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Abstract

Causal structure learning algorithms are very important in many fields, including biomed-
ical sciences, because they can uncover the underlying causal network structure from ob-
servational data. Several such algorithms have been developed over the years, but they
usually operate on datasets of a single data type: continuous or discrete variables only.
More recently, we and others have proposed new causal structure learning algorithms for
mixed data types. However, to-date there is no study that critically evaluates these meth-
ods’ performance. In this paper, we provide the first extensive empirical evaluation of
several popular causal structure learning methods on mixed data types and in a variety
of parameter settings and sample sizes. Our results serve as a guide as to which method
performs the best in a given context, and as such they are a first step towards a "method
selection guide” for those running causal modeling methods on real life datasets.

Keywords: Causal Discovery, Mixed Data, Empirical Evaluation

1. Introduction

Causal discovery from observational data has been a topic of growing interest for several
years (Spirtes et al., 2000; Pearl, 2009). The general problem of causal discovery is to infer
a graphical structure from data where nodes in the graph correspond to random variables
in the data, and edges in the graph depict direct (causal) relationships among the variables.
This problem is crucial to many domains such as economics, social sciences, biology, and
biomedicine, as causal knowledge is what allows researchers to understand the effectors of
different variables or outcomes and generate hypotheses on how interventions will change
the system under study. For example, in biomedicine, understanding causal relationships
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allows a physician to predict the outcome of a treatment and which variables most affect
it, a task which cannot be done using correlations alone.

Automated approaches to causal discovery from observational data fall into two main
categories: constraint-based (Spirtes et al., 2000) and score-based (Chickering, 2002). Gen-
erally, constraint-based approaches identify the causal structure by starting with a fully
connected undirected graph and using conditional independence tests to eliminate edges.
Finally, the graph is oriented via a series of rules (identifying v-structures or colliders, avoid-
ing cycles, etc.). The score-based approaches use a score specifying the goodness of fit of
the model to the data subject to a sparsity penalty to avoid overfitting. Both approaches
have demonstrated success in the past, and hybrid approaches have also been proposed
(Sokolova et al., 2014; Tsamardinos et al., 2006).

Currently, there are many algorithms for causal discovery from observational data, but
empirical evaluations and comparisons in different experimental settings are lacking. Thus,
it is unclear to researchers attempting to use these methods, which algorithm is appropriate
for their particular dataset and domain. In this work, we perform a thorough empirical
evaluation of several causal discovery techniques across datasets with different properties.
We provide the reader with a better understanding of the practical properties of each of
these techniques in learning causal structure from simulated data.

In the past, there were few comparative studies of algorithms for causal structure learn-
ing from observational data. In Tsamardinos et al. (2006), the authors conduct a thorough
test of the state of the art methods for causal structure learning. However, this evaluation is
limited by the methods available at the time at which it was conducted, and as such it missed
several modifications to those algorithms that have improved their performance (Ramsey
et al., 2006; Ramsey, 2015; Colombo and Maathuis, 2014). A more recent benchmarking
of causal discovery techniques was performed on both simulated and real biological data
(Singh et al., 2017). This evaluation goes beyond learning the structure of causal graphs to
determining whether these causal graphs are able to accurately predict the result of inter-
ventions. However, this evaluation is limited by the small size of the simulated datasets (10
variables) compared to what would actually be encountered in practice. In addition, this
evaluation is limited by the nature of the real biomedical datasets used. Though real data
is good for evaluations in the sense that it can give better indication of how algorithms will
generalize to real data in the future, it is unclear whether the ”ground truth” in these cases
is actually the truth in nature or just our current understanding of the truth.

Further, one of the challenges faced by these algorithms is that often times the obser-
vational datasets contain mixed data types (continuous and discrete variables). In these
cases, constraint-based algorithms require an independence test suitable for determining the
independence of a mixed set of variables, and score-based algorithms require a likelihood
score that can handle these sorts of data. Recently, attention has been focused on causal
structure learning from mixed data, and both constraint- and score-based algorithms have
been developed for this purpose (Andrews et al., 2017; Sedgewick et al., 2017; Tsagris et al.,
2018); however, to our knowledge no hybrid constraint and score based approaches have
been developed and tested. Other methods have been developed that are able to address
mixed data using answer-set programming (Hyttinen and Jrvisalo, 2014; Borboudakis and
Tsamardinos, 2016); however, these methods are not able to scale to the high-dimensional
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datasets studied in this work that are of interest to many domain experts (e.g. biomedicine,
biology).

Performing a thorough evaluation of causal structure learning techniques presents a num-
ber of challenges. Experimental parameters for data generation, algorithmic parameters,
and number of replicates can result in a complexity too large to both run the experiment and
interpret the results. In addition, finding suitable metrics for a particular experiment are a
challenge as different causal structure learning algorithm can provide different information.
In addition, ensuring that the simulation parameters match up with the expectations of real
data is a persistent challenge. Doing this evaluation with mixed datasets increases these
challenges, as runtime of algorithms tends to be longer, and there are more experimental
parameters to generate the data and evaluate the results.

Here, we address this challenge by focusing upon datasets with similar properties to
those that we expect to have in biomedical domains. In particular, we present a com-
parative empirical evaluation of algorithms for causal structure learning from simulated
high-dimensional mixed data. Our specific contributions are the following:

e We evaluate several popular causal structure learning algorithms on continuous datasets
of varying sample and variable sizes.

e We compare causal structure learning algorithms for mixed data against methods that
treat these datasets as fully continuous or fully categorical data.

e We compare several causal structure learning algorithms specifically for mixed datasets
across different sample and variable sizes and different algorithmic parameters.

2. Methods Evaluated

In this section, we briefly discuss the methods compared in this study. For full details of
each method we refer the reader to their original publications. First, we discuss algorithms
for learning causal structure from data, then we discuss the independence tests and scores
used for evaluation, and finally we discuss methods for parameter selection.

2.1 Algorithms to learn Causal Structure
2.1.1 PC AND VARIANTS

PC has been one of the most popular constraint-based algorithms for causal structure
learning from observational data (Spirtes et al., 2000). The algorithm begins with a fully
connected graph and performs conditional independence tests with increasing conditional
set size in order to remove edges. For example, for an edge between X and Y the algorithm
first performs an unconditional independence test between X and Y, and then conditional
independence tests of X and Y given S with |S| =1 to |S| = N, where N is the number of
nodes adjacent to X or Y. The edge between X and Y is removed if they are independent
given some set S. After determining the edges in the graph, the algorithm then orients
them according to a set of rules. First, it orients unshielded colliders (i.e. when X and Y
are independent, but dependent conditional on a third variable Z, then X and Y are both
parents of Z). Then, it orients edges to avoid cycles and prevent creating extra unshielded



RAcHU, POON, AND BENOS

colliders. The algorithm requires an appropriate conditional independence test for the type
of data being analyzed.

Since its induction, many variants have been proposed for the PC algorithm, and we
choose to not include PC itself in our evaluation, as the modifications have better theoretical
properties and empirical performance. PC-Stable is a modification that avoids the order
dependence problem present in PC, as the output of PC depends upon the order in which
independence tests are performed (Colombo and Maathuis, 2014). Conservative-PC (CPC)
uses a conservative strategy when determining whether to orient an edge as a collider. In
particular, the algorithm orients an edge X-Y-Z as a collider only if Y appears in none of
the possible conditioning sets which separate X and Z (Ramsey et al., 2006). Unlike CPC,
PC-Max uses the conditioning set with the largest p-value in its conditional independence
test to determine if a collider should be oriented (Ramsey, 2016).

Copula-PC is a relatively new modification of the PC algorithm that is designed for
mixed continuous and ordinal datasets (Cui et al., 2016). The method first infers a rank
correlation matrix using a projected inverse-wishart distribution as a prior distribution on
the correlation matrix, and then using a Gibbs sampling approach to generate samples from
this distribution to finally infer a posterior distribution and an estimated correlation matrix.
Then this estimated correlation matrix along with a modified effective sample size is fed to
the PC algorithm as usual to infer a causal graph. Though the algorithm is designed for
continuous and ordinal data (monotonic relationships) we test the algorithm on continuous
and categorical datasets.

2.1.2 GREEDY EQUIVALENCE SEARCH

Greedy Equivalence Search (GES) is a popular score-based algorithm to learn causal struc-
ture. Unlike the PC variants, GES does not use conditional independence tests and instead
greedily optimizes a likelihood score subject to a sparsity penalty to avoid overfitting (Chick-
ering, 2002). In this work, we use the modification called the Fast Greedy Search (FGES),
as this method was shown to give accurate causal predictions while achieving significantly
better runtime (Ramsey, 2015). FGES has recently been extended to mixed data via a
new Conditional Gaussian scoring function (Andrews et al., 2017). This method uses the
standard Bayesian Information Criterion (BIC) score where the likelihood is computed by
modeling each continuous variable as a unique Gaussian distribution for each setting of its
discrete parents.

2.2 Independence Tests for Mixed Datasets

All constraint-based causal discovery algorithms require an independence test to learn causal
structure. In this work, we evaluate two independence tests for mixed datasets: a Multino-
mial Logistic Regression test (Multinomial LRT'), and a Conditional Gaussian test (CG).

2.2.1 MULTINOMIAL LOGISTIC REGRESSION TEST

The Multinomial LRT test performs different conditional independence tests depending
upon the type of variables involved. Assume that we are testing the conditional indepen-
dence of variables X and Y given a set of variables S. If X and Y are both continuous,
then the test is simply a linear regression of X given Y and S. Any categorical variables in
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S are converted into binary indicator variables for each category, which is necessary when
using a regression based approach since the categories do not necessarily have a well-defined
ordering and scale (e.g. Ethnicity). X is determined to be dependent on Y if the coefficient
is significantly different than zero by a t-test. If X or Y is categorical, then the test is a
likelihood ratio test. Here, we use logistic regressions to test whether P(X|Y, S) = P(X|S),
which is expected to be true under the null hypothesis of independence. In particular, the
log of the likelihood ratio between these two regressions is known to follow a chi-square
distribution, so the significance of this ratio can be computed accordingly.

2.2.2 CONDITIONAL GAUSSIAN TEST

Unlike the multinomial test, the Conditional Gaussian (CG) test assumes that the data is
generated from a distinct multivariate Gaussian distribution for each setting of the discrete
variables (Andrews et al., 2017). In order to perform a conditional independence test of
X and Y given S, a likelihood ratio test is performed between P(X|Z) and P(X|Y, Z)
as well as P(Y|Z) and P(Y|X,Z). The null hypothesis of independence is rejected if
either direction gives evidence of dependence. To compute the likelihood for the test, the
conditional Gaussian approximation is used:

P(X.,Ye, Ze| Xa, Ya, Za)P(Xa, Yy, Zg) (1)
P(Ye, Ze|Yq, Za)P(Ya, Z4)

P(X|Y,Z) =

Here, X, Y., and Z, denote the continuous variables among X, Y, and Z, whereas X,
Y4, Z4 denote the discrete variables in this group. The likelihoods involving only discrete
variables are computed via a multinomial distribution, whereas the conditional likelihoods
are computed using a conditional Gaussian distribution. For full details of this test, we
refer the reader to the original publication.

2.3 Mixed Graphical Models (MGM)

A Mixed Graphical Model (MGM) is an undirected graphical model which characterizes
the joint distribution over a dataset with both continuous and discrete variables, and it is
given by the following expression (Lee and Hastie, 2013):

p(e,y;0) o ezvp<Z§p:—

s=1t=1

p p q q q
%/Bstinsxt“‘z AT g +Z Z Psj (yj)xs +E Z ¢rj (ym y])) (2)
s=1

s=1 j=1 j=1r=1

where 6 represents all parameters of the model, x s represents the st* of p continuous variables
and y; represents the gt of ¢ discrete variables. B represents the potential for an edge
between continuous variables s and ¢, oz represents the potential for a node of a continuous
variable, p,; represents the potential for an edge between continuous variable s and discrete
variable j, and finally ¢,; represents the potential for an edge between discrete variables r
and j. This joint distribution can be decomposed into conditional distributions given by
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Gaussian linear regression and Multiclass Logistic Regression for continuous and discrete
variables respectively.

p q
1(Olz,y) = — ZIng(xs\x/s,y; 0) — Zlogp(yr\x,y/r; o) (3)

s=1 r=1

Learning this model over high dimensional datasets directly is computationally infeasible
due to the computation of the partition function, so to avoid this, a proximal gradient
method is used to learn a penalized negative log pseudolikelihood form of the model. This
negative log pseudolikelihood is given in Equation 3, and the penalized form is presented
in Equation 4 and described in (Sedgewick et al., 2016). For both of these, O refers to all
parameters of the model collectively.

p s—1 P q q j—1
minimize5(©) = () + Acc S 1Bl +Aep DD lossllz +Aop DD ldeslle (4)
s=1 t=1 s=1 j=1 j=1r=1

Here, the algorithm is used as specified in (Sedgewick et al., 2016), (called CausalMGM).
As in previous publications, the algorithm is terminated when the MGM graph remains
unchanged for three consecutive iterations, and the learned model is used as an input graph
to causal structure learning algorithms by starting with an undirected sparse model instead
of a fully connected graph, which has shown promise in causal discovery (Loh and Bithlmann,
2014; Sedgewick et al., 2017). In this work, we test the impact of using CausalMGM with
constraint-based algorithms on mixed data.

2.4 StARS and StEPS for Parameter Selection

Both the constraint and score based structure learning algorithms require the selection of
a parameter. Constraint-based algorithms require a parameter «, which determines the p-
value cutoff for making independence test decisions, whereas score-based algorithms require
a penalty discount parameter to determine how heavily including edges in the model should
be penalized (or equivalently how sparse the final output graph should be). In many cases,
there is no clear way to determine the values of these parameters, so one method that we
choose to evaluate in this paper is StARS (Liu et al., 2010), as it outperformed several
competing parameter selection metrics on simulated and real data. Essentially, StARS
selects the parameter value that gives the most stable (insensitive to variations in the
data), yet sparse graph when subject to random subsampling without replacement. For
CausalMGM, we used a related method called StEPS, which performs a similar selection
as StARS, except for the three edge-type dependent sparsity parameters as it is required
by the CausalMGM method (Sedgewick et al., 2016). The benefit of using this approach is
that one selects a threshold for stability that has an interpretable meaning, as opposed to
choosing a parameter value arbitrarily for causal discovery, and in addition, using a standard
instability threshold of 0.05 has shown good success in causal discovery (Sedgewick et al.,
2016).



EvALUATION OF CAUSAL STRUCTURE LEARNING

3. Results

Next, we present the main contributions of the paper. We begin by discussing an evaluation
of algorithms for causal structure learning from entirely continuous data across a variety
of parameters. We then evaluate different independence tests for mixed data against tests
which treat the data as purely continuous or purely categorical. Finally, we evaluate meth-
ods for learning causal structure from mixed continuous and categorical data using the best
performing independence test against the modification of FGES for mixed data.

3.1 Experimental Procedure

Simulated data. In all of the subsequent experiments, simulated data was generated in a
similar manner. First, a ground truth graph was generated uniformly at random from the
set of all directed acyclic graphs with N edges, where N was normally distributed with mean
equal to either 1.5 (referred to as graph density 3) or 2.5 (referred to as graph density 5)
times the number of variables, and standard deviation equal to half the number of variables.
This graph was then parametrized with edge weights selected uniformly at random from
the range (—1.5,—0.5),(0.5,1.5). Using this parametrized graph, samples were generated
independently using a linear Gaussian model for continuous data, and using both a Lee and
Hastie model (Lee and Hastie, 2013) and a Conditional Gaussian (Andrews et al., 2017)
model for mixed data with a 50-50 split between four-category categorical and continuous
variables, resulting in 25% of the edges being between continuous variables, 25% of the
edges between categorical variables, and 50% of the edges being mixed type. To ensure
reasonable statistical power, each categorical variable was constrained to have at least four
samples for each category.

All algorithms were tested using a variety of parameters. The ground truth causal
graphs consisted of 50 or 100 variables, and the datasets had sample sizes in the set: (100,
1000, 3000, 5000) for continuous data, and (100, 300, 500) for mixed data. For constraint-
based causal discovery algorithms, a values were taken from the set: (1E-4, 0.001, 0.01,
0.03, 0.05, 0.08, 0.1). For FGES, penalty discount values were taken from the set: (0.5, 1,
2,4, 8, 10, 20) for continuous data, and the binomial structure prior was taken from the set
(1,1.5,2,3,4,5) for mixed data. In addition, StARS was used to automatically select a stable
parameter value from these sets, with the stability threshold set to the value suggested in
the original publication, 95%.

FEvaluation metrics and specifications. Several evaluation metrics were used to determine
the accuracy of the Partially Directed Acyclic Graph (PDAG) estimated by the algorithms
in comparison to the ground truth data generating graph. Adjacency precision and recall
refer to the correctness of the edges in the graph estimated by the search algorithms, with
precision and recall taking the standard definition from the literature. Arrowhead precision
is computed by taking the number of correctly placed arrowheads (causal orientations)
divided by the number of correct arrowheads plus false positive arrowheads. Recall is
defined in a similar way but with false negative (missed) arrowhead placements. Finally,
structural hamming distance (SHD) refers to the number of changes that must be made
to an estimated causal graph to recreate the ground truth graph. For mixed continuous
and discrete datasets, these metrics are further split by edge type: i.e., edges between two
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Table 1: Evaluation of causal structure learning methods from continuous data. The results
are shown for the parameter which gives the best performance (Oracle). AP and AR are
adjacency precision and recall; AHP and AHR are arrowhead precision and recall; SHD is
structural hamming distance. The highest values for each sample size, metric category are
bolded.

Algorithm  SS Parameter AP AR AHP AHR SHD
CpPC 100  0.03 0.9290 0.5953 0.9537 0.2547  187.5
PC-Max 100  0.03 0.9090 0.6013 0.7635 0.3533  185.25
PC-Stable 100  0.03 0.9290 0.5953 0.5494  0.4277  203.2
FGES 100 1 0.8864 0.6943 0.8054 0.5267 150.8
CpPC 1000 0.01 0.9372 0.7557 0.9400 0.4927 129.2
PC-Max 1000 0.01 0.9111 0.7687 0.8326  0.5833  127.75
PC-Stable 1000 0.01 0.9372 0.7557 0.6224 0.6010 155
FGES 1000 1 0.8316 0.9033 0.7660 0.7470 115.35

continuous variables (CC), a continuous and a discrete variable (CD), and two discrete
variables (DD).

All combinations of causal structure learning algorithm, parameter value, number of
variables in the data, and number of samples in the data were repeated across 20 graphs,
and the results are reported as averages across these graphs. For StARS, the parameter
selection was done independently for each graph, and we only report the most often chosen
parameter value for each of these combinations. All experiments were performed on an 8
core machine with a 256 GB SSD, 256 GB of RAM, and a 2.4 GHz processor. Parallelized
versions of causal structure learning algorithms were used, and all runtime measurements
are given in CPU time.

3.2 Evaluation of Structure Learning from Continuous Data

We first examined how causal structure learning algorithms perform on continuous datasets
using the parameter with the best results (Oracle) in terms of SHD shown in Table 1. Two
sample sizes (100 and 1,000) are displayed here. Parameter refers to « level for constraint-
based methods and the penalty for FGES. Each entry is an average over 20 graphs with
100 variables each. In this experiment, all algorithms used the Fisher Z test of conditional
independence (Spirtes et al., 2000) for consistency.

In terms of reliability, all three constraint-based approaches tend to give high precision
for adjacencies, which could be attributed to the repeated independence tests that must be
performed for each edge under varying conditioning sets, where even a single p-value above
the « threshold will result in an edge deletion. As a drawback, this results in significantly
poorer recall when compared to FGES, which we find to hold regardless of sample size. In
terms of causal orientations, CPC and PC-Max appear to differ only upon where they fall
in terms of the tradeoff between precision and recall, whereas PC-Stable has a large drop in
precision for nearly the same recall, suggesting the poorer performance of this method. In
terms of causal orientations and SHD, FGES appears to have a significant advantage when
the oracle parameter value is chosen, as determined by recall and SHD.
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Figure 1: Precision-Recall Plots for 100 variable, 1000 sample, continuous datasets. The
star refers to the average parameter values chosen by StARS. The CPC results are identical
to the PC-Stable results in (a).

Oracle results are difficult to be obtained in practice because we do not generally know
the ground truth (and if we did, we wouldn’t need a causal search method!). So, it is
important to see how algorithms perform using a wide range of parameters. Figure 1
depicts the effect of such parametrization of each algorithm on its performance in terms of
adjacency recovery (Figure la) and orientation recovery (Figure 1b) for networks with 100
nodes and 1,000 samples each. In these plots, it is clear that FGES’s precision for both
adjacencies and arrowheads remains unaffected by the choice of penalty in this setting; its
recall, however, is affected the most compared to constraint-based methods. In addition,
CPC has the best arrowhead recovery performance for all parameterizations. We note
that the effects of parameter choices tend to be smaller in larger sample sizes. In terms
of algorithm efficiency, all algorithms show good performance with runtime of less than a
second on 100 variable, 5000 sample continuous data.

Overall, on continuous data we find that the choice of parameter can have a significant
impact on precision for constraint-based algorithms, and on recall for FGES. StARS tends to
select parameters with a good balance of precision and recall for constraint-based algorithms;
however, it tends to produce very sparse graphs when run in conjunction with FGES. More
work must be done to select the instability threshold suitable for FGES to achieve accurate
results in these cases.

3.3 Evaluation of Independence Tests for Mixed Data

Before evaluating different algorithms for learning causal structure, we first evaluate how
independence tests, specifically designed for mixed data perform. As baselines, we compare
these tests to a test that treats mixed data as entirely continuous, and a test that treats
mixed data as categorical.

Two mixed data independence tests were evaluated in this study: a Conditional Gaussian
independence test (CG), a Multinomial Logistic Regression Test (Multinomial LRT). We
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compared those to the Fisher Z test of independence for continuous data, and a Chi-Square
test for categorical data (Spirtes et al., 2000). Due to runtime constraints, these tests were
evaluated only for datasets with 100, 300, and 500 samples. In these experiments, CPC was
used in order to compare these tests in the context of causal structure learning, because it
gave reliable structure results in the continuous data simulations, and it was highly efficient.

Table 3 depicts the accuracies of the oracle parameter selection for each independence
test on 100 variable, 100 sample datasets with the results split by different edge types: CC
are edges between continuous variables, DD are edges between discrete variables, and CD
are mixed variable edges. Many of these results are as expected, the FisherZ score is unable
to find connections involving categorical variables, as it expects linear relationships, though
due to its accuracy with continuous variables the overall result is reasonable. Due to the
loss of information when discretizing the dataset, the ChiSquare test suffers on recall for all
edge types, and when run with CPC orientations on low sample sizes, the ChiSquare test
produces very few arrowheads as it detects faithfulness violations.

The Multinomial LRT test is the only test we found able to achieve decent adjacency
recall, and the CG test achieves very high adjacency precision. No independence test is able
to detect arrowheads involving categorical data, which is expected for such low sample size.
However, the fact that the precision remains high suggests that the mixed data independence
tests can be used on this high-dimensional data regardless.

Table 2b gives results when the sample size of the data is increased to 500. The patterns
here are largely the same as the 100 sample data, except for a few striking differences. First,
the Multinomial LRT test most effectively uses the larger sample size to detect both edges
and arrowheads involving categorical variables, whereas the other methods still have very
low recall, especially for arrowheads. In terms of precision, all methods remain reliable
for both adjacency and arrowhead recovery. Overall, it is clear that the Multinomial test
performs the best regardless of edge type due to its superior edge and arrowhead recall.

Figure 3 shows the impact of parameter selection and simulation methodology for each
independence test on 500 sample data. It is clear from these plots that the selection of
the parameter has a large impact on adjacency and orientation precision for both the Fish-
erZ test and the Multinomial test, but regardless of the selection of the parameter the
Multinomial test provides superior recall for similar precision on Lee and Hastie data. For
arrowhead recovery, the results appear to be parameter independent, but very dependent
upon the simulation methodology, as Conditional Gaussian has superior recall from CG sim-
ulated data, and the Multinomial test has superior recall from LH simulated data. However,
all methods have very poor recall in CG simulations, and there isn’t a significant difference
between treating the data as mixed or treating the data as fully continuous or fully discrete.
In these experiments, StARS selects the parameter that favors recall the most (the densest
graphs), indicating that the instability threshold of 95% is not appropriate in this setting.
For causal structure learning, it is not clear whether setting a stability threshold in this way
is the best methodology to do parameter selection for mixed datasets.

Finally, Figure 4 shows the average runtime of CPC using each of the four independence
tests. Though, the Multinomial test gives substantial better graph estimation performance,
we find that the runtime could be prohibitively expensive in some cases. For large mixed
datasets, it may be more appropriate to use the CG test to avoid this expensive computation
at the expense of detection of edges and orientations.

10
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Table 2: Comparison of mixed data independence tests for 100 variable graphs with average
graph density 1.5 times the number of variables. Data was generated using the Lee and
Hastie simulation method. A * indicates that no arrowheads were predicted by the method.

(a) 100 variable, 100 sample data

Type Independence Test « AP AR AHP AHR SHD
FisherZ 0.001 0.9887 0.6703 1.0000 0.1676 43.6
cC ChiSquare 0.1 0.9411 0.4676 1.0000 0.0135 584
Multinomial LRT  0.01  0.9889 0.7081 0.9833 0.2027 41
CG 0.08 0.9370 0.7595 0.9750 0.2703 39.9
FisherZ 0.001 0.9689 0.1682 * 0.0000 121.7
cD ChiSquare 0.1 0.9324 0.2758 0.8333 0.0212 115.1
Multinomial LRT  0.01  0.8539 0.4818 0.8519 0.0303 109.2
CG 0.08 0.9857 0.0848 1.0000 0.0030 126.4
FisherZ 0.001 0.8798 0.0787 * 0.0000 91.3
DD ChiSquare 0.1 0.9482  0.3894 0.6429 0.0128 77.4
Multinomial LRT  0.01  0.8251 0.4915 0.7188 0.0426 794
CG 0.08 1.0000 0.2149 * 0.0000  83.9
FisherZ 0.001 0.9710 0.2640 1.0000 0.0413 256.6
All ChiSquare 0.1 0.9404 0.3587 0.8102 0.0167  250.9
Multinomial LRT  0.01  0.8834 0.5407 0.9175 0.0767 229.6
CG 0.08 0.9563 0.2920 0.9750 0.0680  250.2
(b) 100 variable, 500 sample data.
Type Independence Test « AP AR AHP AHR SHD
FisherZ 0.001 0.9877 0.9286 1.0000 0.5810 21.6
cC ChiSquare 0.1 0.9143 0.7881 0.9622 0.2190 48.2
Multinomial LRT  0.01  0.9974 0.9452 0.9934 0.7190 14.5
CG 0.03 1.0000 0.9262 0.9923 0.5738 21.2
FisherZ 0.001 0.9240 0.4015 0.8817 0.0574 109.6
cD ChiSquare 0.1 0.9325 0.5603 0.8729  0.0529  100.5
Multinomial LRT  0.01  0.9215 0.8118 0.9852 0.2824 71.1
CG 0.03 0.9957 0.5250 1.0000 0.0050 59
FisherZ 0.001 0.9189 0.3625 0.6250 0.0075 68
DD ChiSquare 0.1 0.9787 0.8775 0.8333 0.0575 444
Multinomial LRT  0.01  0.8938 0.9575 0.9537 0.3050 39
CG 0.03 0.9957 0.5250 1.0000 0.0050 59
FisherZ 0.001 0.9528 0.5387 0.9759  0.1907  199.2
All ChiSquare 0.1 0.9410 0.7087 0.9210 0.1007 193.1
Multinomial LRT ~ 0.01  0.9341 0.8880 0.9833 0.4107 124.6
CG 0.03 0.9967 0.6020 0.9934 0.1873 139.2
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Figure 2: Precision-Recall Plots for 100 variable, 500 sample, mixed continuous and discrete
datasets. The star refers to the average parameter values chosen by StARS.
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Figure 3: Precision-Recall Plots for 100 variable, 500 sample, mixed continuous and discrete
datasets. The star refers to the average parameter values chosen by StARS.
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Table 3: Oracle parameter selection performance with algorithms suitable for mixed data
types separated by edge type. All datasets contain 100 variables and 300 samples with
average graph density 1.5 times the number of variables.

(a) Data simulated using the Lee and Hastie model.

Type Algorithm Parameter AP AR AHP AHR SHD
Copula-PC 0.01 0.913 0906 0.986 0.399 27.950
MGM-CPCStable 0.08 0.966 0.898 0.959 0423 25.750

CcC FGES 1 0.924 0.950 0.837 0.625 22.400
MGM-PCMax 0.03 0.972 0.889 0.423 0.344 41.450
MGM-PCStable 0.08 0.966 0.898 0.479 0.710 39.850
Copula-PC 0.001 0.938 0431 0949 0.064 122.850
MGM-CPCStable 0.08 0.990 0.762 0.967 0.218 83.050

CD FGES 1.5 0974 0.778 0.716 0.379 80.950
MGM-PCMax 0.08 0.990 0.762 0.421 0.284 105.250
MGM-PCStable 0.08 0.990 0.762 0.48 0.599 101.600
Copula-PC 0.001 0.926 0.234 0.250 0.001  65.200
MGM-CPCStable 0.08 0.926 0.529 0.947 0.157 52.750

DD FGES 1 1.000 0.490 0.616 0.141  55.100
MGM-PCMax 0.01 0.954 0526 0.323 0.141  60.100
MGM-PCStable 1E-4 0976 0522 0457 0.336 57.300
Copula-PC 0.001 0.954 0484 0.969 0.103 217.200
MGM-CPCStable 0.08 0976 0.735 0.960 0.251 161.550

All FGES 1 0.963 0.745 0.747 0377 158.650
MGM-PCMax 0.08 0976 0.735 0.408 0.266 207.900
MGM-PCStable 0.03 0.982 0.727 0.481 0.558 199.950

(b) Data simulated using a Conditional Gaussian model.

Type Algorithm Alpha AP AR AHP AHR SHD
Copula-PC 1E-4 0.918 0.297 1.000 0.078 70.500
MGM-CPCStable 0.03 0.972 0374 0975 0.104 65.350

CC FGES 2 0.862 0.498 0.765 0.314 58.850
MGM-PCMax 0.03 0.969 0374 0.261 0.087 73.550
MGM-PCStable 0.03 0.972 0374 0.384 0.194 71.850
Copula-PC 1E-4 0.859 0.159 0.983 0.029 164.400
MGM-CPCStable 0.08 0.944 0.225 0.965 0.048 155.550

CD FGES 1 0.825 0.374 0.719 0.198 144.100
MGM-PCMax 0.01 0.958 0.222 0.319 0.049 164.300
MGM-PCStable 0.01 0.956 0.222 0.432 0.122 161.300
Copula-PC 1E-4 0.885 0.204 1.000 0.042 81.450
MGM-CPCStable 0.05 0.980 0.296 0.940 0.064 75.050

DD FGES 1 0.893 0.408 0.773 0.212 68.500
MGM-PCMax 0.05 0.980 0.296 0.321 0.070  80.750
MGM-PCStable 0.03 0.980 0.296 0421 0.156 79.700
Copula-PC 1E-4 0.902 0.203 0.994 0.045 316.350
MGM-CPCStable 0.08 0.960 0.279 0.952 0.069 296.000

All FGES 1 0.854 0.410 0.750 0.227 271.600
MGM-PCMax 0.03 0.966 130.278  0.310  0.065  319.050
MGM-PCStable 0.03 0.967 0.278 0.429 0.149 313.000
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Figure 4: Algorithm runtime on mixed datasets with varying sample size. Each bar is
averaged over all parameter values for the algorithm.

3.4 Evaluation of Structure Learning Algorithms from Mixed Data

Finally, we examine the ability of causal structure learning algorithms to estimate a causal
graph from mixed data, by using the CausalMGM method as a preprocessing step. In
particular, our goal is to compare the downstream constraint-based algorithms against
one another and against the score-based FGES, and not to demonstrate the usefulness
of CausalMGM, as other empirical evaluations have shown this (Sedgewick et al., 2017).
For all algorithms, we use the Multinomial LRT as the conditional independence test based
upon its performance in the prior section. To select parameters for CausalMGM, StEPS
was used, as it is known to select accurate parameter values (Sedgewick et al., 2016). We
were unable to test StARS to select downstream orientation algorithm parameters due to
runtime constraints. For FGES, we use the recently described Conditional Gaussian score
with the binomial structure prior. For a fair comparison, we simulate data using both the
Lee and Hastie model which suits the assumptions of both algorithms, and the Conditional
Gaussian model which only fits the assumptions of FGES.

First, we describe the performance of each algorithm on datasets with only 300 samples
when its optimal parameter is chosen, split by each type of edge (Table 3). We focus on
this high-dimensional setting for mixed data experiments because researchers are frequently
posed with this problem when trying to generate hypotheses on real datasets. We first note
that all algorithms perform well in terms of adjacency precision and recall (Table 3a).
In general, MGM-CPC-Stable has excellent precision in both adjacencies and orientations
regardless of which simulation method is used. In terms of recall, especially when datasets
are mostly continouus, FGES is the best performing method, and can give high recall (0.858)
with decent precision when its modeling assumptions are met (Conditional Gaussian data,
Table 3b). The major difference between FGES and MGM-CPCStable is just a tradeoff
between better recall (FGES) vs. better precision (MGM-CPCStable). For all results across
parameter settings, we refer the reader to the supplementary material.
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Next, we investigate how changing parameter settings (« for constraint-based searches
and the binomial structure prior for FGES) affects the performance of algorithms across
sample sizes (Figure 5). We first note that Copula-PC is unable to run in experimental
settings where the number of variables is greater than or equal to the number of variables.
In 500 sample size settings, Copula PC tends to be greatly affected by the choice of pa-
rameter, but with a conservative parameter choice, the algorithm gives good precision but
low recall. When using CausalMGM as a first step, the constraint-based algorithms do not
appear to be affected much by the choice of o with datasets of more than 100 samples,
and FGES appears to be consistent across parameter choice in nearly all experimental set-
tings. It appears that MGM-PC-Stable outperforms MGM-PC-Max in orientation recovery,
and since these methods have nearly identical adjacencies in all cases, the results suggest
that it is never preferable to run MGM-PC-Max. In addition, with Conditional Gaussian
simulated datasets, FGES outperforms both of the aforementioned methods regardless of
sample size, whereas with Lee and Hastie assumptions, FGES tends to have worse recall
with improved precision when compared to MGM-PC-Stable. Finally, CPC-Stable main-
tains high precision in all instances with low recall in all cases except for low-dimensional
Lee and Hastie data. This suggests that MGM-CPC-Stable could be used as a first pass
to gather reliable orientation information before trying another method if more predictions
are desired (e.g. FGES). We have repeated all experiments with denser graphs (number
of edges is on average 2.5 times number of variables),and found that all results remain the
same except adjacency recall is lower for all methods (Supplementary Material). For an
investigation of mixed data methods with and without CausalMGM we refer the reader to
(Sedgewick et al., 2017). Finally, we note that in terms of runtime efficiency all algorithms
complete in less than a second on 100 variable size data.

4. Discussion

In this work, we have presented a thorough empirical evaluation of algorithms for causal
structure learning on continuous and mixed datasets. We specifically look at high dimen-
sional settings (low sample size), because this is the nature of most biomedical problems.
Our results indicate that even in these settings, constraint-based causal discovery algorithms
are more precise in edge predictions at the expense of recall which could be attributed to
the repeated independence tests that are performed on particular edge. FGES can achieve
superior causal orientation performance on continuous data but the selection of the penalty
parameter is very important to its recall. For continuous datasets, we find that using StARS
to do parameter selection gives reasonable results at the 95% stability threshold.

On mixed datasets, we find that using tests specifically tailored to mixed data gives a
significant boost in recall, especially when the data has enough statistical power to detect
associations among categorical variables. We further find that the Multinomial LRT test
gives the best recall for equal precision; however, it is much more computationally demand-
ing than treating the data as all continuous or discrete or using a CG test. We further
find that parameter selection can have a large impact on the results, and StARS with a
95% threshold does not give a good tradeoff between precision and recall on mixed data.
Therefore, it remains an open question how to set this parameter to achieve good accuracy.
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Figure 5: Arrowhead recovery for mixed data algorithms on datasets with different simu-
lation parameters. All graphs had 100 variables and average density 1.5 times the number
of variables. The first row depicts Lee and Hastie simulated data, while the second row
depicts Conditional Gaussian. The first column is 100 sample size, and the second column

is increased to 500 samples.
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Finally, as expected, we find that when the sample size is limited, both edge discov-
ery and edge orientation suffer. We find that when using CausalMGM, PC-Stable has a
significant advantage over using PC-Max in terms of recall, and CPC maintains high preci-
sion in all cases. The choice of parameter for all of these algorithms has a large impact in
the low sample size setting (100 variables, 100 samples). FGES achieves the best recall in
both adjacencies and orientations; however, this benefit is only marginal in low sample size
cases. Depending upon the use case, the nearly perfect precision of MGM-CPC-Stable may
be preferable to using FGES unless more predictions are required (in tasks like hypothesis
generation for cheaper experiments).

For future work, we intend to explore the effect of latent confounding, for which we have
done some preliminary analysis (Raghu et al., 2018). Our major experimental question
is whether using an algorithm such as Fast Causal Inference (FCI) which gives theoreti-
cal correctness guarantees in the presence of confounding is always better than a simpler
constraint-based algorithm that does not account for latent variables. In addition, we hope
to include stability selection approaches like Bootstrapping or Stability Selection to see
whether these can alleviate the problem of parameter selection, as StARS does not appear
to have great benefit on mixed datasets.
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