
A Appendix

A.1 Coordinate Descent Updates for Alternating Newton Coordinate Descent
Method

In our alternating Newton coordinate descent algorithm, each element of ∆Λ is updated as follows:

(∆Λ)ij ←(∆Λ)ij − cΛ + SλΛ/aΛ(cΛ −
bΛ
aΛ

),

where Sr(w) = sign(w) max(|w| − r, 0) is the soft-thresholding operator and

aΛ =Σ2
ij + ΣiiΣjj + ΣiiΨjj + 2ΣijΨij + ΣjjΨii

bΛ =(Syy)ij −Σij −Ψij + (Σ∆ΛΣ)ij + (Ψ∆ΛΣ)ij + (Ψ∆ΛΣ)ji

cΛ =Λij + (∆Λ)ij .

For Θ, we perform coordinate-descent updates directly on Θ without forming a second-order ap-
proximation of the log-likelihood to find a Newton direction, as follows:

Θij ←Θij − cΘ + SλΘ/aΘ(cΘ −
bΘ
aΘ

),

where

aΘ =2Σjj(Sxx)ii

bΘ =2(Sxy)ij + 2(SxxΘΣ)ij

cΘ =Θij .

A.2 Time Complexity Analysis of Alternating Newton Block Coordinate De-
scent

In this section we describe the time complexity of the alternating Newton block coordinate descent
method. The active set sizes for Λ and Θ are mΛ and mΘ, respectively. Also, because we use the
iterative conjugate gradient method to compute columns of Σ, we assume that solving ΛΣi = ei
takes at most K iterations.

A.2.1 Time Cost of Updating Λ

The time complexity of each Λ update is dominated by the cost of precomputing columns of
Σ and Ψ. The cost of these precomputations is O

([
1 + BΛ

q

]
[mΛKq + nq2]

)
, where BΛ =∑

z 6=r |{j|i ∈ Cz, j ∈ Cr, (i, j) ∈ SΛ}| is the number of cache misses and K is the number of con-
jugate gradient iterations. Although the worst-case of BΛ = kΛq requires computing Σ and Ψ
a total of kΛ times, in practice, graph clustering dramatically reduces this additional cost of block-
wise optimization. In the best case, when graph clustering identifies perfect block-diagonal structure
in the active set, the number of cache misses BΛ = 0 and we incur no runtime penalty from limited
memory.

1

100 200 400 800 1600
n (samples)

0

1

2

3

4

5

6

7

8

ti
m

e
 (

h
o
u
rs

)

Newton CD

Alt Newton CD

Alt Newton BCD (1 core)

Alt Newton BCD (8 cores)

100 200 400 800 1600
n (samples)

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

Λ

Θ

(a) (b)
Figure 1: Results from varying sample size n on chain graph with p = q = 10,000. (a) Comparison
of computation time of different methods. (b) Comparison of edge recovery accuracy as measured
by F1-score.

A.2.2 Time Cost of Updating Θ

The overall runtime is dominated by the cost of precomputing columns of Sxx and Σ. The complex-
ity of these operations is O(mΛKq+mΘq+np̃BΘ), where p̃ is the number of non-empty rows in
Θ and BΘ =

∑
i,r |{i|j ∈ Cr, (i, j) ∈ SΘ}| is the number of cache misses. Without any row-wise

sparsity we have p̃ = p and BΘ = kΘp, so the worst-case is that Sxx is computed a total of kΘ

times. The additional cost of computing Sxx due to BΘ cache misses is substantially reduced in
real datasets where most input variables influence few or none of the outputs. In the best case, if the
active set of Θ has a block structure, where each input influences only one group of outputs, overall
Sxx will be computed at most once per iteration and BΘ ≤ p̃.

A.3 Additional Results from Synthetic Data Experiments
We compare the performance of the different algorithms on synthetic datasets with different sample
sizes n, using a chain graph structure with p = q = 10,000. Figure 1(a) shows that our methods run
significantly faster than the previous method across all sample sizes. In Figure 1(b) we measure the
accuracy in recovering the true chain graph structure in terms of F1-score for different sample sizes
n. At convergence, F1-score was the same for all methods to three significant digits. As expected,
the accuracy improves as the sample size increases.

2

	Appendix
	Coordinate Descent Updates for Alternating Newton Coordinate Descent Method
	Time Complexity Analysis of Alternating Newton Block Coordinate Descent
	Time Cost of Updating
	Time Cost of Updating

	Additional Results from Synthetic Data Experiments

