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Abstract

Method of moment estimators exhibit appeal-
ing statistical properties, such as asymptotic un-
biasedness, for nonconvex problems. However,
they typically require a large number of sam-
ples and are extremely sensitive to model mis-
specification. In this paper, we apply the frame-
work of M-estimation to develop both a general-
ized method of moments procedure and a princi-
pled method for regularization. Our proposed M-
estimator obtains optimal sample efficiency rates
(in the class of moment-based estimators) and
the same well-known rates on prediction accu-
racy as other spectral estimators. It also makes it
straightforward to incorporate regularization into
the sample moment conditions. We demonstrate
empirically the gains in sample efficiency from
our approach on hidden Markov models.

1 Introduction

Developing expressive latent variable models is a funda-
mental task in statistics and machine learning. However,
performing parameter estimation with statistical guarantees
remains challenging; in practice, optimization techniques
such as the EM algorithm (Dempster et al., 1977) are used to
find local solutions to approximate the maximum likelihood
estimate (MLE) or maximum a posteriori solution.

Recently, inference techniques based on the method of mo-
ments (Pearson, 1894), coined as spectral learning, have
gained interest because they provide consistent estima-
tors for many classes of models, such as hidden Markov
models (Hsu et al., 2012), predictive state representations
(Boots et al., 2010), latent tree models (Parikh et al., 2011),
weighted automata (Balle and Mohri, 2012), mixture mod-
els (Anandkumar et al., 2014b), and mixed membership
stochastic blockmodels (Anandkumar et al., 2014a). Spec-
tral methods operate by deriving low-order moment con-
ditions on the model—such as the mean and covariance—
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and matching these to moments of the observed data. Of-
ten this moment-matching process can be solved efficiently
with linear algebra routines and can allow for parameter re-
covery in settings where row-level data is unwieldy to work
with (e.g. streaming data) or unavailable (e.g. an institution
may only be willing to release summary statistics).

However, current spectral methods are extremely sensitive
to poorly-estimated moments and model misspecification.
The former problem can be addressed, in part, by robust
estimation methods of covariances (Negahban and Wain-
wright, 2011)—though robust estimation for higher order
moments remains an open challenge. When the rank of the
model is set too low—a form of model misspecification—
Kulesza et al. (2014) demonstrate that naive methods can
lead to arbitrarily large prediction error. In practice, there
are many occasions where we may wish to learn a low-rank
approximation to a complex system.

In contrast, parameters learned from maximum likelihood
and other optimization-based estimators are robust (assum-
ing global optimum), as they minimize the Kullback-Leibler
divergence from the considered model class to the true data
distribution (White, 1982) and can in certain cases achieve
consistency (Gourieroux et al., 1984). With finite samples,
optimization-based estimators can achieve reasonable vari-
ances (Godambe, 1960).

Is such robustness possible for spectral methods? Errors
due to both poor moment estimates and model misspec-
ification can be viewed as forms of overfitting. Various
heuristics such as early stopping are considered in the liter-
ature (Mahoney and Orecchia, 2011), but they fundamen-
tally break assumptions for the statistical guarantees, and
are difficult to rigorously characterize; this leads to a dis-
parity between theory and practice.

In this paper, we analyze spectral methods from their
traditional-and more general—setting as an M-estimator.
M-estimation has deep roots in robust statistics (see, e.g.,
Huber and Ronchetti (2009)). This connection emphasizes
the relationship of spectral methods to well-established
alternatives such as maximum likelihood. We use this
connection to recover the desired properties—sample effi-
ciency and balanced fitting. Specifically, our work makes
the following contributions:
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Provably optimal sample efficiency with respect to the
moments. With the choice of weighted Frobenius norm as
a metric on the moment conditions, the M-estimation pro-
cedure corresponds to the generalized method of moments
(GMM), whose estimator is proven to be statistically efficient
with respect to the information stored in the moments. Most
practically, the GMM is sample efficient and is thus more
adaptive to scenarios where the size of the data set is small
to moderate or the data collection process results in imbal-
anced samples for estimation.

Principled regularization for sparse estimation. The set-
ting of M-estimation is naturally conducive to penalization
in order to regularize parameters, and it is commonly ap-
plied to perform robust estimation and variable selection
(Owen, 2007; Lambert-Lacroix et al., 2011; Li et al., 2011).
From the Bayesian perspective, this can be interpreted as
placing priors on the parameters of interest, and where the
log-likelihood is replaced by a more general, robust, func-
tion of the data and parameters. The proposed M-estimator
automatically preserves the same bounds on the predictive
accuracy as other spectral algorithms, while also achieving
statistical efficiency.

We focus on the application of spectral M-estimation to hid-
den Markov models in our development of the theory (sec-
tion 3) and empirical evaluation (section 5); we discuss ex-
tensions to other latent variable models in section 6.

2 Background

2.1 M-estimation

We first review M-estimation (Huber, 1973; Van der Vaart,
2000), which naturally generalizes the moment matching
used in spectral methods. Let observations X, ..., Xy €
X be generated from a distribution with unknown parame-
ters 0* € ©. Consider minimizing the criterion

N
My(0) =Y m(X,,0),
n=1

where m(-,-) : X x © — R are called the estimat-

ing functions (Godambe, 1976, 1991). The argument §M
which minimizes the criterion is termed the M-estimator.
Similarly, one may also consider penalized M-estimation in
which one minimizes the criterion

N
My (0) = m(X,,0)+ A\P(6), (1)
n=1

where m(-, -) is as before, A € Risfixed,and P(-) : © - R
is a specified penalty function on the parameters.

Let M (0) = E[m(X, 0)]. The M-estimator 6" is consis-
tent in that %M '~ (0) uniformly converges in probability to

M(6) as N — oo, and 6" converges to 8™ (or the closest
projection, if 8* is not among the considered models). In
the case of penalization, the intuition is that in the limit, the
penalty term P(0™) is dominated by the confidence one has
from the data (as the first summation grows with V).

2.2 Generalized method of moments

A particular case of M-estimation is the generalized method
of moments (GMM), developed in the econometrics litera-
ture (Burguete et al., 1982; Hansen, 1982). Given a vector-
valued function m(-,-) : X x © — R, the moment condi-
tions form

M(0") =E[m(X,0%)] =0,
where the expectation is taken with respect to the data distri-
bution on X. In practice, we use emAPirical estimates of the
k moment conditions using data, >, _, m(X,, 6).!

In the setting where k > |©]|, the problem is overspecified
and no root solution exists. One may best hope to find the set
of parameters 8* which minimizes | E[m(X, 8)]|| for some

choice of norm || - ||. The GMM estimator """ is given by
minimizing a weighted criterion function,
N 2
My () = H X, 0 H : 2
v@ = | Lm0, @

where for a positive definite matrix W € R¥*E the
weighted norm is ||v||% = v Wv for v € R*.

. . ~gmm
Under standard assumptions, the estimator 6 is con-

sistent and asymptotically normal. Moreover, if we set
W o E[m(X,,, 0)m(X,,07) 7)1, then 8% is statis-
tically efficient in the class of consistent and asymptotically
normal estimators conditional on the moment conditions.
Therefore, if the moment conditions form a sufficient statis-
tic of the data (as in the MLE), then the GMM estimator is
optimal in that its variance asymptotically achieves the op-
timal Cramér-Rao lower bound. More generally, the GMM
estimator achieves the Godambe information.

One can reformulate many, if not all, examples of spectral
learning algorithms as special cases of M-estimation, and
thus one can recover the set of parameters with maximal
sample efficiency using the GMM estimator (Equation (2))
and achieve certain robustness properties and regularization
by sufficient penalization of the loss (Equation (1)).

2.3 Hidden Markov models

For the remainder of this paper, we will focus on spectral
estimation and associated statistical guarantees for hidden

'To simplify presentation, m(-, -) is written as vector-valued to

connect to moment estimation. Some simple swapping of symbols
can recover the scalar-valued notation in M-estimation.
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Markov models (HMMS)—applications to other latent vari-
able models are discussed in Section 6. An HMM is defined
by a 5-tuple {X, H,T,0, 7w} where X is a set of n dis-
crete observations, H is a set of m discrete hidden states,
7 € R™ is the initial distribution over hidden states, and
the transition T € R™*™ and observation O € R™*" op-
erators govern the dynamics of the system:

Tij = Pr(hyyr =i | he = j),
Oij = PI'(iEt =1 | ht = j)

Specifically, HMMS assume that given the hidden state h, at
time ¢, the next state h;11 and the current observation x; is
independent of any history before h;.

We are interested in estimating the joint probabilities
Pr(z1.t) = Pr(xy,...,2:) and the conditional probabili-
ties Pr(x¢ | 21.4—1). The model parameters (T, O, 1) can
also be recovered in our setup, but directly estimating the
parameters can be unstable and requires additional assump-
tions such as coherence (Anandkumar et al., 2014a; Mossel
and Roch, 2005).

If T and O are full rank, and = > 0O for all hidden states
h € [m], then Hsu et al. (2012) show that the follow-
ing statistics are sufficient to consistently estimate the joint
probabilities:

P1 e R" [Pl]

i = Pr(xl = i),
Py, e R™" [P2al;; = Pr(ze =i,21 = j), 3

P37$,1 S Rnxn [P3,z,l]ij = PI'(JZ?, = iaxQ =T, T1 = .])7
where Ps ; ; is written for all z € [n]. We term these
statistics observable, as they can be estimated directly using
triplets of the observations.

Specifically, Hsu et al. (2012) define the spectral model pa-
rameters (b}, b BP) as follows. Let U € R™*™
be a matrix such that U ' O is invertible—typically, it is the
left singular vectors corresponding to the m largest singular
values of P ;—and set

by =UTP,,
b = (P, ,U)'Py, )
By = UTPS,:;c,l(U—l—P2,1)Jr Yz € [n].

where AT denotes the pseudoinverse of A. Then the joint
probability satisfies

Pr(z1;) = b. B,, --- By, bi. (5)

Intuitively, one can think of by as the initial state vector in a
projected observable representation space; the matrix B, is
an observable transition operator which propagates changes
in this space; the vector b, simply acts as a normalizer.
From Equation (5), Hsu et al. (2012) demonstrated that the

. ~spec ~Spec ~spec -~ spec
estimator& = (b; ,b

Y oo )

B, ), which is constructed

from the empirical statistics 131, 13271, 133@,1, is asymptot-
ically unbiased as the empirical statistics become exact in
the limit. Moreover, the number of observations required
to achieve a fixed level of accuracy is only polynomial in
the length of the sequence, ¢.

3 Spectral M-estimation

Following the results of spectral methods (Hsu et al., 2012;
Boots et al., 2010; Balle and Mohri, 2012; Cohen et al.,
2012; Arora et al., 2012), it is natural to consider the under-
lying framework for its methodology, and how it connects
to techniques for maximum likelihood estimation. To ad-
dress this, we start by deriving the usual spectral estimator
(4) from the M-estimation setting.

3.1 Spectral M-estimator

Denote the parameter triplet 8 = (by, B, b,) and define
the moment conditions

m1(60) =by — Py,
Moo(0) = Py b — Py, (6)
my(0) =P 1 —BPay Vx € [nl.

Let 6™ denote the root solution m;(0*) = my(0") =
m(0™) = 0. The vector by is trivially given by Py, and
the solution of by, to ms(+) is simply the vector of ones,
1,,. Thus it suffices to estimate the tensor B.

The standard approach in spectral methods (e.g., Hsu et al.
(2012); Boots et al. (2010)) is to first observe that param-
eter triplets satisfying the joint probability in Equation (5)
are equivalent up to a similarity transform: given the triplet
(b1,{B.},bs) and an invertible matrix S € R"™*", the
transformed triplet (b}, = Sby, {B, = SB,S™'},b/_ =
S™Tb..) provide the same quantities. Thus, what we are
really interested in is not a unique set of parameters but an
equivalence class—governed by the joint probability (5)—
and which denote identical parameters up to a similarity
transform. The moment conditions (6) are constructed such
that the solution 8* defines a unique element in this equiva-
lence class (and thus by M-estimation theory, the estimator
is identifiable (Van der Vaart, 2000)).

We now formalize the connection to the usual spectral esti-
mator as follows. Let X = {X,, = (1, Zn2, Tn3)} denote
the data set of IV triplets by which the observable represen-
tations Py, P51 and P, ; are estimated. Define

MyB)= > (Psaily — [Bali[P21]y) (D

z,i,j€[n]?

" . Aspec .
Proposition 1 (Equivalence). Let @  denote the estimator
~M
using empirical statistics in Equation (4). Let @ denote the
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M-estimator given by

b, =Py,

~M

b, =1,,

~M

B = argmin My(B).
BGR’ILX’ILX’!L

M . ~spec
Then @ is in the same equivalence class as 8, so they
provide the same probability estimates.

Proposition 1 allows us to leverage both M-estimation the-
ory and the usual finite sample bounds on accuracy given by
Hsuetal. (2012). Specifically, the sample complexity of 6"
depends polynomially on the singular values 1/0,,(P21)
and 1/0,,(0), where ,,(-) denotes the m*" largest singu-
lar value of its matrix argument.

3.2 Regularized Spectral M-estimator: Low Rank
Setting

Suppose there is a low rank constraint on the parameters,
where rank(B,) < k for some k& < m and for all matri-
ces B,. We may impose this constraint for computational
tractability, to avoid the O(n?) complexity of solving sin-
gular value decomposition associated with the dynamical
system. It may also occur naturally: the maximal rank of
B, is rank(O) = rank(T) < m, and often the transition
operators are low rank. Estimation with this constraint is
known as low rank spectral learning, Kulesza et al. (2014)
show that simply truncating B, to a desired rank can lead
to poor prediction. Following the M-estimation setting, we
now derive a more robust estimator.

To optimize over an unconstrained Euclidean space, we first
cast the low rank estimation problem in terms of matrix fac-
torization. Let B, = RZSI, where R, S, € R®* k and
let R and S be tensors formed by the collections of matrices
{R,} and {S,} respectively.

This leads to the criterion function

Y (Pawaly—RaliSI Paaly)? ®)

z,3,j€[n]?

My(B) =

where we use the notation A;. (and respectively, A.;) to
represent the i row (and 5% column) of a matrix.

3.3 Regularized Spectral M-estimator: Additional
Penalization

Given the M-estimation following Equation (8), we can gen-
eralize the procedure further by augmenting the criterion
function with a penalty term,

MN(Rv S) + Apa(Ra S),

where P, (R, S) is a specified penalty function with regu-
larization parameter A\. However, in general, if My (R, S)

converges in probability to M (R, S) as in the current set-
ting, we must specify a suitable decaying schedule on the
penalty function,

My(R,S) + AN"?P,(R,S)

for fixed p > 0 (unlike traditional penalized M-estimation,
the number of summations remains fixed as N — oo). Ide-
ally, the penalty function should decay at the slowest possi-
ble rate, without affecting the convergence rate of the pre-
vious M-estimator (8). We choose p as follows.
Proposition 2. Let 0" denote the M-estimator obtained by
minimizing the criterion function

MN(R7 S) =+ AN?pPa(Ra S)7

where p > 0. Then the largest value of p such that the

convergence rate of 6" does not change isp = 1/2.

Trivially this is the case based on the asymptotic rate
of the estimator. In practice, we consider losses of the
form

L(R,S) = My(R,S) + AN"V2||R;. )

Penalizing only the first factor of B acts as a proxy for pe-
nalizing the observation operator O; that is, by construc-
tion one can show that B, = OAIOT, where A, =
T diag(Ogz1,--.,04z,m). We will denote this final crite-

~M
rion function as £ and its M-estimator as € , which also
~M ~ ~M
collects the two parameters b; = P; and b = 1.

3.4 Sample Efficiency through Generalized Method
of Moments

With the low rank and penalization extensions in place, we
extend the estimation procedure once more: we define the
criterion function My (R, S) of Equation (9) in order to
obtain optimal sample efficiency.

Let m be a vector of length n?, which flattens the moment
conditions m,, (@) over z € [n] and each matrix element i, j.
More specifically, an index (z, 4, j) € [n]? into m is

m,; = [P31)ij — [Ra]i.S) [Pa,1].5.

As before, there are n® moment conditions but now 2n2k

parameters due to the low rank structure—corresponding
to each element in the n X n x k tensors R, S. The GmMM
estimator is the minimizer of the criterion function

Z Wijmimj, (10)
i.j€([n]’)?

MN(Rv S) =

where W is a weighting matrix that trades off between er-
rors in the various GMM moment condtions. If W is the
identity I, then each term is m;m; for all 4,5 € [n]?; this
recovers the original spectral M-estimation criterion func-
tion considered in Equation (8).
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To achieve maximum sample efficiency, GMM theory
(Hansen, 1982) states that the optimal weighting W is pro-
portional to the precision matrix,

W x E[m(X,, {R*,S* )m(X,, {R*,$"}) "]~ (1D)

The optimal W minimizes the variance of the estimator
by calibrating it to the inexactness of the estimated statis-
tics, P, P2 1,P3 ;1. If the moment conditions form the
gradient of the log-likelihood function, m(X,{R,S}) =
VI({R, S}; X), the optimal weighting matrix W becomes
the inverse Fisher information evaluated at the true param-
eters. This recovers a maximum likelihood estimator with
minimal asymptotic variance. Analogous to the MLE set-
ting, the choice of the moment conditions m and weighting
matrix W may also be interpreted as minimizing a distance
to the true data generating distribution, where the distance
between probability distributions is defined by symmetrized
KL divergence (Amari and Kawanabe, 1997b,a).

To gain intuition, note that a first-order diagonal approxima-
tion to Equation (11) is given by the inverse diagonal entries
of the expected outer product. These entries W,; weight
according to the magnitude of error in the sample moments
m;. Large magnitudes for m; lead 1/m? to be small; this
forces the M-estimator to place less weight on high error
moments. With cross-correlation, W places more weight
on other estimates paired with high error moments. For ex-
ample, a small error moment m; leads to a larger weight
1/(m;m;)?%. These weights enable more intelligent param-
eter estimation.

4 Algorithm

The criterion function £ of Equation (9) is a quadratic form
plus a convex penalty. Moreover, it is strongly convex for
R given S and S given R. Hence we proceed with estima-
tion by the procedure of alternating minimization, i.e., ap-
ply convex solvers which alternate between estimating each
set of parameters.

More specifically, we apply an iterative procedure where we
1. alternate minimizing the loss over R and S conditioned
on an estimate of W; 2. set W conditioned on estimates
of R,S; 3. repeat the procedure until convergence. An
overview of the procedure is described in Algorithm 1, and
we derive gradients in the following proposition.
Proposition 3. The gradients are

VRL = Jgp Wm(X,{R,S}) + VRP.(R,S)  (12)
Vsl = Jgd Wm(X,{R,S}) + VRP,(R,S) (13)

. 3,2 a_ 2
where the matrices Jr € R™ *" % and Js € R™ "'k are
given by

—[S; Jw- P25,
0, otherwise

fr=u,t1=v

[jR]zij,uvw = {
(14)

Algorithm 1: Spectral M-estimation for HMMS

Input: N observation triplets X = {X,, : (21,22, z3)}.
Construct empirical statistics P1, P21, P3 ;1 V& € [n].
Initialize W = I.

Set iteration counter s = 1.

while not converged do
if s > 2 then

(S0, m(Xe (R, 8})m(X,., (R.S)T)
end

R.S = arg ming g £(R, S) (Algorithm 2).

Increment s.

end

~M ~

b, = P;.

~ ~ ~T
B" = (R.S, }.
b = 1,.

~M ~M ~M

~M
Return & = (b;,B ,b_)).

Algorithm 2: Alternating minimization, given weights W

Input: initial values f{, S.

while not converged do

~

R = argming £(R, S) (Equation (12))
S = arg ming £(R, S) (Equation (13))

end
Return f{, S.

and

_[Rx]iw[PQ,l]vj7 lfiE =u

15
0, otherwise (1%

[jS}acij,uvw = {

Note that we initialize \/7\\/' = 1, so that one loop of Al-
gorithm 1 corresponds to the original spectral estimator
of Equation (7). The global optima upon future itera-
tions are refined based on the weighting matrix, and are
in fact guaranteed to perform at least as well as the min-
imizer of the original optima. Note also that only one it-
eration of the loop is necessary for optimal sample effi-
ciency asymptotically, as W converges in probability to
E[m(X,, {R,S})m(X,, {R,S})"]~!. However, for fi-
nite data we see in experiments that better performance oc-
curs when running the algorithm until convergence.

The matrix factorization view considered here, as well as
the introduction of the weighting matrix W, makes the
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problem highly nonconvex. However, much recent theory
has gone into explaining why simple optimization proce-
dures following alternating minimization typically perform
well in practice (Jain et al., 2013; Loh and Wainwright,
2014; Hardt, 2014; Chen and Wainwright, 2015; Bhojana-
palli et al., 2015; Garber and Hazan, 2015; Loh, 2015). We
also find that in practice the richer information gain from
the generalized M-estimation procedure leads to improved
estimates. It is an open problem to understand these im-
provements theoretically. Note that initialization using the
original spectral estimator guarantees a global solution to
the first iteration without penalization; we can apply it to
initialize future iterations of the weighting as well as for
nonconvex optimization with a penalty.

For computational efficiency, one can take immediate ad-
vantage of the block diagonal structure of the weighting
matrix: this comes as a result of the independent sets of
parameters in the loss function of Equation (9). That is,
the parameter matrices B, only appear in the mg;; € [n)3
moments when z = «’. Thus it can be embarassingly paral-
lelized into n separate optimizations. We apply individual
optimizations on n procedures, each of which have n? mo-
ment conditions and recover a particular B,. The compu-
tational complexity of the algorithm is O(n?) per iteration,
with a storage complexity of O(n*).

S Experiments

We demonstrate the sample efficiency gained by the weight-
ing scheme in the M-estimator and the advantage of sparse
estimation due to L; penalization. We use toy configura-
tions to highlight the M-estimator’s robustness to model or
rank mismatch, imbalanced observations, low sample size,
and overfitting; finally we show results on real data.

For the M-estimator, we initialize using the original spec-
tral estimate and also try several random initializations; we
then take the estimates with minimal training loss. As the
weighting matrix can become numerically singular, we add
1078 to the diagonal. Comparisons are always done on test
set evaluations. Note also that evaluations of the loss cannot
be compared among algorithms, as the estimators minimize
inherently different functions.

-~ spec ~M
Length B, B,
10 1 1
15 0.8889  0.8607
25 0.0198 3.1521-10"°
50 0.0008 9.9664 -10~° . ‘

Figure 1: Left: Decay of the transition operator By as
the length of sequence increases (lower is better); Right:
Weighting matrix of By for each length is displayed from
top left-right, bottom left-right.

ha) @ s
Y 2\ 7
ha) i) (ko)

O O IR GC G

(a) RING

(b) GRID

h, hs h
1—p \12/ 1—p \Lj/ 1—p \M/ 1-p
(¢) CHAIN

Figure 2: HMM configurations. (a) RING: The outer loop
indicate clockwise transition probabilities, the inner loop
indicate counter-clockwise. (b) GRID: Each state has equal
probability of visiting any neighbor. (¢) CHAIN: States tran-
sition with a probability p of resetting to the first state.

5.1 Deterministic sequence

Consider a rank-11 system of two binary states: 0 and 1.
The observation sequence deterministically follows the pat-
tern "00000000001...1", where O is always observed for the
first 10 steps and 1 is observed for all remaining steps. Sup-
pose that we aim to estimate this with a model of rank 1.
Figure 1 displays the original estimator 6™ and the M-

estimator 6. As the length of the sequence increases, we
expect B, the observable transition operator for the first
state, to decay to 0. Our M-estimator achieves this at a
much faster rate than 8. It places more weight on the
first state, and this weight increases with the length of the
sequence.

5.2 Ring configuration

~spec ~M

Model rank 0 0 (§M, A =0.01)

4 1.50 125 1.03
3 1.15 1.03 0.81
2 0.68 0.65 0.60

Table 1: Relative norm difference between estimated and
true joint probability, averaged over 100 test examples.

In Figure 2a, the hidden states form a ring: h; has uni-
form probability of proceeding clockwise to hy or counter-
clockwise to hs; ho and hs return back to hy with probabil-
ity 0.9 and visit h3 or hy4 (respectively) with probability 0.1.
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This leads to imbalanced samples where h1, ho, hs are vis-
ited most, and one rarely sees hs and h,. States are correctly
observed with 0.6 probability, otherwise we observe any
other state uniformly. We train on 100 examples.

Table 1 shows that under difficult settings—with imbal-
anced states, not enough training examples, and ill-posed
rank problems—spectral estimators fit poorly due to the in-
formation loss from higher order moments. However, the

weighting scheme of 6" allows the estimator to compensate
for some of these problems, and thus it performs better than
é\s pec. Moreover, when used with a L1 penalty of A\ = 0.01,
the estimator dominates other algorithms; the value of A

was also chosen generally and not optimized over.

5.3 Grid configuration

~spec ~M ~M
Grid size 6 0 @ ,\=1E-3)
2x2 0.014 0.014 0.014
3x3 0.225 0.225 0.212
5x5 0475 0475 0.458

Table 2: Relative norm difference between estimated and
true joint probability, averaged over 100 test examples.

In the grid configuration (Figure 2b), each hidden state has
an equal probability of transitioning to any one of its neigh-
bors; the observation matrix O indicates the correct state
with 0.9 probability, and any other state otherwise. We use
100,000 training examples and vary the grid size.

Table 2 demonstrates good performance for small grids
where the training data is large enough to accurately cover
the state space. Note also that the unregularized M-
estimator performs the same as the original estimator over
all grid sizes. This is because the weighting matrix has no
effect due to the the equally likely transitions, which are
already well-balanced. However, the role of regularization
becomes more important as the grid grows larger; this is be-
cause the fixed sample size leads observed states to be more
spread out and revisited less often.

5.4 Chain configuration

~spec ~M

Reset probability 6 (7] (§M , A = 1E-3)

0.1 0.80 0.73 0.72
0.3 0.82 0.80 0.77
0.5 1.24 096 0.69

Table 3: Relative norm difference between estimated and
true joint probability, averaged over 100 test examples.

The chain configuration (Figure 2c) mimicks the chain
problem in reinforcement learning (Strens, 2000; Poupart

Error

2000 4000 6000 8000 10000
# of Training Examples

Error

2000 4000 6000 8000 10000
# of Training Examples

Figure 3: Predictive accuracy of original estimator (green)
and M-estimator (blue) over # of training examples, with
standard error bars taken over 100 simulations. Top: m = 5
hidden states with n = 10 hidden states. Bottom: m = 10
hidden states with n = 20 observed states.

et al., 2006). Each hidden state transitions to the next with
probability 1 — p and resets to the first state with probability
p. We use 50 training examples for each p.

As the reset probability increases, the data distribution be-
comes more heavy tailed. This is reflected in Table 3, as the
weighting makes a larger impact over highly skewed distri-
butions. As very few examples are seen with the last few
states, the L; penalty has a growing impact as well.

5.5 Synthetic hidden Markov models

We generate two large synthetic data sets following well-
behaving HMMS: one system uses m = 5 hidden states and
n = 10 observed states, and the other uses m = 10 hidden
states and n = 20 observed states. We perform both full
rank and low rank estimation over 10, 000 training examples
and analyze held-out prediction error.

In Figure 3, we see that with few training examples, the M-
estimator’s optimal weighting scheme is crucial for reason-
able performance. Moreover, as explained in theory, the
variance of the M-estimator is much lower than the origi-
nal spectral estimator. The original estimator and the M-
estimator converge at the same rate and eventually reach
competitive errors. However, the M-estimator achieves this
much faster in practice even in these well-behaving dynam-
ical systems.
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~spec ~M ~M ~EM
Data set Type Training set  # Obs. states 0 @ ,A=1e-5) 6

Alice Text 50,000 26 022 020 0.20 0.14
Splice DNA 100,000 4 041 040 0.35 0.19
Bach Chorales Music 4,693 20 0.31 028 0.25 0.24
Ecoli Protein 1,407 20 0.14 013 0.15 0.12
Dodgers Traffic 30,000 10 042 038 0.39 0.33

Table 4: Predictive test error for three spectral estimators—Hsu et al. (2012), M-estimator, and regularized M-estimator—
and EM. In many cases the M-estimators approach the performance of EM.

5.6 Real data sets

We now examine the performance of the estimators for 5
separate data sets: in the Alice novel available in Project
Gutenberg, the task is to predict characters after having
trained over the first 50,000 of them; the Splice data set
consists of 3,190 examples of DNA sequences which have
length 60 and the task is to predict the remaining A,C,T,
or G fields; the Bach Chorales consists of discrete event
sequences in which the task is to predict the correct pitch
of melody lines; Ecoli describes sequencing information
of protein localization sites; Dodgers examines link counts
over a freeway in Los Angeles. These last four data sets are
available from Lichman (2013).

Table 4 indicates the average prediction error on held out
data. The results are consistent with that of the toy con-
figurations and synthetic benchmarks. In all data sets, the
M-estimator surpasses the original estimator. The benefit of
sparse regularization tended to vary, as we did not choose
to tune this hyperparameter per data set. We also com-
pared to EM with random initializations as a benchmark to
likelihood-based methods. Many local optima performed
poorly; the best solutions found after enough random ini-
tializations uniformly performed better than the spectral es-
timators over all data sets.

6 Discussion and Related Work

In this work, we focused on the application of M-estimation
to estimating parameters of HMMS. Our analysis and algo-
rithms carry over almost identically for predictive state rep-
resentations (e.g. in Siddiqi et al. (2010); Song et al. (2010);
Boots et al. (2010)). Estimating parameters for other latent
variable models can also be easily formulated as general-
ized method of moments problems. For example, follow-
ing Anandkumar et al. (2012), a mixture model specified
by Pr(h = j) = wj and Pr(z =i | h = j) = M;; for
i € [n],j € [k], has moment conditions
m1(M,w) = Py — Mdiag(w)M ',
mae(M,w) = P31 — Mdiag(M"e,) diag(w)M ",

for all x € [n], where e, is the unit vector equal to one at
index z. Closest to our approach is that of Kulesza et al.

(2015), who propose a weighting scheme to address funda-
mental issues with low rank spectral learning. Their weight-
ing scheme can be seen as redefining the moment condi-
tions

mz(0) =P3 o1 — B, WPy 1 V€ [n].

With this moment condition, solvers using singular value
decomposition avoid instabilities as noted in Kulesza et al.
(2014). In contrast, our GMM approach takes the direct path
of weighting the moment conditions, i.e., the error in the
statistics for estimating the moments. Kulesza et al. (2015)
also require that a domain expert specify the weighting ma-

trix W; our 6" is automatically given by our optimal choice
of weighting matrix. That said, in situations where domain
experts can connect a choice of W to a specific task, one
can forgo sample efficiency and specify the weighting ma-
trix of the GMM manually.

Also related to our work are methods that use spectral meth-
ods to initialize techniques for maximum likelihood estima-
tion (Zhang et al., 2014; Balle et al., 2014). Shaban et al.
(2015) follow this approach and propose a two-stage pro-
cedure, which corresponds to typical spectral estimation in
the first stage and optimization upon the second to ensure
feasible solutions (which our method does not). While we
also have an iterative procedure that begins with a spectral
initialization, each of our steps is still within the spectral
framework. Our approach of weighting the moments and
considering suitable penalization is orthogonal to the use of
the spectral estimates for initializing other estimation tech-
niques. It remains open to explore the benefits of these ap-
proaches when merged in practice.

To our knowledge, our work is the first to achieve optimal
sample efficiency rates for spectral estimation, and we pro-
vide a principled approach to incorporating regularization
into the process. However, we now have a highly noncon-
vex optimization problem, and we also rely on row-level el-
ements of the data. Addressing these concerns, while main-
taining sample-efficiency and accuracy bounds, remains an
important direction for future work.
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