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Abstract

Marvin is an open source project that focuses on empowering data science teams to deliver
industrial-grade applications supported by a high-scale, low-latency, language agnostic and
standardized architecture platform, while simplifying the process of exploration and model-
ing. Building model-dependent applications in a robust way is not trivial, one is required to
have knowledge in advanced areas of sciences like computing, statistics and math. Marvin
aims at abstracting the complexities in the creation process of scalable, highly available,
interoperable and maintainable predictive software.
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1. Introduction

Being able to quickly identify hidden patterns in datasets, wisely choose the best model to
train from historical data, and making predictions are the biggest advantages of data-driven
organizations against their competitors. Knowing the customer demand for a product before
buying it (Chen et al., 2000) or being able to detect a fraud before charging the customer’s
credit card (Chan and Stolfo, 1998) with a certain level of confidence are examples of how
companies doing businesses on the internet are making better decisions and maximizing
their earnings.

Capturing and storing large amounts of data is a commonplace for most companies
these days. Having more data available is often a positive aspect in order to train models
with a lower error rate. However, writing code to effectively process terabytes of data and
provide near-real-time predictions supporting high throughput is not a trivial task. One
is required to have knowledge in advanced areas of science, such as computing, statistics
and math. High scale data processing frameworks (Zaharia et al., 2010) fulfill their role by
abstracting some of the complexities related to distributed computing and process orches-
tration. Libraries like MLLib (Meng et al., 2015) and scikit-learn (Pedregosa et al., 2011)
facilitate it by providing high level interfaces to common machine learning algorithms. Even
so, building robust model-dependent applications is tricky and requires specialized knowl-
edge. There is an open space for a platform that empowers the data scientist with the tools
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and abstractions needed to create scalable, highly available, interoperable and maintainable
predictive software.

In this paper we present Marvin (https://github.com/marvin-ai), an open source plat-
form that aims to help data scientists with several tasks during the life cycle of an artificial
intelligence project. In section 2 we describe the platform’s main features, section 3 contains
implementation details, section 4 has a sample application and section 5 shows or experi-
ment results. Finally in section 6 we talk about future work and summarize our findings in
section 7.

2. Marvin Overview

A model-dependent application is described by an application that processes historical data
and train a mathematical model such that the output Y can be explained by the different
values of the input X. Some categories of algorithm in the artificial intelligence area fits
in this description, e.g. support vector machines, statistical AI, neural networks. Marvin
provide tools that will help in different phases of a project with such characteristics. The
tools can be executed both on-premise or in a cloud infrastructure, giving the flexibility
that is needed for different scenarios. Marvin is different from ML PaaS (AzureMLTeam,
2016), since it can be executed on-premise and allow the use of any algorithm that can be
implemented in general-purpose languages (Van Rossum and Drake, 2003) (Odersky et al.,
2004). In fact, Marvin could be used as the back-end of such type of platforms.

Marvin was built to enforce the pillars of the basic phases of a model development
project, see Figure 1.

Models
Management
A
Exploration and Model Serving
Development
Support and
Feedback

Figure 1: Model application development cycle.

To achieve that, Marvin provide several features, those include:

1. Toolbox - Provide a great set of common tools that are commonly used during the
exploration phase of a data science projects and will eventually be carried up to
production. The data scientist can take advantage of notebooks, plotting libraries,
data frames and so on.
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Experiment Versioning - During the exploration and exploitation of the problem it
is common to test several hypothesis and eventually change approach. Keeping the
history of experiments is useful and may serve to explain the final solution.

Data Sync CLI - During the model development data is intensively accessed, either
to perform feature engineering or backtest the model. In complex environments it’s
often not a good approach to access production databases during development phase.
To solve that Marvin provide a tool to sample data from the official dataset and work
locally.

Unit Test Framework - In order to ensure a testable application, Marvin provides
a built-in unit test framework, encouraging the data scientist to avoid bugs being
introduced in the model application in the future.

Project Generator - Marvin introduces a design pattern, see Figure 5, to ensure that
applications will be built in a decoupled manner. The project generator utility creates
the base skeleton for applications, the data scientist is required to only populate the
skeleton files with their logic.

Artifact Versioning - Marvin keeps track of artifacts generated during the training
pipeline.  When running the application in production Marvin allows the user to
restore the system to a previous state, i.e. publishing a model trained last week
because the current model is presenting greater error rate.

Large Dataset Processing - Integration with main frameworks for parallel and dis-
tributed computing to allow the effective handling of large datasets.

Training Pipeline Interface - The phases involved in the training pipeline (data ac-
quisition, data preparation, training) can be started through the CLI or via REST
HTTP calls. Allowing the application to be executed by external agents.

Feedback Server - In order to allow the model to receive external signals, Marvin
provides a feedback server. User and applications can send feedback data to the
model, which can be interpreted and perharps start a new training.

Predictor Server - When finishing the training pipeline Marvin persists the serialized
model in a persistent memory storage. This model is loaded afterwards by the predic-
tor server and is accessible via REST HTTP calls. Users and applications can then
make predictions taking advantage of the model.

Marvin is composed by three main components, see Figure 2. The toolbox is both a
command line interface and a library that contains a set of utilities to help data scientists
during the phase of exploration and development. Using the toolbox the user will build
his application, which in the context of Marvin is called an engine. The engine must be
built following a design pattern proposed by Marvin, the toolbox will generate a scaffold
with the classes corresponding to this pattern. Each phase in the pattern will produce an
artifact, that can be persisted and reloaded. Lastly, the engine-executor is the component
responsible of orchestrating the execution of engines and also by deploying servers to allow

external interaction with it.
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Figure 2: Marvin components.

Several previous work already help on the task of implementing artificial intelligence ap-
plications able to deal with large datasets and achieve good performance. SystemML (Ghot-
ing et al., 2011) provide a high level declarative interface to implement machine learning
applications that can process massive amounts of data. Pregel (Malewicz et al., 2010) in-
troduces a computational model suitable for large-scale graph processing. OptiML (Sujeeth
et al., 2011) is a domain-specific language (DSL) to achieve implicit parallelism on machine
learning applications. MLI (Sparks et al., 2013) offers an API for distributed machine learn-
ing that helps turning prototypes into industry-grade ML software. Although these works
do a great job abstracting complexity in the batch processing phase, they do not intend
to offer tools to help during problem exploration and model serving. Table 1 shows the

comparison of Marvin, SystemML and a market solution (Cloudera).

Marvin

SystemML

Cloudera DSW

Multi-language support

X

X

HDF'S support

X

Distributed CPU ML API

>

Single node capability

Toolbox (development environment)

Templates

Integrated notebooks

Models management

SE R R

Data versioning control

Pipeline scaffolding

Unit test integration

REST API

SRR R A R R RN RN R R R Rl el e

Pre-process optimization

Feedback server

X

Table 1: Functionality comparison
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3. Implementation Details

One of Marvin’s main objective is to optimize execution of it’s users’ applications in order
to process large datasets and allow a high number of concurrent model access without
penalizing performance. To help users see the boundary of different executions flow within
the application we propose the separation of actions in two categories:

e batch - e.g. train, evaluate, prepare
e online - e.g. predict, feedback

Batch actions are executed asynchronously and the result of it’s execution will be an
artifact, i.e. binary or plain text data. The generated artifacts can be persisted and re-
used in the same application or with other applications instances. A practical use of this
functionality can be to share the initial dataset artifact between different models, avoiding
unnecessary duplicated computation. These characteristics help to perform effective long
running and data-intensive jobs.

In order to achieve parallelism in different levels, Marvin applications run on top of
common data processing frameworks, see Figure 3. The Marvin context is a component
that frees the data scientist of setting up and optimizing the framework, it wraps some
methods from the original framework library but also expose the main features of it.

User's application

Marvin context

Data processing framework
(e.g. Spark)

Distributed data and
processing units

Figure 3: Multi-tier architecture for batch processing.

On the other hand, online actions are executed synchronously and they may generate a
valid result. Their result will usually be interpreted by other application, therefore to ensure
simple scalability, interoperability, availability and the needed consistency we adopted a
microservice-based architecture (Brewer, 2000) (Fowler and Lewis, 2014).

All application’s execution are orchestrated by the engine-executor component. This
is a configurable component that can be deployed in different formats, depending on the
environment complexity. One may want to deploy an engine-executor instance for each
pipeline phase (data acquisition, data preparation, model training, etc.), it would avoid a
single point of failure and allow independent scalability for each phase. However, projects
on a smaller scale may prefer to deploy all the phases and the predictor server in the same
instance. To achieve safe and effective concurrent execution, the underlying of engine-
executor is implemented according to the Actor model (Hewitt et al., 1973).
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As we understand that there is no mother programming language for artificial intel-
ligence applications, we built Marvin under the assumption that it should be language
agnostic. It means that users are free to implement their applications using their preferred
language, provided that its support is implemented. The first Marvin’s version supports
Python language. Figure 4 shows how Marvin is using the RPC (Srinivasan, 1995) protocol
to execute code written in different languages.

:EngineExecutor :RpcStub :UserApplication

dispatch _ |

dispatch

dispatch

Figure 4: Simplified sequence of engine-executor executing online action on user’s code.

4. Sample Engine

Marvin applications are also labeled as engines. An engine is composed by the application’s
source code, a file containing parameters for the application and the metadata file. We
encourage users to implement decoupled engines that are easy to maintain and less bug
prone. To induce that we propose the DASFE design pattern (Figure 5). This pattern is
strongly based on the DASE pattern (Chan et al., 2013), however we added the feedback
phase to it. This evolution intends to enable the engine to receive input from external
applications or users, this kind of feature allows the model to be modified online or add
hooks to start a new training pipeline.

O—Batch* Data Acqu@tlon & »| Data Preparation Model Training Model Evaluation
Cleaning

O—Online-) Prediction Feedback [===-==============---------ooooooooooo *<> > O

Model Prediction

Y

O—Online> Data Preparation

Figure 5: DASFE pattern pipeline.
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We provide a project generator utility that generates the necessary base code for an
engine, by doing that we reduced the complexity of the data scientist’s job, requesting
them to just populate these base files with the program logic. It is not necessary to care
about passing the data to the next phase, or serializing the artifact in some persistence.

The next paragraphs will present a simplified sample engine as reference. The sample is
a Python engine able to classify products using a linear classifier with stochastic gradient
descent (SGD). The engine uses a mix of Spark framework data structures and Pandas
dataframe.

The code to obtain data from data sources and remove unnecessary rows, i.e. data
cleaning, should be placed in the execute method of AcquisitorAndCleaner class:

class AcquisitorAndCleaner (EngineBaseDataHandler ):

def execute(self , sxxkwargs):
data = self.spark.sql(”””select p.bscprd_desc as name,
h.misphr_line as tag from core.mis_product_hierarchy as h,
core.bsc_product as p
where h.misphr_id_product = p.bscprd_id_product
and h.misphr_line in (’SMARTPHONE’, ’'TABLETS’)”””)
self.initial_dataset = data.toPandas()

Then it is necessary to prepare the acquired data before training. The execute method
on TrainingPreparator should contain preparation logic, e.g. inputation of missing values
and data type transformation:

class TrainingPreparator (EngineBaseDataHandler ):

def execute(self , sxxkwargs):

data = self.initial_dataset

vectorizer = TfidfVectorizer (encoding="utf-8")
vectorizer. fit (data| name’])

X_train = vectorizer.transform (data| name’][10:])
y-train = data[’tag’][10:]

X _test = vectorizer.transform (data[ ’name’][0:10])

y-test = data[’tag’][0:10]

self.dataset = {
”vectorizer”: vectorizer ,
?X?: (X_train, X_test),

” 0

y?: (y-train, y_test)

}

The model is finally trained at the Trainer class, when the execute method completes
Marvin will serialize the model in the configured persistence. The data scientist do not need
to implement the serialization logic, Marvin has serialization mechanisms implemented in
all supported languages. If it is necessary to use custom serialization it can be achieved by
extending Marvin application programming interface. The Trainer code will look like:

class Trainer (EngineBaseTraining):

def execute(self , sxxkwargs):
data = self.dataset
clf = SGDClassifier (xxself.params). fit (data[’X’][0], data[’y’][0])

self .model = {” clf”: clf, ”vectorizer”: self.dataset[” vectorizer”]}
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The MetricsEvaluator class is the appropriated class to place code related with model
evaluation, in this example we’re computing model error in a confusion matrix:

class MetricsEvaluator (EngineBaseTraining ):

def execute(self , xxkwargs):
pred = self.model[’clf’]. predict(self.dataset[’'X"][1])

ml = classification_report (self.dataset[’y’][1], pred)
m2 = confusion_matrix(self.dataset[’y’][1], pred)
self . metrics = [ml, m2]

At PredictionPreparator the sample engine is just performing data transformation:

class PredictionPreparator (EngineBasePrediction):

def execute(self, input_message, sxkwargs):
return self.model|[’vectorizer’].transform ([input_message [’ ’msg’]])

Finally the Predictor class contains the logic that will be called for every valid HTTP
request made to the Predictor server. Marvin’s engine-executor will load the serialized ob-
ject from the configured persistence and inject the trained model in the self.model variable.
The code will be as follows:

class Predictor (EngineBasePrediction ):

def execute(self, input_message, *xxkwargs):
return np.array_str(self.model[” clf”]. predict (input_message))

Deploying this code on Marvin’s engine-executor will provide control over the training
pipeline execution, dataframes and model serialization and versioning, metrics evaluation,
model serving and feedback input interface.

5. Performance Assessment

Aiming to evaluate the parallelism ability of the predictor server, we conducted a set of
experiments predicting classes of iris in a Support Vector Machine (SVM) (Hearst et al.,
1998) model trained using the classical Fisher’s iris dataset (Fisher, 1936) for classification.
The overall objective of this experiment was to ensure that the predictor server is able to
take advantage of multi-core architectures while not impacting significantly negative on the
response time of predictions or the consistency of the results due to many queued threads
or timeout exhaustion.

The test setup consisted of two dedicated machines, one simulating the users and other
running Marvin’s engine-executor with the SVM model that was previously trained. The
client machine had 24 cores with Hyper-threading available and 48GB of RAM. The server
machine also contained 24 cores with Hyper-threading and 64GB of RAM. Both machines
were running Debian GNU/Linux.

The experiment strategy was to keep the amount of resources available and increase
the throughput of concurrent requests being sent to the server until a significantly increase
on the response time or failed requests was observed. The requests from client to server
were made through the REST HTTP protocol and the machines were located in the same
physical data center. As it is possible to see in Figures 6 and 7, we achieved 500 predictions
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Figure 6: Predictor load test (reqs/second).
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Figure 7: Predictor load test (Response time box plot).

per second maintaining a stable response time and none failed requests, at round 6 the mean
response time increased significantly and the error rate has raised. The behavior of test
round 6 indicates that we crossed the edge of efficient parallelism of Marvin’s engine-executor
predictions. Although we consider this a good number, we encourage administrators to
deploy several instances of engine-executors behind a load-balancer when more than 500
predictions per second must be served. The current performance result is proved to be
enough for large scale e-commerce platforms, like B2W Digital.
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6. Future Work

Although Marvin is already being used in production setups, several improvements can
be made to turn it into the de facto choose for data science teams which need to build
production-facing models. The current version of Marvin has independent setups for each
engine, it means that the user is responsible for having a layer on top of it if he desires
to have a single management console of his engines. To build a cluster of engines the user
needs to make specific configurations, like set the persistence folder for each engine under
the same parent folder, and also maintain engine’s parameters per instance. These could
be challenging when it becomes to maintaining dozens of engines. Thus there is space to
build a cluster admin on top of Marvin’s engines.

Marvin platform was built on an architecture that allows the engine-executor to run
engines implemented in different programming languages through the RPC protocol. As the
date of this paper, there is a Python toolbox that facilitates the work of a user implementing
engines in this language. In the near future we plan to focus our efforts on implementing
toolboxes for different languages, e.g. R, Julia, Scala, Go and Java.

7. Conclusion

Implementing artificial intelligence applications with enterprise software characteristics is a
hard task. Several contributions were made in libraries offering algorithms implementation
and frameworks for distributed computing of data-intensive applications. Marvin adds tools
and integrate with libraries and data frameworks to support the exploration and model
development of such kind of applications, it introduces a framework that speeds up the task
of turning model prototypes into industry-grade software. Lastly Marvin’s engine-executor
is a model server that takes care of pipeline execution, artifacts serialization and offers a
standard interface to allow other applications to access the model, it takes into account non-
functional requirements to allow safe concurrency and effective parallelism on shared and
distributed memory. The experiments demonstrated that engine-executor is able to serve
500 predictions per second while maintaining stable response time and 0 failed requests.

Marvin engines are helping companies to be data-driven organizations, serving algo-
rithms that can automate decisions such as optimizing its products prices to increase rev-
enue, detecting fraud at the earliest stage and customizing sorting of many offers of the
same product to customer clusters. The platform meshes the necessary components to
empower data scientists pursuing to deliver production level applications that can support
high throughput and process large datasets.
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