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Abstract

We consider the problem of learning causal relationships in continuous additive noise models
(ANM) from a machine learning perspective. Causal discovery from ANMs has primarily
focused on testing for independence between the residuals and the true parent set of a
variable. We posit that this unique association between residuals and the true parent set can
be leveraged with kernel mean embedding to predict causal relationships in observational
data. In particular, we propose a framework that finds useful patterns and constructs the
causal graph by predicting the true parent set of each variable. We present an analysis
of the patterns from kernel mean embeddings that explains their discriminative ability
in predicting causal relationships. Finally, we perform simulations that demonstrate the
effectiveness of our method.

Keywords: Causal relationship, structural equation models, additive noise, kernel mean
embedding, classification

1. Introduction

Distinguishing cause from effect is an important task to reveal meaningful insights in several
domains. For example, identifying novel causal associations between climatological factors
and seasonal rainfall in a geographical region can aid climate scientists to develop new hy-
potheses. Likewise in biology, performing gene-knockout experiments can establish causality
between a gene and a phenotype (such as disease status). The gold standard approach of
identifying such relationships in a system is to carry out randomized control experiments
(RCEs). RCEs use external interventions to manipulate a particular factor, then measure
the change in the variable of interest. In practice, collecting such experimental data using
RCEs might be expensive, time consuming and even unethical. On the other hand, a vast
amount of observational data is easily available, but is accompanied by its own set of com-
plexities such as high-dimensionality, missing ground-truth to validate causal relationships
and smaller sample size. Causal discovery using observational data has contributed signifi-
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cantly towards understanding the mechanism of complex systems (Ebert-Uphoff and Deng,
2014; Maathuis et al., 2010).

Traditional causal discovery methods such as constraint-based, search-and-score and
hybrid methods output a partially directed graph that represents a set of Markov equiv-
alent causal graphs. These structures encode the same set of conditional independence
relationships but not all causal relationships can be determined. On the other hand, causal
discovery using additive noise models (ANM) has gained much attention given their ability
of identifying exact cause-effect relationships (Shimizu et al., 2006; Mooij et al., 2009; Hoyer
et al., 2009; Janzing et al., 2012; Peters et al., 2014). The presence of non-linearity in the
data generating process coupled with additive noise structure has made it possible to fully
discover directed acyclic causal graphs. The main idea is to detect asymmetry between the
cause and effect using regression and statistical tests to establish causality (Shimizu et al.,
2006; Hoyer et al., 2009). This idea has been extended from a two-variable case to construct
causal graphs in a multivariate setting (Shimizu et al., 2006; Janzing et al., 2012; Peters
et al., 2014). Overall, these methods output better quality of causal graphs which were
previously restricted to a set of Markov equivalent graphs.

More recently, the problem of causal discovery in a bivariate case has been presented as
a learning problem (Guyon, 2013, 2014). Given two variables X and Y the goal is to predict
the causal relationship between them. These competitions have brought forward another
opportunity of solving the problem of causal discovery from a machine learning perspective.
Encouraging results have been obtained in predicting the true causal relationship between
two variables (Lopez-Paz et al., 2015a,b; Fonollosa, 2016). These methods extract features
from the input random variables and train classifiers. Their prediction performance has
been shown to outperform the state-of-the-art methods. However, there has been no work
on constructing a complete multivariate causal graph purely by learning patterns that can
predict causal relationships.

In this work, we present a Causal Relationship Prediction in Additive Noise Models
(CRPAM) framework that learns patterns from the true parents and the non-parents of a
given variable, X, and predicts causal relationships. Informally, we define a non-parent as
any variable that is not a parent or an ancestor of X. To this end, we use a characteristic
kernel to featurize: 1) the residuals from regressing X on its parents, and 2) residuals from
regressing X on its non-parents. Our major contributions are as follows,

1. We present the first method to construct a multivariate causal graph purely by finding
discriminative patterns between a variable and its parents, and its non-parents.

2. We develop an approach with kernel mean embedding for creating a training set that
is used to train a nonlinear binary classifier.

3. We perform simulations to compare the effectiveness of our method with state-of-the-
art causal discovery methods.

4. We present an analysis of the patterns from kernel mean embeddings and illustrate
their discriminative ability.
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2. Preliminaries

In this section, we define the concepts and notations that will be used throughout the paper.

Definition 1 A causal graph G over a variable set X is defined as a graph containing
directed edges and no directed cycles. A directed edge Xj → Xi indicates a causal relation-
ship between Xj and Xi, where Xj is the direct cause or the parent and Xi is the effect or
the child. We denote pai as the parent set of Xi.

Definition 2 A path in a causal graph G is defined as a sequence of at least two dis-
tinct adjacent nodes (variables). A directed path between Xi and Xj is a path with all
edges oriented in the same direction.

Definition 3 An ancestor of variable Xi is a variable that has a directed path towards Xi.
We denote ani as the variable set containing all the ancestors of Xi.

Next, we define two kinds of additive noise models (ANM) namely linear structural equa-
tion models (Linear SEMs) and nonlinear structural equation models (Nonlinear SEMs).

Definition 4 (Shimizu et al., 2006): A linear SEM with a causal graph G represents
each variable as a linear function of its direct causes and an additive non-Gaussian noise
structure,

Xi =
∑
j∈pai

βijXj + εi (1)

where βij are non-zero causation coefficients for all i ∈ {1, 2, ..., p} and j ∈ pai, and all εi
are mutually independent.

Definition 5 (Hoyer et al., 2009): A nonlinear SEM with a causal graph G represents
each variable as a nonlinear function of its direct causes and normally distributed noise
structure εi,

Xi =
∑
j∈pai

fij(Xj) + εi (2)

where the function fij() is nonlinear and three times differentiable.

Definition 6: In a causal graph G defined over a variable set X, we define three sets
of variables for a variable Xi ∈ X with at least one parent,

1. True parent set of Xi contains all the variables that are direct causes of Xi. In
other words, any variable is adjacent to Xi and has a directed edge towards Xi is part
of its true parent set. We denote it as Xpai

.

2. Non-parent set of Xi is the set of variables that do not have any causal influence
on Xi. Any variable that does not have a direct edge or a directed path towards Xi

is a non-parent of Xi. We denote the non-parent set as Xnon pai
.

3. Mix parent set contains all the variables that are ancestors of Xi. We denote the
mix parent set as Xmix pai

.
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We assume there are no hidden common causes of variables in the observational data.
In other words, we assume causal sufficiency. We also assume that the underlying causal
graph in the observational data is acyclic, i.e., there exist no directed cycles in the graph.

3. Related work

The field of causal discovery has seen several interesting developments over the past few
years. Traditional causal discovery methods such as the constraint-based PC algorithm
(Spirtes et al., 2000) and its extensions (Colombo and Maathuis, 2014; Colombo et al., 2012;
Le et al., 2016; Chaudhary et al., 2017), search-and-score based methods such as Greedy
Equivalent Search (GES) (Chickering, 2002), Fast Greedy Equivalent Search (fGES) (Ram-
sey et al., 2017), and hybrid methods such as Max-Min Hill Climbing (MMHC) (Tsamardi-
nos et al., 2006) have delivered promising results. These methods output a partially directed
graph (PDAG) that represents a Markov equivalent class (MEC) of graphs. Every MEC
graph encodes the same conditional independence relationship and the true causal graph is
expected to be one of the markov equivalent graphs.

Identifying exact causal identities in the output graph has become possible by introduc-
ing assumptions about the data generating process. One of the first works that presented
promising results was the Linear Non-Gaussian Additive Model (LiNGAM) (Shimizu et al.,
2006). LiNGAM is able to recover the entire causal graph assuming that the data generat-
ing process is additive, linear and the noise structure follows a non-Gaussian distribution.
Inspired by LiNGAM’s success, several methods were developed that could recover the exact
causal graph. The Post-Nonlinear Model (PNL) was developed to find true causal graphs
when the data is generated with nonlinear effect of the causes and the noise variables (Zhang
and Hyvärinen, 2008). Another set of methods use nonlinear regression and p-values from
kernel-based statistical tests to identify the true parents of a variable (Hoyer et al., 2009;
Mooij et al., 2009). The idea behind these methods is to regress a variable on different
sets of the remaining variables, and test for independence between the residuals and the
variable set. The smallest variable set that leads to independence is considered as the true
parent set. This process is repeated for every variable in the data. An improvement over
these methods was proposed by using the least dependent residuals instead of relying on
the p-values of the hypothesis test (Peters et al., 2014).

Recently, causal discovery has been presented as a learning problem of classifying the
causal relationships between two variables (Guyon, 2013, 2014). The training set consists
of a large number of cause-effect samples {(Si, li)}ni=1 where each sample consists of data
collected over two random variables X and Y . A sample is a tuple, {(xij , yij)}ni

j=1 attested
with a binary label li which indicates different types of relationships. Two state-of-the-art
methods have emerged from these competitions by developing new features that are used to
learn the patterns between different types of causal relationships (Lopez-Paz et al., 2015b;
Fonollosa, 2016). However, these methods are not developed to build an entire multivariate
causal graph.

In this work, we develop the first causal relationship prediction framework that builds a
causal graph by predicting the true parent set of each variable. Our framework is developed
for causal graphs generated from additive noise models.
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4. Method

In this section we present the details of the causal relationship prediction in additive noise
models (CRPAM) framework. There are three main steps involved, first simulate causal
graphs and for each variable having at least one parent, build regression models by regressing
the variable on its parents and non-parents respectively (Section 4.1). Second, embed the
distributions of the residuals and the regressors from the regression models with kernel
mean embedding (Section 4.2) and third, train a binary classifier to learn the patterns of
the parents and the non-parents to predict the causal relationships in the observational data
(Section 4.2).

4.1 Data partition for building regression models

Causal discovery between two variables X and Y generated from an additive noise model,
Y = βX + εY , can be performed by fitting two regression models: 1) a forward model
Y ∼ X + εY and 2) a reverse model X ∼ Y + εX . Assuming the data follows a non-
Gaussian distribution, the residuals from the forward model εY should be independent of
X, and the causality X → Y would be inferred. The Linear Non-Gaussian Additive Model
(LiNGAM) was the first method to develop this idea. Several methods were later developed
to exploit this property between the residuals and a parent set to identify the true parent
set of each variable.

Our framework borrows the inspiration of the unique association between the residuals
and the parent set to learn different patterns. In contrast to existing methods we do
not perform statistical tests to identify the parent set. Instead, our aim is to find patterns
between the residuals obtained by regressing a variable, Xi, on its parents, and the residuals
from non-parents. We define a non-parent set as a set of variables that does not contain
the parents and ancestors of Xi (see Definition 6). Regressing a variable, Xi, on its parent
set yields a unique set of residuals that cannot be obtained from any other variable set.
We posit that this pattern of residuals from the parent set is distinct from the pattern of
residuals from any other variable set not containing the parent set. This idea forms the
intuition of our method.

Assuming the underlying causal graph is sparse, we simulate data sets from ncg = 10
different causal graphs with p variables and sparsity level pcon = 2/(p − 1), where p is the
number of variables in the observational data. We explain the process of creating features
from a causal graph, Cg, where 1 ≤ g ≤ ncg and repeat this process ncg times to build the
training set. First, we generate ntrain = 100 random data sets of sample size, n, from a
simulated causal graph, Cg. Next, we identify the variables having at least one parent in
the causal graph. These variables are referred to as the child variables, Xchild. For each
Xi ∈ Xchild, we create three groups of variables. The first group contains variables that are
parents of Xi denoted by Xpai

, the second group contains variables that are neither parents
nor ancestors of Xi denoted by Xnon pai

, and the third group consists of all the parents
and ancestors of Xi, and it is denoted by Xmix pai

(see Definition 6). Note that there is
one set of variables in Xpai

since there can be only one parent set of Xi. As a result, we
obtain one set of residuals from the parent set. On the other hand, any variable that does
not have a directed path towards Xi is its non-parent. As a result, the number of variable
combinations from Xnon pai

can be exponential. This creates a significant imbalance in the
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distribution of residual patterns that can be learned from the parent set and the non-parent
set. To prevent this imbalance, we created a third group of variables called the mix parent
set, Xmix pai

, which contains all the variables in Xpai
and any variable that has a directed

path towards Xi. We believe that by including the parent set in Xmix pai
, the residuals

obtained by regressing Xi against the variables in this set would be similar to the residuals
obtained from regressing against Xpai

.

In the next step, we build regression models to record the residuals of Xi where the
regressors are chosen from: Xpai

, Xnon pai
, and Xmix pai

respectively. The regression model
for the variable set, Xpai

, consists of the parent set as the regressor. On the other hand,
there can be an exponential number of combinations to build a regressor set from Xnon pai

and Xmix pai
respectively. To prevent an unnecessary computational load of building a

large number of regression models, we randomly select few variable sets of different sizes.
We create rnon pai sets of randomly chosen variables from Xnon pai

where the size of these
variable sets can grow from 1 to snon pai . As mentioned earlier, Xmix pai

contains the
parents and ancestors of Xi. We build rmix pai regressor sets of a given size from Xmix pai

,
where each regressor set is formed by taking the union of all the parents and randomly
chosen ancestors. The size of the variable sets chosen from Xmix pai

can grow from npai + 1
to npai + smix pai , where npai is the number of variables in Xpai

. Thus, a total of nreg =
1 + rnon pai · snon pai + rmix pai · smix pai regressor sets are generated and an equal number of
regression models are built. The residuals and the corresponding regressor sets from nreg
regression models are recorded. We refer to a function v() that takes as input a variable, Xi

and a variable set to produce a set of residuals and the corresponding regressor sets. This
is illustrated as follows,

v(Xi,Xpai
) = {(εij , Xpaij )}

ntrain
j=1 (3)

v(Xi,Xnon pai
) = {{(εijk, Xnon paijk)}ntrain

j=1 }
rnon pai ·snon pai
k=1 (4)

v(Xi,Xmix pai
) = {{(εijk, Xmix paijk)}ntrain

j=1 }
rmix pai

·smix pai
k=1 (5)

We denote Spai
= {(εij , Xpaij )}

ntrain
j=1 to contain the samples generated from equation 3.

Similarly, Snon pai
and Smix pai

contain the samples from equations 4 and 5 respectively.

4.2 Feature creation with kernel mean embeddings

For any prediction problem, one of the main concerns is to find the feature space that
gives the best prediction performance. In order to find the discriminative patterns, we use
kernel mean embedding to project the residuals and the corresponding regressor set into
a new feature space. Recently, kernel mean embeddings have been used to create features
by projecting the probability distribution P over a set of variables in d-dimensional space,
Rd, using a kernel function k. Specifically, the randomized causation coefficient (RCC) was
developed to featurize the distributions to predict causal relationships in a bivariate case
(Lopez-Paz et al., 2015a,b). The mathematical notation of a kernel mean embedding of a
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probability distribution P over a variable set in Rd is shown below,

µk(P ) =

∫
Rd

k(x, .)dP (x) ∈ Hk (6)

where Hk is the reproducible kernel Hilbert space (RKHS) associated with the kernel func-
tion k. The prediction performance of RCC outperformed state-of-the-art methods when
evaluated on an independent test set. However, their method has not been developed to
construct the full multivariate causal graph. Nonetheless, motivated by their results, we
use kernel mean embeddings to create features from the distributions of the residuals and
the corresponding set of regressors to build the training set.

In this work, we calculate the embeddings by computing the kernel matrix K from
the empirical distribution. Specifically, we consider the gaussian kernel function, k, for
embedding the distributions due to its attractive property of uniquely projecting every
distribution into a new feature space i.e., ||µk(P ) = µk(Q)|| iff P = Q. The mapping of two
samples x and x′ with the Gaussian kernel is defined by the following equation,

k(x, x′) = exp
(
− γ‖x− x′‖22

)
(7)

where γ > 0 and is known as the inverse kernel width.
In the previous subsection we explained how three different groups of variables: Xpai

,
Xnon pai

and Xmix pai
are used to generate the sample sets, Spai

, Snon pai
and Smix pai

(see equations 3-5). Each sample set contains the empirical distribution of the residuals
and the regressor sets. For the parent set of a variable Xi, we refer to these distributions as
Pεi,pai and PX,pai respectively. These distributions are featurized by embedding them into
kernel matrices using the gaussian kernel function. Thus, for a given pair of residuals and
regressor set, we compute three kernel matrices: Kεi , Kpai and Kεi,pai . To summarize the
information contained in a kernel matrix, we take the column-wise mean over the matrix
and featurize the distributions as illustrated in the following equation,

mk(Pεi,pai , PX,pai) =
{(

Kpail ,Kεil ,Kεil,pail

)}|Spai
|

l=1
(8)

where Kpail , Kεil , and Kεil,pail represent the column-wise mean vectors of the corresponding
kernel matrices Kpail , Kεil and Kεil,pail .

The output of this equation is a matrix with the number of rows equal to the number of
pairs of residuals and regressor sets in Spai

, and the number of columns equal to 3 ·n where
n is the number of observations in the data. Likewise, the empirical distributions from the
sample sets Snon pai

and Smix pai
are featurized using the above equation.

In the last step we attest a class label for every pair of featurized residual and regressor
set that will be used as the ground truth for training a classifier. Recall from section 4.1
that every regressor set from Xmix pai

will be a superset of the parent set, Xpai
, therefore

we expect the residual embeddings obtained from these two variable sets to be similar to
each other than to Xnon pai

. Based on this assumption, every pair of featurized residuals
and regressor set from Xpai

and Xmix pai
is labeled as “+1”, and the featurized residu-

als and the regressor sets from Xnon pai
are labeled as “0”. The embedded distributions

of the residuals and the regressor sets: mk(Pεi,pai , PX,pai), mk(Pεi,non pai , PX,non pai), and
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mk(Pεi,mix pai , PX,mix pai) generated from a causal graph Cg are combined row-wise to form
a part of the training set.  (mk(Pεi,pai , PX,pai),+1)

(mk(Pεi,non pai , PX,non pai), 0)
(mk(Pεi,mix pai , PX,mix pai),+1)

 (9)

The above mentioned process is repeated for each variable in causal graph Cg, and then
performed for ncg simulated causal graphs. The training set is built by combining all the
embedded distributions from ncg graphs.

A random forest classifier is used to learn the patterns of parents and non-parents
from the training set. The classifier is then used to predict causal relationships in the
observational data. Prior to making predictions, we need to convert the observational data
in the same feature space as the training set. The projection of the observational data into
this new feature space is simpler than the training set since the parents and non-parents
are not known. Thus we do not have to create separate sample sets for creating features.
Instead, for each variable Xj in the observational data, we create a combination of variables
that will be considered as its parent set. These variable sets are featurized as per the
steps mentioned in Sections 4.1 and 4.2. From hereon, we will refer to the transformed
observational data as the test set. While generating combinations of variables, the size of
the combinatorial variable set can grow from 1 to stest. Note that we do not set the value
of stest higher than the maximum size of the variable set used to build the training set. In
other words, stest is always less than or equal to max(snon pai , npai + smix pai). Deciding
the value of stest is a trade-off between time consumption and accuracy. Initializing stest to
a high value creates exponentially more combinations of variables for building the test set.
As a result, this increases the runtime to featurize the distributions.

Once the classifier is trained, for each variable in the test set we predict whether a
variable combination is closer to the pattern of a parent set or a non-parent set. Ideally,
if there exists a parent set of a variable, the classifier should predict only the variable
combination containing the parent set as the true parent set. Unfortunately, this does not
happen in practice and the classifier often predicts more than one combination of variables
as the true parent set. We develop a heuristic to aggregate these predictions. To do this,
we keep a track of the frequency of each variable being predicted as the true parent set. In
the end, the predicted parent set contains the variables having more than 50% frequency.

5. Simulations

We perform a series of simulations to evaluate the effectiveness of the proposed causal
relationship prediction framework.

5.1 Synthetic Data

We simulate ncg = 10 synthetic sparse causal graphs of p variables to build the training
set. The value of p is equal to the number of variables in the observational data. To
enforce sparsity, we set the probability of an edge being present between two variables to be
pcon = 2/(p−1). The resulting causal graph is expected to have p edges which is considered
as a sparse setting (Peters et al., 2014). We generate ntrain = 100 synthetic datasets for
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each causal graph and leverage the true causal relationships to build the training set (see
Section 4). While building the regression models, for any child node, Xi ∈ Xchild, we
initialize rnon pa = 3, rmix pa = 2, 1 ≤ snon pai ≤ 4, and 1 ≤ smix pai ≤ 3. These values are
chosen after conducting several experiments and observing their impact on runtime. We
test the framework to predict causal relationships in test set with variables p = {10, 15}
across two different sample sizes, n = {100, 200}. While embedding the test data into the
new feature space, we initialize stest = 5 for p = 10, and stest = 3 for p = 15. We initialize
the inverse kernel width, γ = 1 to generate the kernel embeddings as shown in equation 7.

We generate 20 test sets from a linear as well as a non-linear setting for a given set
of variables and sample size. For the linear setting, we use linear regression and for the
non-linear setting we use generalized additive model regression to obtain the residuals. The
output causal graph is evaluated in terms of the structural hamming distance (SHD) which
calculates the number of edges to be added, removed or flipped in the estimated causal graph
to match the true causal graph; the accuracy value d =

√
(1− precision)2 + (1− recall)2

where precision is the fraction of true edges found in the estimated causal graph, and recall
is the fraction of true edges in the estimated graph that are also present in the true causal
graph.

We compare the performance of CRPAM against regression with subsequent inde-
pendence test (RESIT), greedy DAG search (GDS), linear non-Gaussian additive models
(LiNGAM), the PC algorithm with Fisher’s Z test and significance level of 0.05, the greedy
equivalence search (GES), and max-min hill climbing algorithm (MMHC).

5.1.1 Models for Data Generation

We simulate training set and test set from two kinds of models: linear structural equation
models and non-linear structural equation models (see Definition 4 and 5). We follow
the procedure mentioned in (Peters et al., 2014) and use their publicly available code1 to
simulate causal graphs and synthetic data sets. In the linear setting, each variable is a linear
combination of its parents and an additive non-Gaussian noise variable (see Definition 4).
The coefficients βij are uniformly chosen from [-2, -0.1] ∪ [0.1, 2] and the noise variables
are independent and distributed according to Ei · sign(Mi) · |Mi|αi where Mi is normally
distributed with mean 0 and standard deviation 1, Ei is uniformly distributed between [0.1,
0.5] and αi is also uniformly distributed between [2, 4]. We also generate test data sets
from nonlinear SEMs (see Definition 5). The nonlinear functions fij are sampled from a
Gaussian process with bandwidth one.

Table 1 summarizes the performance of the CRPAM framework against state-of-the-art
causal discovery methods with Linear SEMs. We observe that CRPAM has the lowest SHD
in two out of four cases and the next best SHD in the remaining two cases. The performance
of CRPAM improves with increasing sample size. The PC and GES algorithms have the
lowest accuracy value d in most cases with GES having slightly better mean SHD values
than PC. However, their SHD values are not the lowest which indicates that the output
graph contains false positives or the output edges have incorrect orientations or it could
be both. LiNGAM and MMHC have the lowest SHD values in one case each. However,
LiNGAM performs better with increasing sample size and its SHD values are lower than

1. https://github.com/bquast/ANM/tree/master/codeANM
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Table 1: Performance metrics for Linear Structural Equation Models on sparse causal
graphs, pcon = 2/(p − 1). The reported metric is its mean value over 20 simulations.
The best performance is highlighted.

CRPAM RESIT GDS LiNGAM PC GES MMHC

p = 10, n = 100

SHD 7.3 ± 3.3 14.7 ± 3.8 8.3 ± 4.5 7.5 ± 2.8 8.4 ± 3.4 7.3 ± 2 6.6 ± 3.9

d 0.4 ± 0.2 0.7 ± 0.1 0.6 ± 0.3 0.7 ± 0.1 0.4 ± 0.2 0.3 ± 0.1 0.4 ± 0.2

p = 15, n = 100

SHD 8.7 ± 3.5 25.9 ± 11.8 14.3 ± 5.2 10.2 ± 2.4 11.6 ± 3.6 10.7 ± 3.1 9.8 ± 3.1

d 0.5 ± 0.2 0.8 ± 0.1 0.7 ± 0.2 0.7 ± 0.1 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.1

p = 10, n = 200

SHD 3.8 ± 2.8 15.8 ± 7.7 4.9 ± 3.2 4.4 ± 3 7 ± 3.6 6.7 ± 4 6 ± 3.5

d 0.3 ± 0.2 0.6 ± 0.2 0.3 ± 0.2 0.4 ± 0.2 0.3 ± 0.2 0.3 ± 0.2 0.4 ± 0.2

p = 15, n = 200

SHD 7.3 ± 3.4 36.6 ± 10.7 11.1 ± 5.5 6.8 ± 2.8 11 ± 3.7 10.3 ± 3.8 8.4 ± 3.4

d 0.4 ± 0.1 0.8 ± 0.1 0.5 ± 0.2 0.4 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.4 ± 0.2

all the methods except CRPAM. While the accuracy value d of CRPAM is not the best in
all cases, it is consistently better than RESIT, GDS, LiNGAM and MMHC. There is no
method that performs the best in all cases across both performance metrics. Nonetheless,
one can conclude that CRPAM and LiNGAM seem to perform better compared to other
methods.

Table 2 presents the results with non-linear SEMs. We observe that CRPAM signifi-
cantly outperforms all the other methods. The mean values of SHD and accuracy value d
output by CRPAM are the lowest in all cases. There is a minimum difference of at least 3
and 0.2 in the mean values of SHD and d respectively when compared with the next best
performing method. Note that both CRPAM and RESIT make use of the nonlinearity of
the functions in the SEMs to identify causal relationships. However, the features extracted
by CRPAM seem to have greater discriminative power in identifying the parents than RE-
SIT. These results suggest that there is a distinct pattern in the embeddings of the parents
that differentiates them from the non-parents.

Motivated by the performance of CRPAM with nonlinear SEMs we also perform another
set of experiments. We increase the complexity of the simulated causal graphs by setting
pcon = 2× 2/(p− 1) so that the probability of an edge between two variables is twice that
in sparse causal graphs. We refer to this setting as dense causal graphs. Next, we generate
data with p = {10, 15}, n = 100 and compare the performance with the other methods. All
the parameters used in the previous experiments remain the same as mentioned in Section
5.1. The results are presented in Table 3. We observe that CRPAM continues to outperform
all the methods in terms of both SHD and accuracy d. The next best performing method
has 1.5 times the mean SHD value than CRPAM and at least 1.4 times the mean accuracy
d.
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Table 2: Performance metrics for Nonlinear Structural Equation Models on sparse causal
graphs, pcon = 2/(p − 1). The reported metric is its mean value over 20 simulations. The
best performance is highlighted.

CRPAM RESIT GDS LiNGAM PC GES MMHC

p = 10, n = 100

SHD 4.6 ± 3.3 8.9 ± 3.6 9 ± 4.9 10.9 ± 3 10.7 ± 3.3 14 ± 4.6 9.8 ± 3.2

d 0.2 ± 0.2 0.6 ± 0.2 0.5 ± 0.2 0.8 ± 0.2 0.5 ± 0.1 0.6 ± 0.2 0.6 ± 0.1

p = 15, n = 100

SHD 4.6 ± 2.9 14 ± 5.3 16.6 ± 6 14 ± 3.4 13.6 ± 3.5 22.7 ± 5.1 12 ± 4.2

d 0.3 ± 0.2 0.7 ± 0.2 0.6 ± 0.2 0.9 ± 0.2 0.5 ± 0.2 0.8 ± 0.2 0.5 ± 0.2

p = 10, n = 200

SHD 2.7 ± 2.5 5.8 ± 4 8 ± 5.1 10 ± 3 9.3 ± 3.2 13.3 ± 5 8.2 ± 3.3

d 0.1 ± 0.1 0.4 ± 0.2 0.5 ± 0.1 0.5 ± 0.2 0.5 ± 0.2 0.7 ± 0.2 0.5 ± 0.2

p = 15, n = 200

SHD 2.7 ± 3 9 ± 3.7 13.9 ± 8 14.4 ± 3.8 12.3 ± 3.5 23.3 ± 7.4 11.1 ± 4.4

d 0.2 ± 0.2 0.4 ± 0.1 0.5 ± 0.2 0.6 ± 0.1 0.5 ± 0.1 0.7 ± 0.1 0.4 ± 0.2

Table 3: Performance metrics for Nonlinear Structural Equation Models on dense causal
graphs, pcon = 2 × 2/(p − 1). The reported metric is its mean value over 20 simulations.
The best performance is highlighted.

CRPAM RESIT GDS LiNGAM PC GES MMHC

p = 10, n = 100

SHD 11.2 ± 4.6 17.3 ± 5.6 20.4 ± 5.4 18.8 ± 3.9 18.2 ± 3.6 21.6 ± 4.5 16.6 ± 3.4

d 0.3 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.7 ± 0.1

p = 15, n = 100

SHD 16.7 ± 8.3 32 ± 8.8 36.1 ± 9 29.5 ± 6.4 28.2 ± 6.9 39.2 ± 7.8 26.4 ± 7.5

d 0.5 ± 0.2 0.8 ± 0.1 0.7 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.7 ± 0.1

5.1.2 Feature Analysis

The prediction performance of CRPAM on linear SEMs and nonlinear SEMs is driven by
the features created using kernel mean embedding (see Section 4.2). We provide some
understanding behind the behavior of our framework by presenting a visual analysis of the
distribution of the features in the training sets and their importance in training the classifier.
Recall from equation 9 that the distributions of the residuals and the corresponding regressor
sets across three sample sets were embedded into a new feature space. The features from
the true parent set are stored in mk(Pε,pa, PX,pa), the features from the non-parent set are
stored in mk(Pε,non pa, PX,non pa), and the features from the third group with the mix parent
set are stored in mk(Pε,mix pa, PX,mix pa).

Figures 1 and 2 summarize the information contained in the training set with p = 10
and n = 100 for linear SEMs and nonlinear SEMs respectively. In particular, we present
the mean and standard deviation values of the features in the training set. For sample size
n = 100 the training set has 3·n features where the first hundred features are the embeddings
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Figure 1: The mean and standard deviation values of mk(Pε,pa, PX,pa) (1:300),
mk(Pε,mix pa, PX,mix pa) (301:600), and mk(Pε,non pa, PX,non pa) (601:900) for all the child
variables in the training set with p = 10 and n = 100 for linear SEMs. The first hundred
features in a variable set represent the embedding of the regressor set, the next hundred
represent the embedding of residuals and the last hundred represent the embedding of both.
The true parent set (pink) and the mix parent set (green) are assigned the same class label
and the non-parent set (blue) is assigned a different class label.

of the regressor set, the next hundred features are the embeddings of the residuals and the
last hundred are the embeddings of both the regressor set and the residuals (see equation
8). In figure 1, we observe that the mean and standard deviation values of the residual
embeddings of the true parent set and the mix parent set are similar to each other than
the non-parent set. Although there is some discriminative pattern between the two classes,
there is a high overlap between their values. This can potentially explain the prediction
performance of CRPAM on linear SEMs (see Table 1).

Figure 2 presents the same information for nonlinear SEMs. We observe a distinct
pattern in the residual embeddings of the true parent set, mix parent set and the non-
parent set with very little overlap. These features are very similar for the true parent
set and the mix parent set but different for the non-parent set. The mean values of the
residual embeddings from the true parent set and the mix parent set are centered around
0.9 with a very small standard deviation. On the other hand, the same values for non-
parent sets are centered around 0.7 with a much higher standard deviation. We believe this
discriminative pattern would be leveraged by the classifier to accurately predict the true
causal relationships. This pattern also supports our assumption made in Section 4.2 about
the residual embeddings being similar for the true parent set and the mix parent set.
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Figure 2: The mean and standard deviation values of mk(Pε,pa, PX,pa) (1:300),
mk(Pε,mix pa, PX,mix pa) (301:600), and mk(Pε,non pa, PX,non pa) (601:900) for all the child
variables in the training set with p = 10 and n = 100 for nonlinear SEMs. The first
hundred features in a variable set represent the embedding of the regressor set, the next
hundred represent the embedding of residuals and the last hundred represent embedding
of both. The true parent set (pink) and the mix parent set (green) are assigned the same
class label and the non-parent set (blue) is assigned a different class label.

Lastly, we analyze the features based on their ability to discriminate the patterns of
the true parent sets and the non-true parent sets. Figure 3 shows the feature importance
from the random forest classifier for linear SEMs and nonlinear SEMs. The importance of
a feature is measured by the mean decrease in Gini if that variable was included in training
the classifier. In figure 3 we observe that the features created by embedding the residuals
are the most important to the classifier as they lead to highest reduction in mean Gini
values. This confirms our observations from figures 1 and 2. Additionally, this also provides
insight into reducing the feature space by excluding the other two sets of features containing
the regressor sets. It would be interesting to experiment with only the features containing
the residual embedding given this evidence. The benefits would be twofold: one, this would
lead to a 66% reduction in the number of features and two, it would significantly reduce
the runtime of the framework. We leave these experiments as part of our future work.

6. Conclusions and future work

In this work, we have approached the problem of causal discovery as a learning problem. The
proposed framework builds on the ideas of additive models to create discriminative patterns
for true parent sets and non-parent sets from kernel mean embeddings. A nonlinear binary
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(a) Linear SEMs
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(b) Nonlinear SEMs

Figure 3: The importance of features in training set with p = 10 and n = 100 in linear
SEMs (left) and nonlinear SEMs (right). The features are represented on the X-axis and the
variable importance is represented on the Y-axis. The importance of a variable is measured
by the mean decrease in gini if the variable were included in training the classifier. The
first hundred features represent the embedding of the parent set, the next hundred features
represent the embedding of the residuals and the last hundred features represent embedding
of both.

classifier is trained to learn these patterns and predict the parent set of each variable in the
test data. The framework is evaluated on linear SEMs and nonlinear SEMs to demonstrate
its prediction performance. Finally, we present evidence of a strong discriminative pattern
of the features in nonlinear SEMs which gives insight into the performance of the framework.

We have planned the research progress of the framework in three directions. First,
perform an analysis of the different parameters used in the framework for differing sizes of
the data and network complexity. Second, develop a parallel version of the framework since
all the steps can be easily parallelized. A parallel CRPAM framework would greatly reduce
the runtime and provide better scalability. Third, develop ensemble methods for data sets
with large sample size that extracts patterns from different parts of the data and performs
majority voting to predict the causal relationships.
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