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Abstract

The ChaLearn AutoML Challenge team conducted a large scale evaluation of fully auto-
matic, black-box learning machines for feature-based classification and regression problems.
The test bed was composed of 30 data sets from a wide variety of application domains and
ranged across different types of complexity. Over six rounds, participants succeeded in
delivering AutoML software capable of being trained and tested without human interven-
tion. Although improvements can still be made to close the gap between human-tweaked
and AutoML models, this competition contributes to the development of fully automated
environments by challenging practitioners to solve problems under specific constraints and
sharing their approaches; the platform will remain available for post-challenge submissions
at http://codalab.org/AutoML.

1. Introduction

Within ten years most expert-level predictive analytics/data science tasks will be automated
according to a recent KDNuggets poll (Piatetsky, 2015). In fact, domain-specific automated
software has been in existence for a while and many toolkits/APIs have lately flourished
(e.g., Google Prediction API, Google CloudML, AzureML, BigML, Dataiku, DataRobot,
KNIME, and RapidMiner) claiming easy-to-use or almost fully automated model construc-
tion. In machine learning, practitioners use Java-based Weka, Matlab-based Spider/CLOP,
stats-oriented R or Python-based scikit-learn. The purpose of this paper is to describe the
results of the AutoML challenge, a benchmark for automated machine learning systems that
can be operated without any human intervention, under strict execution time and memory
usage constraints.
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2. The AutoML Challenge

The AutoML competition challenged participants’ code to be completely blind tested. The
goal was to design a learning machine capable of performing all model selection and hyper-
parameter tuning without any human intervention over six rounds that included 30 data
sets1. This required machine learning and software engineering skills. The tasks were limited
to (a) tabular data, i.e., examples were fixed-length feature vectors and (b) supervised
learning problems, i.e., classification and regression tasks. Yet the participants had to face
(a) data sets with a wide range of difficulties such as class imbalance, sparsity, missing
values, and categorical variables, (b) training sets of diverse dimensionality in terms of
number of instances and features, and (c) hardware constraints, i.e., train and test models
within 20 minutes without running out of memory; memory was increased from 24 GB to
56 GB after phase AutoML3. The rounds alternated AutoML phases—in which submitted
code was blind tested on the Codalab platform using unseen data sets and under limited
time—and Tweakathon phases—in which the participants could improve their methods by
tweaking them on those same data sets. During Tweakathon, the participants were free
to use their own computational resources. The challenge used the open-source CodaLab
platform since it allowed us organizing a competition with code submission thus conducting
a fair evaluation with uniform hardware resources. In order to encourage participants to
try GPUs and deep learning, a GPU track sponsored by NVIDIA was included in Round 4.
The reader is referred to (Guyon et al., 2015a,b) for a detailed description of the challenge.

3. Results

Principled optimizers to search model space, which include Sequential Model-based Algo-
rithm Configuration (SMAC) (Hutter et al., 2011) and hyperopt (Bergstra et al., 2013),
combined with Weka (the Auto-WEKA software (Thornton et al., 2013)) or scikit-learn
(the hyperopt-sklearn software (Komer et al., 2014)) were promising candidate solutions for
the AutoML challenge. Although they have been great source of inspiration, this challenge
turned out to be harder than it looked at first sight. Of hundreds of participants, only few
passed the first rounds, which were of limited difficulty. The challenge experienced a critical
turning point in Round 3 when sparse data were introduced; all but one participant (D.
Jajetic) failed in the AutoML3 blind evaluation. Fortunately, the crowd recovered and the
last rounds had enough successful teams to attribute all prizes.

Table 1 shows the results on the test set in the AutoML phases (blind testing) and
the Final phases (one time testing on the test set revealed at the end of the Tweakathon
phases). Ties were broken by giving preference to the first submission. Team names are
abbreviated as follows.

aad=aad freiburg djaj=djajetic marc=marc.boulle tadej=tadejs
abhi=abhishek4 ideal=ideal.intel.analytics mat=matthias.vonrohr lisheng=lise sun
asml=amsl.intel.com jlr44 = backstreet.bayes post = postech.mlg exbrain ref=reference

AAD Freiburg is the overall winner, having totaled the largest number of wins in all
phases; they won 3 out of 5 AutoML phases. The team, led by F. Hutter who codeveloped
SMAC and Auto-WEKA, delivered a new tool called AutoSklearn (Feurer et al., 2015b).

1. http://automl.chalearn.org/data
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Table 1: Results of the AutoML challenge winners. < R > is the average rank over all five data sets of the
round and was used to rank the participants. < S > is the average score over the five data sets of the
round. UP is the percent increase in performance between the average performance of the winners in the
AutoML phase and the Final phase of the same round.

AutoML Final
Rnd Ended Winners < R > < S > Ended Winners < R > < S > UP (%)

1. ideal 1.40 0.8159
0 NA NA NA NA 02/14/15 2. abhi 3.60 0.7764 NA

3. aad 4.00 0.7714

1. aad 2.80 0.6401 1. aad 2.20 0.7479
1 02/15/15 2. jrl44 3.80 0.6226 06/14/15 2. ideal 3.20 0.7324 15

3. tadej 4.20 0.6456 3. amsl 4.60 0.7158

1. jrl44 1.80 0.4320 1. ideal 2.00 0.5180
2 06/15/15 2. aad 3.40 0.3529 11/14/15 2. djaj 2.20 0.5142 35

3. mat 4.40 0.3449 3. aad 3.20 0.4977

1. djaj 2.40 0.0901 1. aad 1.80 0.8071
3 11/15/15 2. NA NA NA 02/19/16 2. djaj 2.00 0.7912 481

3. NA NA NA 3. ideal 3.80 0.7547

1. aad 2.20 0.3881 1. aad 1.60 0.5238
4 02/20/16 2. djaj 2.20 0.3841 05/1/16 2. ideal 3.60 0.4998 31

3. marc 2.60 0.3815 3. abhi 5.40 0.4911
G 1. abhi 5.60 0.4913
P NA NA NA NA 05/1/16 2. djaj 6.20 0.4900 NA
U 3. aad 6.20 0.4884

1. aad 1.60 0.5282
5 05/1/16 2. djaj 2.60 0.5379 NA NA NA NA NA

3. post 4.60 0.4150

It is worth noting that the Codalab platform favored Python programming since the envi-
ronment had Python installed and the sample code was written in Python. However, any
Linux executable could be submitted. M. Boullé, for instance, submitted an executable of
Khiops, the Orange Labs’ automatic tool for mining large databases.

It was also possible to enter the challenge without submitting code; participants could
run their learning techniques on their own local environments and submit the results only.
Following each AutoML phase, new data sets were released (labeled training set, unlabeled
validation set, and test set), and participants could manually tune their models for over a
month during the Tweakathon phases. Having a proprietary solution, the Intel team, led
by E. Tuv, entered the no-code-releasing track. In this “free style” part of the competition,
both the AAD Freiburg and the Intel teams were on equal par; they were always ranking in
the top 3. Counting 1 point for the 3rd place, 2 for the 2nd, and 3 for the 1st, both scored
11 points. Interestingly, although both teams used ensemble methods, their approaches
were radically different. The Intel team simply relied on their own C++ implementation of
CART-style tree-based methods for the feature selection and ensemble learning. Conversely,
the AAD Freiburg team devised heterogeneous ensembles of predictors based on scikit-learn
pipelines, using a combination of meta-learning and Bayesian hyper-parameter optimization.
While we have no way of comparing computational efficiency, it is likely that Intel is much
faster. However, the organizers are proud of the ADD Freiburg team for making their
solution publicly available, encouraging this practice in future challenges.
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Table 2: Systematic study: The team abbreviations are given in Table 1. The colors indicate the rounds.
Datasets aad abhi djaj ideal jrl44 lisheng marc ref
ADULT 0.82 0.82 0.81 0.83 0.81 0.8 0.81 0.82
CADATA 0.8 0.79 0.78 0.81 0.09 0.79 0.64 0.76
DIGITS 0.95 0.94 0.83 0.96 0.73 0.95 0.86 0.87
DOROTHEA 0.66 0.87 0.82 0.89 0.82 0.84 0.79 0.7
NEWSGROUPS 0.48 0.46 0.64 0.59 0.33 0.05 0.38 0.56
CHRISTINE 0.49 0.46 0.48 0.55 0.48 0.46 0.45 0.42
JASMINE 0.63 0.61 0.62 0.65 0.62 0.61 0.56 0.56
MADELINE 0.82 0.59 0.64 0.81 0.57 0.58 0.18 0.53
PHILIPPINE 0.66 0.53 0.52 0.72 0.52 0.52 0.45 0.51
SYLVINE 0.9 0.87 0.89 0.93 0.89 0.87 0.83 0.89
ALBERT 0.38 0.32 0.36 0.37 0.32 0.34 0.35 0.32
DILBERT 0.94 0.79 0.75 0.98 0.21 0.24 0.46 0.79
FABERT 0.36 0.19 0.33 0.35 0.03 0.18 0.21 0.24
ROBERT 0.46 0.33 0.33 0.51 0.21 0.4 0.37 0.36
VOLKERT 0.33 0.26 0.28 0.37 0.11 0.15 0.14 0.25
ALEXIS 0.75 0.65 0.67 0.76 0.62 0.68 0.62 0.64
DIONIS 0.9 0.32 0.75 0.93 0.02 0.87 0.81 0.31
GRIGORIS 0.73 0.76 0.8 0.97 0.54 0.88 0.96 0.75
JANNIS 0.55 0.38 0.41 0.42 0.24 0.36 0.39 0.4
WALLIS 0.71 0.63 0.74 0.71 0.12 0.23 0.58 0.62
EVITA 0.59 0.59 0.58 0.61 0.59 0.59 0.52 0.41
FLORA 0.5 0.51 0.5 0.53 0.02 0.42 0.51 0.37
HELENA 0.22 0.23 0.15 0.25 0.06 0.2 0.19 0.08
TANIA 0.47 0.76 0.39 0.73 0.53 0.6 0.66 0.54
YOLANDA 0.32 0.37 0.29 0.39 0.02 0.24 0.19 0.26
ARTURO 0.75 0.8 0.78 0.77 0.3 0.72 0.7 0.77
CARLO 0.45 0.37 0.43 0.18 0.36 0.4 0.37 0.14
MARCO 0.55 0.71 0.69 0.54 0.66 0.54 0.68 0.25
PABLO 0.3 0.29 0.31 0.27 0.03 0.29 0.25 0.28
WALDO 0.59 0.56 0.57 0.61 0.56 0.56 0.46 0.56

4. Systematic study

We conducted a systematic study (Table 2, Figure 1). These results evaluating the “em-
pirical difficulty” of the datasets have been thoroughly analyzed (Chaabane et al., 2016),
but did not reveal obvious patterns relating empirical difficulty and classical metrics of
complexity, such as the ratio number of features over number of training examples.

Figure 1: Systematic study result distribution. We represent the distribution of results of Table 2. The
datasets are ordered with decreasing median test score.
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5. Insights on the AutoML Solutions

5.1. Survey Analysis

Twenty-eight teams responded to a survey we conducted on methods used in the challenge.
Preprocessing. Preprocessing consisted in normalization, feature extraction, and dimen-
sionality reduction. About one half of the respondents performed classical preprocessing
steps, including feature standardization, sample normalization, and replacement of missing
values. This is consistent with the frequent use of ensembles of decision trees based on
decision thresholds, which do not require complex preprocessing. Other preprocessing steps
included grouping modalities for categorical variables (20%) and discretization (4%). Few
participants also reported having used non-linear transforms such as log. Most participants
did not perform any feature engineering, which can largely be explained by the fact that
they did not know the application domain of the data sets. Those who reported using
feature extraction either relied on the (embedded) feature learning of their algorithm (21%)
or applied random functions (36%). More than 2/3 of the participants used dimensionality
reduction, linear manifold transformations (e.g., PCA, ICA) being the most popular (43%).
About 1/3 used feature selection alone. Other methods included non-linear dimensionality
reduction (e.g., KPCA, MDS, LLE, Laplacian Eigenmaps) and clustering (e.g., K-means).
Predictor. The methods most frequently used involved (ensembles of) decision trees; 75%
of the participants reported having used them, alone or in combination with other methods.
The challenge setting lent itself well to such methods because each individual base learner
trains rapidly and performance improves by increasing the number of learners, making
such methods ideal any-time learning machines. Almost 1/2 of the participants used linear
methods and about 1/3 used at least one of the following methods: Neural Nets, Nearest
Neighbor, and Naive Bayes. The logistic loss was frequently used (75%). This may be
due to the fact that producing probability-like scores is the most versatile when it comes
to being able to be judged with a variety of loss functions. About 2/3 of the participants
reported having used knowingly some form of regularization; two-norm regularization was
slightly more popular than one-norm regularization.
Model selection and ensembling. About 2/3 of the respondents used one form of cross-
validation for model selection; the rest used just the leaderboard. This may be due to the
fact that the validation sets were not small for the most part. While K-fold cross-validation
and leave-one-out remain the most popular, 20% of the respondents used the out-of-bag
estimator of bagging methods and 10% used bi-level optimization methods. 4% reported
transferring knowledge from phase to phase. However, such a strategy may be worth con-
sidering since both winners of phase AutoML5 used it. Only 18% of the respondents did
not choose ensemble methods. For those who did, boosting and bagging were the most
common—60% reported having used one of the two.
Implementation. Most respondents could not reliably evaluate how their methods scaled
computationally. We are at least assured that they delivered results in less than 20 minutes
on every data set, because this was the time limit for the execution. Most respondents
claimed to have developed a simple method, easy to implement and parallelize (75% used
multi-processor machines, 32% used algorithms run in parallel on different machines), but
few claimed that their method was original or principled, and most relied on third-party
libraries; scikit-learn, which was used in the starting kit, was frequently used. Luckily, this
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also resulted in code that was made available as open source—with only 10% exceptions.
Python was used by 82% of the respondents. This is also explained by the fact that the
starting kit was in Python. Although Codalab allows participants to submit any Linux
executable, the organizers provided no support for this. Even then, 25% used at least one of
the following languages: C/C++, Java, or R, sometimes in combination with Python. The
fact that the Codalab backend ran on Linux may also explain that 86% of the respondents
ran on Linux; others used Windows or MacOS. Memory consumption was generally high
(more than half of the respondents used between 8 and 32 GB, and 18% used more that
32 GB). Indeed, when we introduced sparse data in Round 3, the sample code was memory
demanding and we had to increase the memory on the server up to 56 GB. Unfortunately,
this remained a problem until the end of the challenge—which we traced to an inefficient
implementation of the data reader and of Random Forest for sparse matrices.

5.2. Best Methods

This section reviews the solutions of the two top ranking participants.
The proprietary solution of the Intel team is a fast implementation of tree-based
methods in C/C++, which was developed to drive acceleration of yield learning in semi-
conductor process development. Using this software, the Intel team consistently has ranked
high in ChaLearn challenges since 2003. The method is based on gradient boosting of trees
built on a random subspace dynamically adjusted to reflect learned features relevance. A
Huber loss function is used. No pre-processing was done, except for feature selection (Tuv
et al., 2009). The classification method called Stochastic Gradient Tree and Feature Boost-
ing selects a small sample of features at every step of the ensemble construction. The
sampling distribution is modified at every iteration to promote more relevant features.
The open-source solution of AAD Freiburg uses a heterogeneous ensemble of learn-
ing machines (AutoSklearn (Feurer et al., 2015a,c)) combining the machine learning library
scikit-learn (Pedregosa et al., 2011) with the state-of-the-art SMBO method SMAC to find
suitable machine learning pipelines for a data set at hand. This is essentially a reimple-
mentation of Auto-WEKA. To speed up the optimization process they employed a meta-
learning technique (Feurer et al., 2015b) which starts SMAC from promising configurations
of scikit-learn. Furthermore, they used the outputs of all models and combined these into
an ensemble using ensemble selection. Their latest implementation uses the new version of
SMAC (Hutter et al.) of Bayesian Optimization with Random Forests applied to a flexible
configuration space describing scikit-learn. For the GPU version (Mendoza et al., 2016),
they used the Java version of SMAC to tune AutoSklearn and deep neural networks imple-
mented in Lasagne/Theano (Dieleman et al., 2015; Theano Development Team, 2016).

5.3. Other Notable Contributions

This section briefly reviews other solutions that ranked in the top 3 multiple times.
Freeze Thaw Ensemble Construction (Lloyd) of J. Lloyd (a.k.a. jrl44 and back-
street.bayes) is a modified version of the Freeze Thaw Bayesian optimization algorithm (Swer-
sky et al., 2014) for ensemble construction. The strategy is to keep training the most
promising members of an ensemble, while freezing the least promising ones, which may be
thawed later. Probabilistic models based on Gaussian processes and decision trees are used
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to predict which ensemble member should be trained further. Joining late in the challenge,
L. Sun made an entry in AutoML5 that ranked third using a similar approach (Sun, 2016).
AutoCompete of Thakur and Krohn-Grimberghe (2015) is an automated machine learn-
ing framework for tackling Machine Learning competitions. This solution performed well
in late rounds of the AutoML challenge and won the GPU track (Thakur, 2016). The
pipeline includes (1) stratified data splitting, (2) building features, (3) feature selection,
(4) performing model and hyper-parameter selection (Random Forests, Logistic Regression,
Ridge Regression, Lasso, SVM, Naive Bayes, and Nearest Neighbors), and (5) ensembling
solutions. Search space is specified with prior knowledge on similar data sets (a form of
meta-learning). Thakur found that this strategy is faster and yields comparable results to
hyperopt.The underlying implementation is based purely on Python and scikit-learn with
some modules in Cython. Their GPU solution is an advanced version of the AutoCompete
solution, which uses Neural Networks built with Keras (Chollet, 2015).
Djajetic (Jajetic, 2016a) is based on heterogeneous ensembles of models obtained by search-
ing through model-space and adjusting hyper-parameters (HP) without any communication
between models. Jajetic believes that this makes search more effective in non-convex search
spaces. This strategy lends itself well to efficient and simple parallelization. The search
space and ensembling properties for each individual model is defined in a separate Python
script. Each model is trained and explores its own parameter space and only communicates
its training error and best prediction results to the outside. The ensembling module oper-
ates in a hierarchical manner. It uses only the N best HP settings from each model, based
on the training error, and only M best models from each model group. For the GPU track,
Jajetic used a Neural Network (Jajetic, 2016b) based on the Lasagne and Theano libraries.

6. Conclusion and further work

This first AutoML challenge is a stepping stone towards attaining fully automated machine
learning, which will require the organization of more elaborate benchmarks (with less con-
straints on data representation and type of tasks). Practical solutions were obtained and
open-sourced, such as the solution of the winners (Feurer et al., 2015b). On the tasks of
this challenge, ensemble learning is the big winner, but it is unclear whether homogeneous
ensembles of trees or heterogenous ensembles are preferable. There is still room for im-
provement, as revealed by the significant differences remaining between Tweakathon and
AutoML results (Table 1). Except for Round 3, human intervention and additional com-
pute power yielded a 15 to 35% improvement. Hence, the learning schemas can still be
optimized to close this gap. An upcoming more detailed paper will study more in depth
the relationships between algorithm and data complexity.
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