Nonparametric variable importance
using an augmented neural network with multi-task learning
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Abstract

In predictive modeling applications, it is often of
interest to determine the relative contribution of
subsets of features in explaining the variability of
an outcome. It is useful to consider this variable
importance as a function of the unknown, under-
lying data-generating mechanism rather than the
specific predictive algorithm used to fit the data.
In this paper, we connect these ideas in nonpara-
metric variable importance to machine learning,
and provide a method for efficient estimation of
variable importance when building a predictive
model using a neural network. We show how a
single augmented neural network with multi-task
learning simultaneously estimates the importance
of many feature subsets, improving on previous
procedures for estimating importance. We demon-
strate on simulated data that our method is both
accurate and computationally efficient, and apply
our method to both a study of heart disease and
for predicting mortality in ICU patients.

1. Introduction

Machine learning-based techniques are increasingly used to
make decisions about allocating scientific resources in HIV
vaccine studies (Rolland & Gilbert, 2012) and to improve
patient care (Avati et al., 2017), among other high-impact
areas of research and practice. Understanding the impor-
tance of measured features in prediction may make such
algorithms more interpretable (Guidotti et al., 2018). In
other words, are some features worth focusing on in future
scientific studies? What information is most important for
predicting a patient’s prognosis? Answering these questions
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requires a rigorous definition of an estimable variable im-
portance measure, with valid statistical inference for the
true importance of the features under study; this is critical
if we plan to use machine learning-based methods to make
healthcare or resource allocation decisions.

Neural networks have been very effective in complicated
domains (Krizhevsky et al., 2012; Mikolov et al., 2013), but
existing variable importance measures for neural networks
(Garson, 1991; Bach et al., 2015) suffer from two major
drawbacks: they (1) are typically defined in terms of the
network parameters, whereas importance is naturally a prop-
erty of the data-generating mechanism; and (2) do not yield
assessments of variability, as their definitions make classical
statistical analysis difficult.

To address these two issues, we use the model-agnostic
definition of variable importance in Williamson et al. (2017):
given the true joint distribution of outcome Y and features
Xy, ..., X, the importance of the feature subset with indices
s C {1,..,p} is based on the squared difference between
the full and reduced conditional means

{EY|X1,...Xp) —EY|{X,:j€ {1,...,p}\3})}2.

If the squared difference is large on average, then the feature
subset has high importance. If the squared difference is
always zero, then the feature subset has zero importance.
An analysis through influence functions (Bickel et al., 1998)
yields a procedure that results in both a statistically efficient
estimator and an asymptotically valid confidence interval.'

We describe a novel neural network structure and objective
function that efficiently computes this variable importance
measure for many feature subsets. For each feature index
subset s, estimating its importance depends on an estimate
of the reduced conditional mean of Y. Our method simul-
taneously estimates all required conditional means with a
single neural network by augmenting the input features with
an indicator vector for the subset s. We train the network
by minimizing the multi-task loss of predicting Y given the
feature subsets of interest using stochastic gradient descent.

! Koh & Liang (2017) use influence functions from a para-
metric perspective to analyze the dependence of predictions from
neural networks on training observations. Our work uses influence
functions from a semiparametric perspective instead.
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This paper makes two contributions. First, to our knowl-
edge, this is the first nonparametric variable importance
measure applied to neural networks. Second, our proposed
augmented neural network with multi-task learning esti-
mates variable importance for many feature subsets simul-
taneously. We demonstrate empirically that our method
accurately estimates variable importance and yields confi-
dence intervals with asymptotically correct coverage. We
also analyze data from a study of heart disease and data
from a study of mortality prediction in ICU patients. Code
and Supplementary Material (SM) are available at https:
//github.com/jjfeng/nnet_var_import.

2. Related work

Most variable importance measures applied to neural net-
works are intimately tied to the network itself, and are de-
fined in terms of the weights between the nodes. There are
both overall measures of variable importance (Garson, 1991;
Olden & Jackson, 2002; Lipovetsky & Conklin, 2001) as
well as local measures, i.e., how much to attribute an indi-
vidual prediction to a particular feature (Bach et al., 2015;
Shrikumar et al., 2017; Sundararajan et al., 2017; Murdoch
et al., 2018). There are no statistically rigorous proposals
for evaluating uncertainty of these estimates; it is unclear
that a statistically valid evaluation of uncertainty is even
possible. Moreover, these methods typically quantify the
importance only of individual variables. In contrast, our
method estimates individual and group importance, and
provides confidence intervals with correct coverage.

Measures of variable importance defined independently
from the estimation procedure have been proposed, and
include a nonparametric extension of R? (Doksum &
Samarov, 1995); the risk difference, E(Y | A = a, X =
x)— E(Y | A=0,X = z) (van der Laan, 2006; Chambaz
et al., 2012; Sapp et al., 2014); and the mean absolute dif-
ference E{|Y — E(Y | X)| - |Y — E(Y | X(_;))|} (Lei
et al., 2017). All of these methods allow formal inference,
but suffer from computational issues. They are all currently
estimated by refitting separate models — our proposal jointly
estimates the conditional means and can be used to speed up
calculations for these importance measures. In this paper,
we focus on the squared difference, as it is commonly used
in regression. In practice, the most appropriate variable
importance measure depends on the scientific goal.

Sundararajan et al. (2017) proposed that variable importance
measures for neural networks should satisfy two axioms:
(1) if two inputs differ in one feature and have different
outputs, then the differing feature should have nonzero im-
portance; and (2) if two networks have the same output for
all inputs, the variable importance measures should be the
same. We show that our measure satisfies a similar set of
axioms generalized to a nonparametric setting.

3. Variable importance

Consider the random vector (X = (X1, ..., X,),Y) with
probability distribution P over X x R, where X denotes the
possible realizations of X, and the outcome, Y, is a real-
valued variable with a natural ordering. For example, Y may
be a binary variable or a continuous variable, corresponding
to a classification or prediction problem, respectively. We
measure the importance of { X} s forany s C {1, ..., p}
under the distribution P.

Denote the conditional means with respect to distribution P
based on the full set and a reduced set of features as

pp(z) = Ep(Y | X =x) and
/LP7S(37) = EP<Y ‘ X(fs) = l’(,s)) )
respectively, where z(_) denotes the feature vector after

removing features with indices in s — when s = (), then
ppg = pp. The variable importance of { X} ¢, is

) — L(z))2 .
w,(p) — L1 )Val:j:((l(/))} dP(z)

(D

For convenience, let ®4(P) denote the numerator of (1). We
may interpret (1) as the additional proportion of variability
in the outcome explained by the features in the set s, as it
is the difference in population R? obtained from using the
full set of features or the reduced set of features; (1) also
generalizes the parametric R? to a nonparametric setting
(Williamson et al., 2017).

We improve upon the original axioms of Sundararajan et al.
(2017) by formulating a nonparametric version that handles
groups of variables and properly takes into account the
probability measure P:

Al. For a nonempty feature subset X with indices s C
{1,...,p}, if pp and pp differ over a subset with
non-zero probability measure under P, then X, has
non-zero importance.

A2. If P and P’ have the same cumulative distribution
function, then the variable importance of any subset of
features is the same under P and P’.

The importance measure (1) we focus on clearly satisfies
these axioms.

We envision this variable importance measure as an integral
part of the scientific method. The hypothesis-generation
step often involves testing for effects across many features.
However, after multiple hypothesis correction, one may have
low statistical power to detect effects. Variable importance
may be useful in such cases: we define feature subsets of
interest using domain knowledge, estimate their importance,
and use the importance ranking to prioritize features for
future confirmatory studies. In practice, this means that
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one is generally not interested in estimating the variable
importance of all possible feature subsets but rather no more
than a polynomial number of them.

3.1. Statistical inference

Suppose we observe 7 iid observations {(X ), Y ())}n_
from an unknown distribution P, known only to lie in a
fully unrestricted (nonparametric) model M, and wish to
estimate the importance 1) s := U4 (Fp) of the features X.
An obvious approach to estimating vy, is to estimate the
relevant components of /% and plug these estimates into the
mapping V. If P, is a consistent estimator of Fy, with /i
and [is denoting corresponding estimators of yp, and pp, s,
respectively, a natural plug-in estimator is given by

LY (X D) — (X))
n : n A\ 2 T
% Zi:l (Y(l) - % Zi:l Y(L))

This simple estimator converges to 1y s but usually at a
rate slower than n~'/2 because of excess finite-sample bias.
Unfortunately, optimal estimators for the conditional means
1p, and up, s are not optimal for estimating ¢ . In sta-
tistical terms, the plug-in estimator is not a regular and
asymptotically linear estimator.

U (P,) =

2

Analyzing the efficient influence function (EIF) of (1) sug-
gests a method for constructing an asymptotically efficient
estimator of U4(Py) via the elimination of this excess bias
(Bickel et al., 1998). Specifically, a one-step correction
yields the following estimator of g ,:

b = W(B) + = 3 DHBHXD, YD), 3)

n-
1=1

one-step correction

where D?(P) denotes the EIF of ¥y at P relative to M,
and the evaluation D*(P)(x,y) is given by

2{y —pp(@)Hup(@) — pps(z)}

Varp(Y)
{np(@) — pps(@)}® y—Ep(Y)\’
T V() @s(p){w} '

Plugging in /i, 15 and the empirical variance, our final esti-
mator (3) simplifies to

S Ain s (X D) — i (X))}

S (YO = 257 v )
with A; ¢ = 2Y; — (X)) — a(XD). If (i) we can
estimate the conditional means at sufficiently fast rates, i.e.,
Epy{npy(X) = ((X)}* = 0p(n~?) 5)
EPO{MP(MS(X) - ﬂs(X)}z = Op(n_1/2) s (6)

“4)

(ii) the true variable importance value is not a boundary
value of 0 or 1 — the behavior at the boundary is difficult
to analyze — and (iii) /& and fi5 eventually lie in a Donsker
class (van der Vaart, 2000), then the corrected estimator (4)
converges at the desired rate to a non-trivial distribution:

\/ﬁ('l/;n,s - 1/’0,3) —a N [07 VarPo{D: (PO)(Y7 X)}] - (N

Since D} is the EIF, 1[)“,5 is an asymptotically efficient
estimator. We can build confidence intervals using any
consistent estimator of Varp,{D}(P)(Y,X)}, such as
& i DI (P) (XD, Y 0))2,

3.2. Local variable importance

Until now, we have focused on a global measure of impor-
tance by integrating over the entire distribution P, answer-
ing questions such as “in general, what factors are most
important in predicting survival?”” For certain settings, we
may be interested in a local version of variable importance,
answering questions like “for subjects ages 65 and up, what
factors are most important in predicting survival?” A sim-
ple extension of (1) allows us to define a local version of
variable importance. For feature subset X and subpopula-
tion A C X, the importance of X in subpopulation A is
Wy (PO‘ Xe A) , where we plugged the conditional distribu-
tion Py x e into (1). We only estimate variable importance
when A has positive probability measure since arbitrary re-
stricted conditional distributions are typically difficult to
estimate without further regularity assumptions (see, e.g.,
Hall et al., 2004). To estimate local importance, one can
estimate this conditional mean directly by restricting to the
subpopulation A or determine the restricted conditional
mean from an estimate over the entire population.

4. Estimating conditional means

‘We now present a computationally efficient method for es-
timating the conditional means required by (2) and (4) for
many, possibly overlapping, feature index sets S, where
s C{1,...,p} foreach s € S. The procedure in Williamson
et al. (2017) is computationally prohibitive if the cardinality
|S| of S is large: it estimates the conditional mean for each
feature subset of interest separately.

Estimating the conditional means is an independent step
from estimating variable importance. The proposed aug-
mented network structure may have applications outside
variable importance, such as settings with missing data.

Let ©(9) be the set of all possible parameters for neural net-
works with ¢ input nodes and one output node. The neural
network parameterized by # € ©(@) is denoted by f(-;6).
The training data is the set of observations {(z("),y)}7_.
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Figure 1. The augmented neural network structure for data
(X1, X2,Y) has two input nodes, X1 and X3, as well as bi-
nary inputs m; and m2 that indicate the conditional mean task
at hand. To predict the conditional mean E(Y|X1, X2), set
both m; = my = 0. To predict the reduced conditional mean
E(Y|X1), set 2 to any value (e.g., 0) and m1 = 0, m2 = 1.

4.1. Multiple network approach

An obvious approach to estimating multiple conditional
means is to fit separate neural networks. That is, we esti-
mate the full conditional mean pp, with a neural network
parameterized by

) : IRS i i 2
0 € arg mingcgm) - Z {y( ) — f(a );9)} ,

i=1

and estimate the reduced conditional mean j1p, ; for variable
index set s € S with a neural network parameterized by

n

i . 1 i i 2
05 € arg mingc g =) Z {y( ) _ f(lig_)s)%(’)} '

n -
=1

The above procedure requires training a total of |S| + 1
neural networks. Though these neural networks can be
trained in parallel, this quickly becomes computationally
prohibitive even for a polynomial number of feature subsets.

4.2. Augmented network with multi-task learning

Rather than fitting multiple neural networks, we train a
single network to jointly learn the conditional means us-
ing multi-task learning (MTL) (Collobert & Weston, 2008;
Ruder, 2017). MTL tends to be advantageous when the tasks
are related, which is clearly true in our case: for any x € X
and indices s,t C {1,...,p} where s C ¢, the conditional
means are related by

:U’Po,t(m) = EPO {/J‘PO,S(X)’X(*t) = x(*t)} :

MTL is best used when all conditional means can be com-
pactly represented by a single neural network. As an ex-
treme example, suppose j1p, is the sum of the univariate
reduced conditional means Ep, (Y|X;) forj = 1,...,p
so that any reduced conditional mean pp, s is the sum of
Ep,(Y|X}) for k € s. We can approximate the conditional
means for all nonempty s C {1, ..., p} using a single neural

network with sub-networks approximating the univariate
reduced conditional means.

More specifically, we propose using a single augmented
neural network with 2p input nodes and one output node,
parameterized by 6 € ©(P), to approximate the conditional
means /ip, s for all s € S; Figure 1 provides an example of
the proposed node structure. We augment the input features
a with the binary vector e; € {0, 1}? with ones only in po-
sitions s.” The conditional mean jp, () is approximated
by the output f(z, es; ).

Moreover, this augmented network structure approximates
all of the conditional means arbitrarily well so long as the
activation functions at the hidden nodes are not polynomials.
Using the classic result from Leshno et al. (1993), we show
that there is a neural network that approximates the function

gy (x,m) = ppy (@) 1{m = 0} + Y ppy s (@) 1{m = e}
sES

arbitrarily well, where gp, combines the conditional means
into a single function. Since ¢gp, contains all the information
from the conditional means, this neural network is also a
good approximation of the conditional means.

Lemma 1. Let the activation function o be any locally

bounded function where the set of points at which o is dis-
continuous has zero Lebesgue measure. Let

F = span{c(Bv +b) : B € R?? b € R}.

Consider any S C {s : s C {1,...,p}}. For any random
vector (X,Y') with conditional means up, s forall s € S,
there exists a sequence of neural networks {f;}32, € F
such that for any compact set K C RP,

jlggorsngg Hf] (z,e5) — /LPU,S(I)HLOQ(K) =0,
where ||h|| Lo (i) = SUDP,¢ i [P ().

A proof is given in the SM.

4.2.1. MULTI-TASK LEARNING VIA STOCHASTIC
GRADIENT DESCENT

We train the augmented neural network by minimizing the
sum of the losses for estimating all conditional means:

n

0 € arg ming. g 71121 [{y(i) _ f(fC(i),O;é))}2
- ®)
+>_Ew, <[y(i) _f(f(x(i)»Ws;S),es;(?)}Q)}

SES

2 There are different ways to perform MTL using neural net-
works. One approach is to use a separate output node for each
task; however, the number of parameters in our model would grow
linearly in |S]|. Instead, we augment the input with a binary vector
es that represents all possible conditional mean “tasks,” which
only adds p nodes to the input layer.
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where W is a random variable with value in R“'; and
the function &(x,w;s) maps (z,w) to RP by defining
{&(z,w;8)}—s) = ;vgi)s) and {&(z,w;s)}s = Ws. The
distribution of Wy is a hyperparameter of the training pro-
cedure, but as the number of samples increases to infinity,
the fitted neural network will not depend on the distribution
of W,. While W, can be set to a constant, we found that in
practice it is better to choose use a stochastic W — introduc-
ing noise teaches the network to be invariant to the values
that are marginalized out in the reduced conditional mean.

At first glance, it seems as if the multi-task loss in (8) simply
shifts the computational load of minimizing |S| + 1 neural
networks to calculating a loss function with |S|+1 terms per
observation. However, we can minimize this multi-task loss
efficiently using (mini-batch) stochastic gradient descent.

At each iteration, we construct the stochastic objective by
first replacing each expectation Eyy, (+) in (8) with its value
at a single sample wy, yielding

22 ({0 st m=no}
+Z [y(i) - f{{(x(i),ws;s),m = 65;9}}2).

seS

©))

We can alternatively think of (9) as the (scaled) mean
squared error over a newly constructed dataset D’:

{9,500 [ones { (69, 0009)) .

i i=1

If the number of summands in the multi-task loss is large
(i-e., |S] is large), then we can also sample the number of
summands to keep in the multi-task loss. That is, we uni-
formly sample a mini-batch D’ from D’ and the stochastic
objective is equal to the mean squared error over D”.

These two stochastic approximations ensure that the expec-
tation of the stochastic objective is equal to (8), so stochas-
tic gradient descent with properly chosen or adapted step
sizes converges to a stationary point of (8) (Bottou, 1998).
Here we use Adam to train the augmented neural network
(Kingma & Ba, 2014).

Our method may be more easily understood through a com-
parison between the proposed procedure and dropout (Hin-
ton et al., 2012; Srivastava et al., 2014). Dropout regularizes
neural networks by randomly dropping nodes, encoding the
prior belief that the true function does not overly depend
on one node. The training algorithm for the augmented
network also uses random inputs that encode a similar prior
belief: the full conditional mean is similar to the reduced
conditional means. If the prior belief holds, our augmented
neural network is likely to better estimate the conditional
means compared to the multiple network procedure.

4.2.2. APPLICATIONS OF THE AUGMENTED NETWORK

The primary problem of interest is variable importance;
however, our method may be used in settings with missing
data, illustrating the broader applicability of our method.

Variable importance: Two issues arise when using esti-
mates of the conditional means from the augmented net-
work in the plug-in estimator (2) or the corrected estimator
(4). First, the estimated full and reduced conditional means
are encouraged to be similar by sharing parameters in the
augmented neural network. Our empirical results suggest
that the variable importance estimates tend to be biased
downwards in small samples due to this parameter sharing.
Second, confidence intervals for the true variable impor-
tance are based on the asymptotic distribution in (7), and
rely on the assumption that the neural network estimates the
true conditional means at sufficiently fast rates given in (5)
and (6). To prove that we attain these rates, we must balance
the approximation and estimation error. If the true data-
generating mechanism falls in a function class that is easy
to approximate with neural networks, such as those with
finite total variation (Bach, 2017), then we achieve the de-
sired rates and our confidence intervals are valid. We show
empirical evidence that our procedure is valid in general in
Section 5.

Missing data: To our knowledge, few papers address how
to flexibly and accurately estimate the conditional means
using a neural network in the presence of missing covari-
ates (Garcia-Laencina et al., 2010). Much of the literature
focuses on imputation of the missing covariates using, e.g.,
recurrent neural networks (Bengio & Gingras, 1996) or
multi-task learning (Garcia-Laencina et al., 2007). How-
ever, imputation does not, in general, minimize the mean
squared error for predicting Y when covariates in s are miss-
ing; one should instead directly estimate 1ip, s, as done in
our augmented network. Others have proposed parametric
approaches, estimating the joint distribution of the covari-
ate vector X and then estimating 1p, s (Tresp et al., 1994).
However, if the model is incorrect, this does not yield valid
estimates for the reduced conditional means.

5. Experiments on simulated data

We compare performance of the multiple networks and the
single augmented network approaches for estimating vari-
able importance, using both the plug-in (2) and corrected (4)
estimators. We compute the difference between the estimate
and the truth — the empirical bias — and the empirical cover-
age of nominal 95% confidence intervals. The asymptotic
distribution of the plug-in estimator is difficult to analyze;
while a bootstrap approach is tempting, Williamson et al.
(2017) show empirically that this does not yield satisfactory
coverage.
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Figure 2. Simulation results where Ep, (Y| X), given in (10), only depends on z1, ..., z4. We estimate variable importance of {z1, z2}
(left col), {z3, x4} (middle col), and {z5, z¢} (right col) using the plug-in (red) and corrected estimator (black) with multiple networks
(stars) and an augmented network (circles). Top row: bias of the estimates multiplied by /n for training set size n. Middle row: variance
of the estimates multiplied by n. Bottom row: coverage of the 95% nominal conf. interval. Dashed line is the desired 95% coverage level.

In both simulation studies, data are generated from a model
of the form y = f(x) + o€, where f is the full condi-
tional mean, € ~ N (0, 1), and o was chosen such that the
signal-to-noise ratio was roughly 2. Each covariate X; for
j = 1,...p was independently drawn from the U(—2,2)
distribution.

We fit fully-connected neural networks with rectified linear
hidden units by minimizing the penalized multi-task loss

multi-task loss in (8)

where Wy in (8) is a standard normal random variable. Each
experiment was run on training set sizes ranging from 500
to 16000, with sixty replicates each.

5.1. A non-additive six-variable function

We consider here that X is composed of six features, and
the conditional mean only depends on the first four features:

flx1, ... x6) = xysin(xy + 229) cos(zs + 2x4).  (10)

We are interested in estimating the variable importance of
groups {x1, 22}, {x3, 24}, and {x5, 26}, given by 0.820,
0.838, and zero, respectively. Unsurprisingly, the variable
importance values here sum to more than one, since (1) mea-
sures additional variability explained by the feature subset.
Since {xs, 26} are not important at all, the asymptotic result
(7) does not apply and we do not expect the empirical cover-
age to reach 95%. However, the asymptotic behavior of our
estimator for {x1, x2} and {x3, x4} should still follow (7).

The empirical bias for the estimators scaled by /n shrinks
towards zero as the training set size increases (Fig 2, top

row), which is expected given the asymptotic result (7).
Bias tends to be smallest when we estimate variable im-
portance using a single augmented neural network and the
corrected estimator. The difference between the plug-in and
corrected estimators tends to be smaller than the difference
between using multiple networks and a single augmented
neural network. This is somewhat expected as the plug-in
and corrected estimators differ by a small correction term
that tends to zero. The variance of the estimators scaled by
n converges towards a positive constant as the training set
size increases (Fig 2, middle row), which is also expected
according to (7). The scaled variance tends to be small-
est when we use the augmented network and a corrected
estimator. Finally, the coverage for groups {x1, x>} and
{x3, x4} approaches the desired 95% level as sample size
grows (Fig 2, bottom row). As expected, the coverage for
the group {5, z6} is poor, never going above 50%; how-
ever, this is an improvement over the zero coverage seen in
Williamson et al. (2017).

The overall differences between fitting multiple networks
and a single network are most apparent in small samples:
as the number of samples grows, the differences between
the two model-fitting procedures are negligible. A possible
explanation is that the prior belief plays a less influential
role in larger sample sizes.

Fitting a single network takes approximately the same
amount of time in the multiple networks or augmented net-
work approach (60—160 seconds), but the total computa-
tional power is much higher for the multiple network ap-
proach. When estimating the conditional means separately,
one must cross-validate over a larger range of network struc-
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Figure 3. We estimate importance of variable groups up to size
four when E(Y'|X) is the sum of univariate functions. Left: aver-
age squared error using the plug-in and corrected estimators. Both
estimators had nearly identical errors so each point represents both.
Right: average coverage of the nominal 95% confidence intervals
from the corrected estimator. Dashed line is the desired 95% level.

tures since different covariates have different optimal struc-
tures (Table B.1 in the SM).

We found that the mean squared error of the fitted aug-
mented network is smaller when W, in (8) is a standard
normal random variable versus constant at zero (Figure B.1
in the SM). We hypothesize that using a constant does not
train the network to be invariant to the “missing” input nodes
for the reduced conditional mean task.

5.2. A sum of univariate functions
Here, we consider the sum of eight univariate functions:

f(x) = 21 + 23 + sin(x3) + cos(xq) + (5 + 1)? (1n

— 226 + max(x7,0) + zs.

We estimate the importance of all groups with cardinality
up to four, for a total of 162 groups. Since fitting multi-
ple networks is computationally prohibitive, we estimate
importance using the augmented network with the plug-in
and corrected estimators. We assess accuracy using aver-
age squared error of the variable importance estimates and
empirical coverage of the confidence intervals over variable
groups up to sizes one to four.

The mean average squared error for all variable groups de-
creases as the number of training observations increases
(Fig 3). Note that the importance of groups increases with
its cardinality so it is expected that the error is higher for
larger groups. The squared error from the plug-in and cor-
rected estimators were very close for this example; the main
advantage in using the corrected estimator is that we obtain
asymptotically valid confidence intervals.

We find that the coverage converges to 95% as the training
set grows in size. It is somewhat surprising to achieve
such good coverage when we simultaneously estimate 162
conditional means with a single network. This may be due
to the univariate sum structure in (11).

6. A heart disease study

We analyze the importance of features for predicting my-
ocardial infarction (MI) using data from a retrospective
cross-sectional sample of 462 white men aged 15-64 in a
region of the Western Cape, South Africa (Rosseauw et al.,
1983). Measurements on two sets of features are available:
behavioral features, including cumulative tobacco consump-
tion, current alcohol consumption, and type A behavior; and
biological features, including systolic blood pressure (SBP),
LDL cholesterol, adiposity, family history of heart disease,
obesity, and age. We estimated importance of individual fea-
tures and the two feature groups for predicting the presence
of M1, using neural networks with a sigmoid output node.

The estimated variable importance are shown in the left two
columns of Figure 4. Family history, age, and LDL have the
highest estimated importance. The biological features were
estimated to be more important than the behavioral features.

The plug-in and corrected estimates were much more similar
in the augmented network approach compared to the multi-
ple network approach. The lack of agreement in the multiple
network is not desired; since the correction in (3) has mean
zero, we expect similar results using the two estimators.

Our results using the augmented network were the most
similar to those in Williamson et al. (2017), though the
rankings differ slightly. However, we observed a striking
difference in computation time — we obtained results in 15
minutes, whereas Williamson et al. (2017) needed 24 hours.

7. Predicting mortality of ICU patients

We analyze the importance of variables measured during
the first two days of patients’ ICU stays for predicting in-
hospital mortality using data from the PhysioNet/CinC Chal-
lenge 2012 (Silva et al., 2012). We have 4000 records, with
five general descriptors collected upon admission and 37
features measured over the course of the first 48 hours after
admission to the ICU, such as Glasgow Coma Score (GCS),
blood urea nitrogen (BUN), and heart rate.

We extracted 55 summary features for prediction, including
the general descriptors and the min/max, mean, and last
measured value of variables used in the SAPS I/IT (Le et al.,
1984; Le Gall et al., 1993) and Xia et al. (2012) (Table C.2 in
the SM). We estimate the importance of 25 variable groups
which fall into two categories: “medical test groups” con-
tain summary features for variables measured by the same
medical test and “individual variable groups” contain sum-
mary features from the same variable. Here, we discuss
our results for the medical test groups; individual variable
groups are discussed in the SM.

The metabolic panel group consists of the summary features
of bicarbonate, BUN, sodium, potassium, and glucose. The
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Figure 4. Naive (red diamonds) and corrected (black circles) variable importance estimates for both individual features and the biological
and behavioral feature groups in the heart study, augmented network structure with MTL (left) and multiple networks (center); and
importance estimates of variables from medical tests in the ICU data estimated using the augmented network structure with MTL (right).
Confidence intervals for the true variable importance, based on the corrected estimator only, are displayed as black bars. For heart study
figures (left and center), the y-axis labels on the left correspond to the corrected estimates, while the y-axis labels on the right correspond

to the plug-in estimates.

complete blood count test (CBC) group consists of the sum-
mary features for white blood cells and hematocrit. The
respiration group consists of the summary features for res-
piration rate, mechanical ventilation, fraction of inspired
oxygen, and partial pressure of oxygen. The general de-
scriptors group consists of age, sex, height, weight, and ICU
admission type. Each of the remaining variables — GCS,
systolic blood pressure, temperature, lactate, heart rate, and
urine — were treated as a medical test groups.

We estimated the conditional means using the augmented
network approach. For features that seem informative for the
outcome, we imputed missing values by drawing uniformly
from the healthy normal range at each step of stochastic
gradient descent. For features that seem uninformative (i.e.,
missing at random), we indicated that the covariate was
missing via the binary task vector and replaced missing
values using a standard normal distribution.

GCS assesses consciousness based on the patient’s ability to
open their eyes, talk, and move — it had the highest estimated
importance (Fig 4 right). This conclusion is sensible as GCS
measures a patient’s immediate risk of dying; GCS is also
the highest scoring item on SAPS 1II (up to 26 points). The
metabolic panel scored next highest in terms of importance,
which also aligns with SAPS II — the metabolic panel items
may contribute up to 24 points.

We estimate the lowest importance for urine and tempera-
ture, in line with previous studies. Temperature is one of the
lowest-scoring items in SAPS II (at most 3 points). Urine
can contribute up to 11 points in SAPS II, but other mortal-
ity scoring methods like APACHE IV (Zimmerman et al.,

2006) do not use urine output to predict mortality.

8. Discussion

We propose using neural networks to estimate the nonpara-
metric variable importance measure (1), allowing us to in-
terpret the relationship between subsets of features and the
outcome. We show how to perform statistical inference on
this variable importance measure. To estimate the impor-
tance of many feature subsets efficiently, we propose fitting
an augmented neural network with multi-task learning that
simultaneously estimates the relationship between the out-
come and feature subsets. This network structure may also
be used for problems with missing data.

The variable importance measure considered here is re-
stricted to outcomes that have a natural ordering; however,
there are many problems where the outcome space is not
ordered. We plan to derive an alternate measure to address
categorical outcomes. In addition, we are working to under-
stand the behavior of our estimator when the true importance
measure is a boundary value of zero or one.

We believe that other machine-learning methods may also
be modified to estimate variable importance efficiently. It
seems particularly important to focus on popular methods
that are difficult to interpret, such as gradient boosted trees
(Freund & Schapire, 1997; Friedman, 2001). Interpretation
is crucial when using these methods to make important
decisions. We hope that statistical inference for variable
importance is a useful tool in this direction.
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