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A. Proof of Lemma 1
Proof. For any S, define the augmented conditional func-
tion gP0(x,m) given explicitly by

gP0(x,m) := µP0(x)1{m = 0}

+
∑
s∈S

µP0,s(x)1{m = es}. (1)

Let E = {0} ∪ {es : s ∈ S}, and let g̃P0
(x,m) be any

continuous function defined over the domain K × [−1, 2]p

that shares the same values as gP0
(x,m) over all K × E .

Using the result of Leshno et al. (1993), there exists a se-
quence of neural networks {fj}∞j=1 ∈ F with parameters
{θj}∞j=1 ∈ Θ such that

lim
j→∞

‖fj (x,m; θj)− g̃P0(x,m)‖L∞(K×[−1,2]p) = 0.

Our desired result follows from the fact that

‖fj (x,m; θj)− g̃P0(x,m)‖L∞(K×[−1,2]p)

≥ max
s⊆S
‖fj (x, es; θj)− µP0,s(x)‖L∞(K) .

B. Experiments on simulated data
Table B.1 displays the neural network structures that we
cross-validated over for the non-additive six-variable exam-
ple in Section 5.1.

For the eight-variable simulation in Section 5.2, we also
compare how well we can estimate the conditional means
when we use 0 vs the standard normal distribution for the
missing inputs Ws in (8). Figure B.1 shows that using
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Figure B.1. The multi-task loss (8) for the simulation specified
by (11) when fitting MTL augmented networks with Ws ≡ 0 vs.
Ws ∼ N(0, 1). The points and error bars represent the mean
multi-task loss and its 95% confidence interval; the errors bars do
not show for the normally distributed inputs since the CI is very
narrow.

random noise results in a much lower multi-task loss (8)
over simply using zero. (The minimum loss in this setting
is 1, due to the variance of the outcome.) These results were
generated using 15 replicates for each training set size.

Additionally, Table B.1 indicates that the time to train a
single network is on the same order of magnitude between
the multiple networks approach and the augmented network
with multi-task learning (MTL) approach. The multiple net-
works approach may be parallelized, yielding a procedure
that estimates all required conditional means on the same
time-scale as the augmented network with MTL approach.
However, using the multiple networks approach results in
a marked increase in time: the network structures for dif-
ferent groups of covariates may be quite different (as seen
in Table B.1), and significant user time must be spent find-
ing a set of network structures to cross-validate over. This
increase in pre-fitting user time is far larger than the user
time spent finding network structures to cross-validate over
in the augmented MTL approach.
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Time to train single network (sec)
NN structures to cross-validate over Smallest network Largest network

Multiple networks

Full: 6,40,20,1;6,40,40,1;6,20,20,20,1;6,40,20,20,1 82.5 106.8
Reduced {x1, x2}: 4,5,5,1;4,10,5,1 57.5 60.5
Reduced {x3, x4}: 4,5,5,1;4,10,5,1 57.5 60.5
Reduced {x5, x6}: 4,20,20,20,1;4,40,20,20,1;4,40,40,20,1 82.1 109.8

Augmented MTL network 12,40,40,20,1;12,40,40,40,1;12,80,40,40,1 133.2 161.0

Table B.1. Network structures used for multiple networks vs the augmented MTL network in the non-additive six-variable example
when there are 16000 training observations. Training time for a single network, for the smallest and largest network structures in the
cross-validation set, are given in the rightmost columns.

C. Predicting Mortality of ICU Patients
Here we describe our analysis of the data from the Phy-
sioNet/CinC Challenge 2012 (Silva et al., 2012) in more
detail.

We computed summary features based on those proposed
in a neural-network submission to the challenge (Xia et al.,
2012) and those used to calculate SAPS I and SAPS II scores
(Le et al., 1984; Le Gall et al., 1993). Xia et al. (2012) chose
to use 18 of the 37 original variables and compute from
them a total of 27 features, such as mean, min/max, and
the last measurement; their model was then fit on these 27
computed features. We included these 27 computed features
as well as the minimum, maximum, and mean (from fitting
linear regression) from the time series of the 18 original
variables if they were not already included. In addition, we
(1) added five variables that are used in SAPS I and SAPS
II but were not in this set of 18 original variables and (2)
included all general descriptors measured at admission. This
procedure resulted in a total of 55 computed and original
features in our model (Table C.2).

We estimate the importance of 25 variable groups which fall
into two categories: “medical test groups” contain summary
features for variables measured by the same medical test
and “individual variable groups” contain summary features
from the same variable. Here, we discuss our results for the
individual variable groups; medical test groups are discussed
in the main manuscript.

The individual variable groups that we consider are given
in the second column of Table C.2. The groups correspond-
ing to GCS, systolic blood pressure (Sys BP), temperature,
lactate, heart rate, and urine are all the same as the med-
ical test groups for these variables analyzed in the main
manuscript. The individual variables in the metabolic panel
medical test group are the summary features of bicarbonate,
BUN, sodium, potassium, and glucose. The complete blood
count medical test (CBC) group consists of the summary
features for white blood cells and hematocrit. The respira-
tion medical test group consists of the summary features
for respiration rate, mechanical ventilation, fraction of in-

Figure C.2. Variable importance estimates for tests in the ICU
data (naive = red diamonds; corrected = black circles). Confidence
intervals for the true importance, based on the corrected estimator
only, are displayed as black bars.

spired oxygen, and partial pressure of oxygen. The general
descriptors group consists of age, sex, height, weight, and
ICU admission type.

We tuned the network structure via an 80/20 train-
ing/validation split, and chose layer sizes 110,4,3,2,1 with
relu activation functions for the hidden nodes and a sig-
moid function for the output. The final variable importance
estimates are based on models fit on all the data.

We estimate that among the individual variable groups, the
Glasgow Coma Score test has the highest variable impor-
tance score by far (Figure C.2). This makes sense as the
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Variable (Meta)-Group Variable Summary (computed or original)

GCS GCS last, weighted mean, max, min, slope

Metabolic panel

HCO3 min, max, last, weighted mean
BUN min, max, last, weighted mean
Na min, max, weighted mean
K min, max, weighted mean

Glucose min, max, weighted mean
SysABP SysABP min, max, last, weighted mean

CBC WBC min, max, last, weighted mean
HCT min, max, weighted mean

Temp Temp min, max, last, weighted mean
Lactate Lactate min, max, last, weighted mean

HR HR min, max, weighted mean

Respiration
RespRate min, max, weighted mean
MechVent max

FiO2, PaO2 ratio of means
Urine Urine sum (based on SAPS II urine item)

General Desc.

Gender measured at admission
Height measured at admission
Weight measured at admission

Age measured at admission
ICU admission type measured at admission

Table C.2. Features included for analysis of the PhysioNet/CinC Challenge 2012. CBC = complete blood count test. Weighted mean = fit
linear regression of response vs. time and get the estimate at the mean measurement time. Slope = fit linear regression of response vs.
time and get slope. Last = last measurement. Impossible values were dropped (zero or lower for many of these variables).

Glasgow Coma Score scores the consciousness of a patient
and the GCS score can contribute the most number of points
to the SAPS II score. Figure C.2 shows that the primary
driver of the importance of the metabolic test is blood urea
nitrogen (BUN), which assesses kidney function.
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