges without
percentages are the number of patients in which that causal relationship was inferred.

of A → B, the p-value according to 2-SE is 0.48. Thus in no case did 2-SE identify a
moderator of the relationship with a p-value that would be accepted with even a more
lenient threshold than we used for our own algorithm. For the structure in fig. 2b where
E moderates multiple relationships, the lowest p-value output by 2-SE is 0.36 which is still
above any commonly accepted significance threshold.

Thus, in comparison to 2-SE on simulated data, our proposed approach has much higher
recall for identifying moderators, while 2-SE faces significant difficulties when a modera-
tor moderates multiple relationships, as well as when it changes timing or intensity of a
relationship. 2-SE did somewhat better with a probability changing moderator, but the
significance score was still above the threshold for acceptance.

4.2 Neurological ICU data

Our main goal is to better understand complex medical data. To demonstrate how this
approach can provide new insights into such data, we apply it to data from the Neurological
Intensive Care Unit (NICU) at Columbia University. The data consists of 98 patients
with subarachnoid hemorrhage (SAH) who underwent multimodality monitoring as part of
routine care. Use of the data was IRB-approved. Prior work characterized the physiologic
changes in these patients before and after seizures (Claassen et al., 2013) and the causal
structure of their brain physiology (Claassen et al., 2016). Many expected relationships were
inferred, but some were missing. In this work, we build on the causal structure inferred
in that work, and aim to determine if we can identify clinically meaningful moderators of
these relationships, and potentially get closer to the true causal structure.
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Table 3: All NICU variables and their meaning.

NICU variables Full name

TMP body temperature
RR respiratory rate
MV minute ventilation

ETCO2 (CO2EX) end tidal carbon dioxide
SPO2 (SPO2%) oxygen saturation

HR heart rate
MAP mean arterial pressure
CVP central venous pressure
CI cardiac index

SVV stroke volume variation
ELWI extravascular lung water index
GEDI global enddiastolic index
ICP intracranial pressure
CPP cerebral perfusion pressure

PbtO2 partial brain tissue oxygenation
rCBF regional cerebral blood flow

TW% (BrK) brain water content
BrT brain temperature

4.2.1 Data and method

The data used in this study includes cardiovascular and respiratory parameters (e.g., heart
rate), and brain physiology (e.g., brain oxygenation, blood flow in the brain, microdialysis
measurement of brain metabolism). Table 3 shows the acronyms and full names of all
variables. Not all patients have all variables measured, though, and monitors may be
started at different times due to clinical practice. Further, data duration varies due to
length of ICU stay (mean 12.3 days). Most variables are measured every 5 seconds, but
some are roughly hourly (e.g., brain metabolism). We follow the approach of Claassen
et al. (2016), where the data is broken into two clinically meaningful time periods (0-3,
and 4-7 days post-SAH), is synchronized and minute-averaged, has missing values imputed
(Rahman et al., 2015), and is discretized according to known physiologic ranges. We apply
our approach for finding moderators to all causal relationships identified by Claassen et al.
(2016), testing all variables as potential moderators of each. We applied each method to each
patient’s data individually, and depict only moderators found to be significant in at least
3 patients. For all methods, we use a p-value threshold of 0.05 for accepting a moderator.
This threshold should be adjusted lower for applications where false positives have a higher
cost, or adjusted upward for more exploratory analyses. To compare our approach fairly
against 2-SE, we provide the method with the same inferred causal structures, and then test
for moderators of the same set of relationships at the same time lags, [1,60]. In the figures,
grey edges indicate relationships where no moderators were found. Thick black arrows into
causal edges indicate moderators identified only by our approach, dashed black edges are
moderators found by both approaches, and dotted red edges are moderators found only by
2-SE. Numbers on shared edges apply to our approach, and in general 2-SE either found
the same number or fewer.
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4.2.2 Results

We focus on further elucidating the key relationships that were identified by Claassen et al.
(2016), testing the hypothesis that some of the expected causal relationships that were not
identified may now appear as moderator effects. First, we examine whether we can now
identify known relationships not found by Claassen et al. (2016). While CPP is defined as
MAP−ICP, bidirectional causal relationships were not found between all pairs in that work
due to the time lags. Results of our moderator analysis in figure 4a show that we now see
moderating influences in some of these cases, such as MAP influencing ICP through CPP
(as CPP depends on MAP). Note that our approach found a total of 3 moderators, while
2-SE found two. Next, the earlier work found that partial brain tissue oxygenation (PbtO2)
depended mainly on cardiovascular parameters and measures of pressure in the brain. Inter-
estingly, in addition to these plausible direct causal effects, we now find moderating effects
including from ETCO2 (fig. 4b). ETCO2 (end tidal CO2) relates to cerebral blood flow
by affecting vessel diameter and thereby plausibly affecting the relationship between heart
rate and brain oxygenation. In contrast, 2-SE finds fewer moderators, and does not include
the important moderators of PbtO2’s effect on brain water content (TW%), a measure for
brain swelling. Claassen et al. (2016) found TW% depended on fluid status during days
0-3 after stroke but during days 4-7 also depended on brain oxygenation. Unlike 2-SE we
now find that during this later phase cardiovascular measures are important moderators
of the effect of brain oxygenation on swelling. ETCO2, which may affect cerebral vascular
diameter and thereby cerebral blood flow is in particular a biologically plausible moderator
of brain swelling. Likewise, only our approach identified temperature (TMP), which affects
both blood flow and brain metabolism as a moderator of the effect of PbtO2 on TW%. Fig-
ure 5 shows all relationships where TW% is either a cause or effect, along with moderators
identified by our approach and by 2-SE.

Overall, for the 4-7 day time period, we identified 291 moderators, 125 of which were
found by both methods, while 2-SE identified 197. The moderator effects identified are
physiologically plausible, thereby supporting the hypothesis that identifying moderators
further helps to unravel the complexity of physiologic interdependencies in a real world
biological system. Further, our approach identified an overall larger number of moderators
than 2-SE, as well as moderators that are more meaningful physiologically.

5. Conclusion

Causal relationships are often more complex than pairwise links between variables, with
factors changing the intensity or timing of causes. With increasingly large datasets with
many variables, providing insight into the exact nature of each variable’s contribution to an
effect is necessary for humans to make sense of the results. Methods that do not distinguish
moderators from causes can lead to futile interventions on variables that are not causally
efficacious. While moderators have been handled mainly via regression, there has not been
a way to efficiently discover them in data-driven analyses. We have shown how rules for
identifying moderators can be represented and efficiently tested via logical formulas – with-
out increasing the complexity of causal inference or requiring tests of all combinations of
variables. Our approach can be applied to many domains including health, finance, cli-
mate science, and biology to understand how causal relationships change in the presence
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Figure 5: Relationships where TW%(BrK) is a cause or effect, for 4-7 day time period after
stroke.

of other factors. In future work we aim to remove the assumption that there are no latent
confounders, to enable wider applicability.
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Appendix A. Proof of correctness

Claim 1 If m is a moderator for c;≥r,≤s e, all rules in def. 1 will hold.

Proof. For causal relationship c;≥r,≤s e, based on equation 3, we have,

εavg(c ∧m, e)

=

∑
x∈X P (e|c ∧m ∧ x)− P (e|¬(c ∧m) ∧ x)

|X\c|
(5)
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Similarly,

εavg(c ∧ ¬m, e)

=

∑
x∈X P (e|c ∧ ¬m ∧ x)− P (e|¬(c ∧ ¬m) ∧ x)

|X\c|
(6)

For continuous data, replace the corresponding conditional probability in the above
equations with conditional expectation (e.g., E[e|c ∧m ∧ x] and E[e|c ∧ ¬m ∧ x] ).

Firstly, if m is a moderator, then the occurrence of m is not independent of c, which
means P (e|c∧m∧x) 6= P (e|c∧¬m∧x) (or E[e|c∧m∧x] 6= E[e|c∧¬m∧x] for continuous
valued data). Assuming that we only focus on variables that can strengthen or weaken a
cause’s impact or change when an effect occurs, then either P (e|c ∧m ∧ x) is significantly
different with P (e|c ∧ ¬m ∧ x) or the time window between c ∧ m causing e and c ∧ ¬m
causing e is different (rule 1 holds).

Secondly, Given c is a significant cause of e across the time series (εavg(c, e) > ε (sta-
tistical threshold), and P (e|c ∧ x) � P (e|¬c ∧ x)), we focus on three types of moderators
(moderating probability, timing or intensity):

1) If m changes the probability of c;≥r,≤s e, then P (e|c ∧m ∧ x)� P (e|c ∧ x). Since
εavg(c, e) > ε (eq. 3), we can get εavg(c∧m, e) > ε (eq. 5). Considering possible occurrence
cases among x,m, c, we know that #(c∧x) = #(c∧m∧x) + #(c∧¬m∧x) where #(c∧x)
represents the number of cases when c and x occur together. Therefore, since c itself is a
significant cause, unless m tends toward completely removing c’s effect (approaching the
causal complex case in section 3.1) c∧¬m will be a significant cause too (εavg(c∧¬m, e) > ε).
Thus, both c ∧m, and c ∧ ¬m are significant causes of e (rule 2 holds).

2) If m changes the timing of c;≥r,≤s e, c ∧m and c ∧ ¬m will cause effect e to occur
at different time. Since c is a significant cause of e itself and m just changes the timing
of the relationship, P (e|c ∧ m ∧ x) ≈ P (e|c ∧ ¬m ∧ x) ≈ P (e|c ∧ x) at different timings.
Because εavg(c, e) > ε, by comparing eq. 3, eq. 5 and eq. 6, we can get εavg(c ∧m, e) > ε
and εavg(c ∧ ¬m, e) > ε. Therefore, rule 2 also holds.

3) If m changes the intensity of c;≥r,≤s e, then E(e|c∧m∧x)� E(e|c∧x). Given c is
a significant cause of e, we have E(e|c ∧ x)� E(e|¬c ∧ x) (eq. 3 for continuous data), and
εavg(c, e) > ε. Similar to case 1, we know that #(c∧x) = #(c∧m∧x)+#(c∧¬m∧x). Thus,
unless m tends toward completely removing c’s effect (approaching the causal complex case
in section 3.1) c∧¬m will be a significant cause too (εavg(c∧¬m, e) > ε). Thus, both c∧m,
and c ∧ ¬m are significant causes of e (rule 2 holds).

Thirdly, if m is a moderator and not a cause, then P (e|c∧m) ≈ P (e|c) and P (e|¬c∧m) ≈
P (e), so based on eq. (3), εavg(¬c∧m) < ε. Thus, ¬c∧m will be insignificant (rule 3 holds).
Therefore, m is a moderator for c;≥r,≤s e.

Claim 2 If m is not a moderator for a true causal relationship c;≥r,≤s e, but falls in one
of the following cases, at least one rule in Def. 1 will fail:
1. m is just noise, rule 1 fails.
2. m is a mediator, rule 1 fails.
3.m is a cause on its own, rule 3 fails.
4.m is part of a causal complex, rule 2 fails.
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Proof. When m is unrelated to the effect (e.g., a noise variable), P (e|c ∧m ∧ x) ≈ P (e|c ∧
¬m ∧ x), according to eq. 5 and eq. 6, εavg(c ∧m, e) ≈ εavg(c ∧ ¬m, e), therefore, e is not
significantly changed when m occurs (rule 1 fails). If m is a mediator, similarly, P (e|c∧m∧
x) ≈ P (e|c∧¬m∧x) since the influence of c goes directly through m, thus rule 1 also fails. If
m is simply another cause of e, then according to eq. 3, P (e|¬c∧m∧x)� P (e|¬(¬c∧m)∧x)
and εavg(¬c ∧m, e) > ε, thus rule 3 fails. Finally, for causal complexes where c ∧m causes
e but c and m are ineffective alone, then P (e|c∧¬m) ≈ P (e) and εavg(c∧¬m, e) < ε, thus,
rule 2 fails.

Further, if m is a moderator that influences c ;≥r,≤s e in different ways (e.g., changes
both timing and probability), or a causal relationship has multiple moderators, we can still
correctly find it. If m changes the timing and probability of c;≥r,≤s e, by the definition of
moderating, we will find the effect is significantly changed in both timing and probability
(or intensity), as long as the timing case is tested first, and the new time windows are used
in testing probability change. This is because if time windows change then the cause may
seem insignificant in some cases using the original window. If a relationship has multiple
moderators, based on Claim 1, we can find them by testing the timing case first.

Appendix B. Additional Simulated Experiments

Another challenging case is when there is a common cause of both the moderator and the
effect. We tested this indirectly in the paper, but now show a more direct example (e.g.
C → D,C → B, and D moderates A → B). As shown in table 4 we once again find only
the true causes, and the moderator is correctly identified.

Table 4: Common cause case, with significance of cause (A) and moderator (D) before (top)
and after (bottom) applying rules to discover moderators. * indicates statistical significance
at all lags represented, and † significance of subset. Dashes indicate spurious time lags (no
true results).

Intensity Probability Timing
Relationship Sig. (true lags) Sig. (other lags) Sig. (true lags) Sig. (other lags) Sig. (true lags) Sig. (other lags)

A → B 1.301* -0.027 0.387* -0.006 0.349* 0.054
D → B – .095† – 0.009 – 0.029†

A∧D → B 2.015* -.0127 0.379* -0.013 0.305* -0.006
A∧¬D → B 0.771* -0.059 0.341* 0.001 0.397* 0.009
¬A∧D → B – -.0136 – -0.007 – -0.001
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