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Abstract

One in four commercial airline flights is delayed, inconveniencing travelers and causing large
financial losses for carriers. The ability to accurately predict delays would make travelers’
lives easier and save airlines money. In this work, we approach the problem of predicting
flight delays using a Variational Long Short-Term Memory (LSTM) model. The model is
trained to predict aggregate daily delays for U.S. airports using a combination of continuous
and discrete variables, including weather, airport characteristics, and congestion. Monte
Carlo Dropout, a Bayesian Deep Learning technique based on variational inference, is
incorporated to provide planners with a well-calibrated prediction interval. We show that
our Variational LSTM results in an average median absolute error of 5.8 minutes per day
across 123 airports in the United States. Moreover, results show that predictive uncertainty
is well explained through a calibration analysis.

1. Introduction

Commercial flight delays in the U.S. airspace are a pervasive and expensive problem. A
large-scale study by the U.S. military found approximately 25% of flights were delayed in
the late 2000s (Fleming, 2009). Recent analysis done by a large travel technology company
estimates the economic impact of these disruptions to be $60B and growing (Gershkof, 2016),
representing over 8% of global airline revenue. With ridership in the U.S. expected to double
or triple in the next 15 years and few definitive plans for infrastructure improvements, this
economic impact will likely increase.

In this paper, we focus on our work predicting aggregate per-airport daily delays. A
forecast of the average delay intensity at an airport for a given day can help travelers,
air tra�c controllers, airport operations, and travel agents stay informed about airport
operations and make proactive decisions (Demuth et al., 2011). This strategy is also con-
sistent with the literature, which typically analyzes aggregate delays (Gopalakrishnan and
Balakrishnan, 2017).

There are two pieces of existing research in this domain that are similar to ours. The first,
(Gopalakrishnan and Balakrishnan, 2017), compares performance of two di↵erent neural
network techniques (a Multi-Layer Perceptron (MLP) and a General Regression Neural
Net (GRNN)), traditional machine learning techniques, and a domain-specific technique
for the problem of predicting aggregate origin-destination level and origin level delays.



Using a dataset of the top 30 airports (the FAA Core 30 list), they train the model to
predict average outbound delays at an airport two hours ahead, given outbound delays
now, outbound delays in the previous two hours, and the time of the day. By training
an MLP with those features, they achieve a median absolute error of around 7 minutes.
The second, Kim et al. (2016), uses a LSTM-RNN on daily flight delays. They focus on
classification, setting a threshold for the average daily delay for an airport and training the
RNN to predict whether a day’s average delay would be above that threshold. They achieve
an average classification accuracy of between 80 to 90%.

Our primary advancement over previous work is the modeling technique used, a Vari-
ational LSTM. This is a key feature of our approach and is crucial for Freebird’s applied
business aims. Because Freebird is interested in using these models in a risk management
setting, we require a model that provides robust uncertainty metrics, not just point esti-
mates. This requirement has limited the application of deep learning to the problem thus
far. We leverage recent advances from (Gal and Ghahramani, 2016; Gal, 2016; Gal et al.,
2017), using Monte Carlo dropout to obtain parameter variance estimates. To our knowl-
edge, we are the first to apply Bayesian deep learning to the problem of predicting and
quantifying flight delays in the U.S. airspace and the first to apply a Variational LSTM to
any industrial problem.

2. Data Description

Predicting average daily flight delays for a given airport is a challenging task with many
factors in play. However, many of these factors, such as operational malfunctions, are
unpredictable in advance, which limits our feature set to airport level characteristics and
weather variables. The features we use are as follows:

Continuous Features : Max Wind Gust, Avg. Wind Speed, Avg. Heat Index, Total Precipi-
tation, Avg. Pressure, Total Snow, Avg. Temperature, Avg Visibility, # of Arrival Flights,
# of Departing Flights, Previous Day’s Delay
Categorical Features: Month, Day of Week, and Airport

The weather features were extracted from historical data provided by The Weather
Company. The data we were provided included hourly statistics such as temperature, wind,
snow, pressure, and many others. Variables were then aggregated from hourly to daily by
either averaging, computing the max, or taking the sum. These features are then normalized
across all airports before training.

Daily average flight delays and number of departing and arrival flight were extracted
from a large proprietary data feed containing flight statuses for essentially all flights in the
U.S. The number of arriving and departing flights were normalized per airport in order to
preserve well distributed features. We note that these features are available approximately
200 days in advance given flight schedules and weather forecasts. We use data from July 1
2012 to July 31 2016, with a train/test split of 80%/20% . The final dataset consists of 123
airports over 4 years of daily samples, totalling 168,387 samples for training.
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3. Method

In this section we describe the Bayesian LSTM architecture we developed to predict daily
average flight delays per airport using both continuous and categorical features. Including
an airport indicator variable allows us to leverage similar delay e↵ects between airports,
similar to a multi-task model. The model consists of 3-Layer LSTM network where data
from the day of departure and the four previous days is used to predict average delay for
the day of departure. First, we embed the categorical variables from 7 days to 3 features,
12 months to 3 features, and 123 airports to 5 features. The weights for embedding are
learned during training. Using a grid search with a range of dimensions, we found that
these embedding dimensions provided a good trade-o↵ between complexity and over-fitting.
Categorical variables embedded to dimensions 3, 3, and 5 are concatenated with the 11
continuous features, including weather and airport congestion, resulting in 22 total features
that are fed into the LSTM.

Following (Gal and Ghahramani, 2016; Gal, 2016), we assume y ⇠ N
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with si = log(�2) to enforce a positive variance where S consists of a sample batch of size
D, ✓ denoting all parameters, and the dropout probability p. Using this approach, the first
two moments of the predictive distribution have the following unbiased estimates:
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where !̂k refers to weight realizations of ! after applying dropout while K denotes the
number of Monte Carlo samples (we set K = 30 in our experiments). A constant dropout
rate of 0.25 is used in all layers. We refer readers to section 4 in Gal and Ghahramani
(2016) for a more detailed analysis of dropout and uncertainty quantification in recurrent
neural networks.

4. Results

To test our Variational LSTM, as described above, we study its ability to produce accurate
daily average delay predictions per airport as well as corresponding predictive uncertainty.
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MAE RMSE

1 3 5 7 1 3 5 7

Airport

ATL 3.60 4.07 4.54 4.67 7.90 8.11 8.32 8.37

DFW 3.88 4.66 5.16 5.82 11.13 11.44 11.61 11.82

JFK 4.36 5.31 5.27 5.40 13.85 13.85 13.82 13.89

LAX 2.95 3.44 3.58 3.77 4.59 4.92 5.07 5.25

ORD 6.20 7.63 8.35 9.14 13.03 13.93 14.47 15.01

All 5.84 6.60 7.22 7.71 10.64 11.41 12.03 12.56

Table 1: Predictive ability at major airports for 1, 3, 5, and 7-days ahead measured in
minutes per day by Median Absolute Error (MAE) and Root Mean Square Error
(RMSE).

Figure 1: These results include test data only. (a) Observed average daily delay on the
x-axis, which is truncated to 90 minutes) and predicted on the y-axis for 1 step
ahead. (b) Standard deviation of the prediction by the observed delay (also trun-
cated to 90 minutes). (c) Histogram of model residuals (Predicted - Observed)

All analyses are performed on a held-out test set (the last 20% of observations). To under-
stand overall predictability, we visually compare the predictions and observations for each
airport-date in Figure 1(a) and more quantitatively in Table 1. The long-tail distribution
of delays results in a skewed error distribution, shown in Figure 1(a). In general, the model
is not able to predict rare extreme delay events. For instance, the third largest average
daily delay in our test set, 136 minutes, was on July 4th 2016 at John F. Kennedy (JFK)
Airport in New York. These delays were caused by ISIS threats to three major international
airports, including JFK. While this is just a single example, similar events happen, however
infrequently, which are unreasonable to capture in the predictive means (as we show later
on, we do reasonably well at accounting for the uncertainty via the predicted variance). If
we remove observations with daily delay averages of over an hour, our RMSE for the test
set drops from 10.64 to 9.21. To help understand the sensitivity to outliers, we report the
Median Absolute Error (MAE) alongside the root mean squared error (RMSE) in Table 1
for predictions 1, 3, 5, and 7 days ahead for the top five airports by passenger count, as
well as the validation dataset as a whole.
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Figure 2: Comparison between model with (blue) and without weather features (orange)
for 1 to 10 days ahead.

To gain insights into the importance of weather on delay prediction, we experiment with
and without weather features. The model with weather outperforms the model without,
with a decrease in RMSE of about 1 minute, shown in Figure 2, with roughly consistent
improvement across prediction windows.

Lastly, we study the width and quality of predictive uncertainty. Figure 3 presents the
calibration quality by measuring the frequency of observations within a given probability
interval. For example, we expect 20% of the observations to fall between the estimated 40th

and 60th percentiles. Too many observations outside of that percentile range would result
in the curve being above the 45-degree line at 0.2. We clearly see that the uncertainty cali-
bration is good at nearly all the airports. In contrast to the predictive mean, Figure 1 shows
that predictive uncertainty measured by standard deviation does not increase dramatically
with the observed delay. This all results in well-calibrated uncertainty with reasonable
predictability.

5. Conclusion

This paper presented a novel Bayesian RNN-LSTM to predict aggregate flight delays in
the US by airport. In addition, we also extended these deep learning models to extract
stable uncertainty quantification for each prediction using Monte-Carlo Dropout techniques.
Our analysis of the model showed that even at the daily aggregate level, flight delays are
quite challenging to predict, with an average RMSE above 10 minutes. This furthermore
motivates the need for uncertainty quantification. The approximate predictive posterior of
our model was shown to be strong with little error in calibration.
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Figure 3: Uncertainty calibration measured by the frequency (y-axis) of observations within
a given predictive interval (x-axis). The ideal calibration is when y = x, repre-
sented by the dashed line. RMSE is the error between calibration and ideal.

Future work could improve the training process to allow for more granular predictions,
such as hourly forecasts or even flight-by-flight forecasts informed by the daily predictive
distribution. Augmenting the RNN with additional features to capture network structure
would allow us to model phenomena such as cascading delays across connected airports,
represented using properties of the network. Furthermore, incorporating more domain in-
formative features such as the Homeland Security Advisory System threat level and natural
language processing feeds of relative news and social media platforms. An additional av-
enue for future work is to extend this model to better characterize di↵erent types of flight
delays using mixed-density models, and to meaningfully distinguish between di↵erent types
of uncertainty (Kendall and Gal, 2017).
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