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Abstract
An important component of a suitably automated machine learning process is the automation of the
model selection which often contains some optimal selection of hyperparameters. The hyperparam-
eter optimization process is often conducted with a black-box tool, but, because different tools may
perform better in different circumstances, automating the machine learning workflow might involve
choosing the appropriate optimization method for a given situation. This paper proposes a mech-
anism for comparing the performance of multiple optimization methods for multiple performance
metrics across a range of optimization problems. Using nonparametric statistical tests to convert
the metrics recorded for each problem into a partial ranking of optimization methods, results from
each problem are then amalgamated through a voting mechanism to generate a final score for each
optimization method. Mathematical analysis is provided to motivate decisions within this strategy,
and sample results are provided to demonstrate the impact of certain ranking decisions.
Keywords: evaluation methods, Bayesian optimization, sequential model-based optimization, em-
pirical analysis

1. Introduction

As machine learning tools continue to grow in importance and breadth of application, the need to
automate these tools for non-expert use and interpretation has grown accordingly; research into this
topic has been associated with the term AutoML (Feurer et al., 2015). Any suitably automated ma-
chine learning framework would include some automation of model and hyperparameter selection,
and this hyperparameter search is generally carried out using a black-box, gradient-free optimiza-
tion method (Thornton et al., 2013). Many such methods seek to take information about a function
f : X → R and create a data-generated model in a Bayesian optimization framework (Brochu
et al., 2010; Martinez-Cantin et al., 2007). In the AutoML setting, this f function likely represents
a measurement of how well certain hyperparameters define a model that matches given data such
as, e.g., a cross-validation residual, likelihood function or risk functional. Additionally, Bayesian
optimization can be used to simultaneously tune multiple aspects of a machine learning model, such
as data-preprocessing as well as model hyperparameters Coates et al. (2011).

Bayesian optimization can utilize a variety of models, including Gaussian processes (Snoek
et al., 2012), random forests (Hutter et al., 2011a), and tree-structured Parzen estimators (Bergstra
et al., 2011), each of which has its own strengths. Comparing the performance of multiple opti-
mization methods is beneficial when identifying the best optimization method for model fitting in
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a given situation, which is an important part of an efficient and robust automated machine learning
framework.

Eggensperger et al. (2013); Martinez-Cantin (2014); Eggensperger et al. (2015) are among the
literature that has previously summarized the performance of Bayesian optimization methods. Some
publications involve the use of potentially inappropriate statistical analysis, and most provides little
guidance as to how performance on multiple functions f can be analyzed in chorus. Consequently,
results from an optimization often read in the form of a confidence interval (derived from a small
sample size) relevant to only a single function and without any means for broader interpretation.

To address these difficulties, Section 2 details a strategy for ranking performance between var-
ious optimization methods on multiple metrics and aggregating that performance across multiple
functions. By allowing for multiple metrics, optimizers can be studied in more detail, e.g., consid-
ering both the quality of the solution and the speed with which it is attained. We demonstrate our
evaluation strategy using an open source suite of benchmark functions available at McCourt (2016).
Section 3 outlines our results and provides some interpretation.

2. Evaluating Optimization Performance

Figure 1: Hypothetical optimization meth-
ods A and B both achieve the same best found
value of 0.03 at the end of 40 evaluations.
Method A, however, finds the optimum in
fewer evaluations, thus the lower AUC value.

Many metrics exist for describing the quality of an
optimizer, and each application values them differ-
ently. In the context of an AutoML problem, the
goal of the optimizer is to find the optimal model
design or hyperparameters, and the quality of an
optimizer might be judged on the proximity of the
solution to the optimal design or the speed with
which that solution is found (thus facilitating more
model experimentation/learning).

Here, we focus on only these two metrics, ac-
curacy and speed, which is sufficient to demon-
strate the hierarchical nature of our ranking strat-
egy; others could be included if desired. These
metrics are derived from the best seen traces,
fbest[i], which record the best seen objective value
after i objective function evaluations. Other
thoughts regarding the design and incorporation of performance metrics are presented in Section 2.2.

The accuracy measurement is referred to as the Best Found metric, fbest[T ], and records the
optimal f value observed after the total T evaluations. To measure the speed of improvement, we
supplement the best found metric with the Area Under Curve metric, 1

T

∑T
i=1(fbest[i] − fLB). A

specified lower bound fLB on the function ensures the AUC is always positive. The name AUC
reflects the physical interpretation of the metric as an approximate integral of the best seen traces.
In the context of an AutoML problem, the Best Found metric represents the quality of the resulting
AutoML system, whereas the Area Under Curve metric represents the cost of tuning this optimal
AutoML system.

A sample of fbest[i] for two different optimization methods tested 30 times is shown in Figure 1.
The shaded region represents the inter-quartile range and reminds us that these optimization methods
are inherently stochastic and that any results should be interpreted statistically.
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2.1. Performance Ranking and Aggregation

We proceed by using our metrics to establish a partial ranking (allowing for ties) of how multiple
optimization methods perform on a given function. For this section we choose to more highly value
better model fit (good Best Found values) and reserve comparisons of optimization speed (good
Area Under Curve values) for to distinguish between methods producing the same fit. Specifically,
we combine the two metrics in a hierarchical fashion:

• First, we use pairwise Mann-Whitney U tests (discussed in the supplemental content) at a
chosen α significance on the Best Found results to determine a partial ranking based only on
that statistic,

• Any tied results from that step are then subject to additional partial ranking using the same
test on the Area Under Curve metric,

• Ties remaining after ranking attempts using both metrics are left as ties.

This ordering could be reversed to more strongly emphasize speed over accuracy.
This ranking process would be carried out on each function in a specified set which, in effect,

allows each function to “cast a ballot” listing the optimization methods in order of performance
on that function. We allow for ties throughout this process, thus favoring no stated preference
rather than a weak preference, in recognition of the high level of randomness in the hyperparameter
optimization. These ballots are then aggregated using a Borda ranking system (Dwork et al., 2001);
the tables in Section 3 are an example. This approach generalizes to using additional metrics,
provided they are applied in a specified order of importance.

The appropriate α signficance can be determined by considering the “family-wise error” αF ,
the combined probability of any type I errors during the total set of pairwise statistical tests on each
metric, given that each test has α probability of a type I error (Demšar, 2006). These tests are not
independent (the same samples are used for multiple tests,) but even if they were, the probability of
at least a single type I error is bounded by

αF ≤ 1− (1− α)(
m
2 ),

where m is the number of algorithms undergoing pairwise comparison. In Section 3 we use m = 7
algorithms, thus our desired αF = .01 can be achieved with α ≈ .0005.

2.1.1. EXAMPLE RANKING AND AGGREGATION

Suppose we use METHOD A, METHOD B, METHOD C and METHOD D to optimize a single func-
tion 30 times and record the Best Found and Area Under Curve values for each optimization. The
Mann-Whitney U tests on the best found value may yield the statistically significant results on the
left, which can be reverse sorted in order of number of losses to observe the partial ranking, and
resulting Borda values, on the right:

METHOD A < METHOD D,
METHOD A < METHOD C,
METHOD B < METHOD D.

 (METHOD A,METHOD B)<METHOD C<METHOD D.
2 1 0

Note that sorting by losses is just a simple way to isolate the worst performers and certainly not
the only mechanism of creating a ranking (Cook et al., 2007), e.g., one could rank by number of
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wins. Any group of ties, such as (METHOD A, METHOD B) in this example, is refined by studying
the area under curve statistical test; if that test stated that METHOD A had a smaller AUC value than
METHOD B, that information would be present in the final ranking

METHOD A<METHOD B<METHOD C<METHOD D.

3 2 1 0

If, on the other hand, the area under curve test was statistically insignificant, the original ranking
and associated Borda values would be used.

If the test set under consideration contained 6 functions, f1:6, and each reported the rankings
below, the proposed aggregation strategies would generate the total rankings found in Table 1.

f1 : A < B < C < D,

f2 : (A, B) < (C, D),

f3 : C < A < (B, D),

f4 : D < (A, C) < B,

f5 : (A, B, C, D) all tied,

f6 : B < (A, C, D),

Table 1: Sample aggregation of results

ALGORITHM BORDA FIRSTS
TOP

THREE

METHOD A 8 3 6
METHOD B 7 3 6
METHOD C 5 2 6
METHOD D 3 2 5

Tables of this form appear in Section 3, where the TOP THREE criterion is more insightful than in
this example; to account for ties, all algorithms at the top of a function’s “ballot” receive credit in
the FIRSTS column, and similarly for the TOP THREE column.

2.1.2. STATISTICAL CONSIDERATIONS

Figure 2: Demonstration that an increasingly
accurate random search (increasing T ) yields re-
sults which look less normal (more likely to fail a
Kolmogorov-Smirnov test) and thus demand non-
parametric statistical analysis.

Some previous empirical analyses of optimiza-
tion methods prefer parametric statistics using
the central limit theorem (Eggensperger et al.,
2013; Bergstra et al., 2014) to the nonparamet-
ric statistics we employ (Hutter et al., 2011a).
Potential nonnormality of samples of fbest[T ]
makes parametric statistics on small sample
sizes a treacherous endeavor.

As an example, consider optimization using
the simple optimization method random search
(Bergstra and Bengio, 2012); each suggestion
xi is chosen i.i.d. from X ∼ Unif(X ). Ob-
served function values yi = f(xi) are there-
fore i.i.d. realizations of some random variable
Y , whose distribution is determined by f and
X . After T random samples, the smallest ob-
servation becomes the best found value, thus
fbest[T ] = min{y1, . . . , yT }.
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The minimum of these i.i.d. values is the first order statistic Y(1) ≡ fbest[T ], whose cumulative
distribution function can be determined through the CDF of the random observations,

FY(1)
(y)=P (Y(1) < y) = 1− P (min{Y1, . . . , YT } > y)

= 1− P (Y1 > y) · · ·P (YT > y) = 1− [1− (FY (y))]
T .

A similar quantity phrased in a different context is presented in Bergstra and Bengio (2012).
The viability of a t test for studying samples of Y(T ) is dependent on how closely the distribution

of sample means matches a normal. The central limit theorem guarantees this for sufficiently large
samples, but, because FY(1)

(y) is certainly not a normal CDF, it is unlikely that small sample means
are sufficiently normal. Additionally, as T increases the distribution becomes increasingly skewed
positive because Y(1) has a minimum value, f(xopt).

The impact of this on an example is displayed graphically in Figure 2. We minimized the 1D
function f(x) = |x| on x ∈ [−1, 1] with random search over T function evaluations. Sample means
of size {5, 10, 15, 30} were taken from that distribution and tested with a Kolmogorov-Smirnov test
for normality; each KS test used 500 samples and significance .05. We ran 800 KS tests for each T
value and graphed the probability of rejecting the null hypothesis – the belief that sample means are
normally distributed and t tests are appropriate. This result can be verified analytically by studying
the appropriate Berry-Esseen inequality (Korolev and Shevtsova, 2010). Furthermore, this situation
is likely exacerbated by the use of a “better” optimization method because it will more quickly
approach xopt and likely be more positively skewed.

2.2. Optimizer Performance as Multicriteria Optimization

In some industrial settings it may be the case that the domain expert (e.g., data scientist or finan-
cial analyst), wants to use an AutoML tool without possessing any insight as to the tool’s internal
specifications or design methodology. Indeed, this is the presumed goal of an AutoML tool. These
users likely still have a preference between the speed of the training process and the accuracy of the
resulting model (and thus a preference as to the desired optimization tool), but they may not have
the means to express that preference in explicit numerical terms, i.e., a function.

We can phrase this tradeoff between competing metrics as a multicriteria optimization problem
(Ehrgott, 2006; Jahn, 2009); in the context of these two metrics we have introduced, users simul-
taneously want to maximize the performance while minimizing the training time. Unfortunately,
because an improvement in one of these objectives likely causes worse performance in the other,
there likely is no unique solution to this problem. Some judgment must be made between all the
Pareto efficient results as to which is most desired, which is especially difficult for users without
machine learning expertise.

That balance between competing objectives is often resolved with some sort of scalarization,
where all of the objectives are combined into a scalar function which can then be optimized; how-
ever, doing so requires knowledge of the relative significance of each component which is probably
implicitly, but not explicitly, known by the user. Our proposed solution to this multicriteria problem
falls along lexicographic lines (Fishburn, 1975; Harzheim, 2005): we suggest that a user state their
preference between available criteria (accuracy before speed in the example above with more dis-
cussed in the next section) and we use those preferences, up to statistical ties, to rank the available
optimizers.
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This method loses some of the subtlety in potential tradeoffs (e.g., a small but statistically sig-
nificant gain in best found value would trump a massive gain in area under curve) but allows for
minimal information from the end user. In some circumstances, especially those with users primar-
ily focused on their application, this reduced interaction may be preferable.

2.2.1. ALTERNATE METRICS

Our metrics are by no means the only criteria by which optimization algorithms can, or should, be
judged. Best Found measures proximity to the optimal function value f(xopt), but not proximity to
the optimal vector xopt which could be more insightful in some AutoML-pertinent circumstances.
The metrics could account for the probabilistic nature of the problem; for example, the probability
of fbest[T ] being more than 10% from the optimal value (Dolan and Moré, 2002). Knowledge of xopt
also permits use of the gap metric, (f(x1)−fbest[T ])

/
(f(x1)−f(xopt)) (Huang et al., 2006; Brochu

et al., 2010) which is cleanly scaled between 0 and 1. Cumulative regret,
∑T

i=1(f(xi) − f(xopt)),
penalizes suggestions which do not improve fbest (Srinivas et al., 2010; Bull, 2011) and thus may
be valuable for an online automated machine learning setting.

The fLB term in the Area Under Curve metric serves only a cosmetic purpose – its omission
would produce an equivalent averaged fbest metric. An averaging of the gap metric could be simi-
larly considered. Many AutoML problems have variable computational cost for different xopt values
(e.g., SVM training time as related to the box constraint), thus the total resources (e.g., CPU time)
expended on function evaluations can also be an important metric. The time required for the entire
SMBO may also be relevant when comparing software implementations (Martinez-Cantin, 2014).
Furthermore, there could exist different judgments for each module of the Bayesian optimization
scheme, which parallels the discussion in Hoffman and Shahriari (2014).

3. Ranking Demonstration

We conducted numerical experiments on functions from McCourt (2016), a test suite derived from
Gavana (2013); information is provided there explaining exactly which functions were used. The
use of such artificial test functions is well established within the Bayesian optimization community
and plays an important role in current research (Snoek et al., 2015; Hernández-Lobato et al., 2015;
González et al., 2015). The metrics described in Section 2 were recorded over 30 optimizations per
algorithm per function and aggregated as described in Section 2.1. All algorithms were terminated
at 80 function evaluations, unless the function was in dimension d < 4 when optimization was
terminated after 20d evaluations. This decision was made for simplicity of comparison and, in a real
AutoML setting, each method may have a preferred stopping criteria which should be observed.

Four Bayesian optimization methods are studied in our evaluation. SPEARMINT (Snoek et al.,
2012, 2014b) (the HIPS implementation in Snoek et al. (2014a)) and SIGOPT, which is derived from
MOE (Clark et al., 2014), use Gaussian processes to model f . SMAC (Hutter et al., 2011a,b) uses
random forests to model f ; we utilized the python wrapper pySMAC (Falkner, 2014). HYPEROPT

(Bergstra et al., 2013b) uses tree-structured Parzen estimators to facilitate the optimization, and we
used the standard python library implementation (Bergstra et al., 2013a) in our experiments.

In addition to these Bayesian methods, we also consider grid search (GRID), random search
(Bergstra and Bengio, 2012) (RANDOM), and particle swarm optimization (PSO) (Kennedy and
Eberhart, 1995). For grid search, we randomly sample without replacement from a grid designed
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Table 2: Comparison between U / t tests

ALGORITHM BORDA FIRSTS
TOP

THREE

HYPEROPT 162 / 153 12 / 15 48 / 38
SIGOPT 297 / 289 39 / 49 59 / 58
SMAC 47 / 41 3 / 5 14 / 10
SPEARMINT 253 / 222 24 / 19 47 / 46
GRID 50 / 34 5 / 6 14 / 12
PSO 162 / 129 9 / 18 51 / 52
RANDOM 40 / 36 3 / 5 9 / 8

Table 3: Comparison with/without AUC results

ALGORITHM BORDA FIRSTS
TOP

THREE

HYPEROPT 138 / 120 8 / 10 31 / 31
SIGOPT 236 / 211 35 / 42 43 / 43
SMAC 42 / 34 1 / 2 6 / 6
SPEARMINT 183 / 169 9 / 26 32 / 40
GRID 34 / 28 2 / 3 5 / 6
PSO 129 / 119 4 / 8 33 / 37
RANDOM 36 / 29 2 / 3 5 / 5

with roughly 1 million grid points, a necessary adaptation in higher dimensional settings. For PSO,
we used the pyswarm (Lee, 2014) implementation with 2d particles.

In Section 2.1.2, we explained our preference for the Mann-Whitney U test over traditional t
tests for comparing optimization performance. Table 2 displays a stark shift in FIRSTS results with
relative consistency in TOP THREE, suggesting that the parametric tests are making inappropriate
assumptions regarding the best performers. Note that both the t tests and U tests were conducted
with the α = .0005 significance explained in Section 2.1.

As discussed in Section 2.1, the ranking scheme we propose involves a hierarchy of metrics:
first the Best Found and second the Area Under Curve, with more possible if desired. Table 3
gives an example of the contrast between ranking with and without AUC. The decrease in FIRSTS

without a similar decrease in TOP THREE again suggests that the AUC test is helping better identify
the top performers for each function. It is also of note that the better resolution (reduction in ties)
also increases the Borda scores overall.

4. Conclusions

The necessity for black-box optimization for, among other things, hyperparameter optimization has
yielded the development of a variety of optimization methods, which has created a need to compare
them. We have proposed a strategy for which a set of problems of interest can be provided and a set
of optimization methods can be ranked based on their performance on those problems. This ranking
strategy utilizes nonparametric statistical analysis to avoid potential problems associated with non-
normality. It also allows for a hierarchy of metrics by which optimization methods can be judged,
providing more ability to refine the rankings. Future work will include additional statistical analysis
on the skewness of optimization results from methods other than random search and experimenta-
tion with this ranking strategy to translate performance of optimizers on constructed functions to
specific AutoML problems.
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