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Abstract
Ranking from pairwise comparisons is a ubiquitous problem and has been studied in disciplines
ranging from statistics to operations research and from theoretical computer science to machine
learning. Here we consider a general setting where outcomes of pairwise comparisons between
items i and j are drawn probabilistically by flipping a coin with unknown bias Pij , and ask under
what conditions on these unknown probabilities one can learn a good ranking from comparisons of
only O(n log n) non-actively chosen pairs. Recent work has established this is possible under the
Bradley-Terry-Luce (BTL) and noisy permutation (NP) models. Here we introduce a broad family
of ‘low-rank’ conditions on the probabilities Pij under which the resulting preference matrix P has
low rank under some link function, and show these conditions encompass the BTL and Thurstone
classes as special cases, but are considerably more general. We then give a new algorithm called
low-rank pairwise ranking (LRPR) which provably learns a good ranking from comparisons of only
O(n log n) randomly chosen comparisons under such low-rank models. Our algorithm and analysis
make use of tools from the theory of low-rank matrix completion, and provide a new perspective
on the problem of ranking from pairwise comparisons in non-active settings.
Keywords: Ranking; pairwise comparisons; low-rank matrix completion.

1. Introduction
Ranking from pairwise comparisons is a ubiquitous problem and has been studied in disciplines
ranging from statistics to operations research and from theoretical computer science to machine
learning (Thurstone, 1927; Bradley and Terry, 1952; Luce, 1959; Kendall, 1955; Saaty, 1980; David,
1988; Keener, 1993; Ailon et al., 2008; Braverman and Mossel, 2008; Jiang et al., 2011; Lu and
Boutilier, 2011; Gleich and Lim, 2011; Ailon, 2012; Jamieson and Nowak, 2011; Yue et al., 2012;
Negahban et al., 2012; Wauthier et al., 2013; Busa-Fekete and Hüllermeier, 2014; Rajkumar and
Agarwal, 2014; Rajkumar et al., 2015; Shah et al., 2015). Here we are interested in the following
general question: There are n items and an unknown preference matrix P ∈ [0, 1]n×n, with Pij +
Pji = 1 ∀i, j, such that whenever items i and j are compared, item i beats item j with probability
Pij and j beats i with probability Pij = 1 − Pij . Given the ability to make comparisons among
only O(n log n) pairs, which can be compared more than once but must be chosen non-actively,
i.e. before observing the outcomes of any comparisons, under what conditions on P can we learn a
good ranking of the n items? This question is important in any pairwise comparison setting where
the number of items n is large and decisions on which pairs to compare cannot be made adaptively,
as is often the case for example in consumer surveys.
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Traditional sorting algorithms in computer science, which apply when P corresponds to a full
deterministic ordering of the n items, i.e. when there exists an ordering or permutation σ ∈ Sn
such that Pij = 1 for all i, j with σ(i) < σ(j), require the O(n log n) pairs to be chosen in an
active manner (some pairs can be chosen only after observing the comparison outcomes of previous
pairs). Braverman and Mossel (2008, 2009) showed that if P follows a noisy permutation (NP)
model, i.e. if there is a permutation σ ∈ Sn and a noise parameter p ∈ [0, 1

2) such that Pij = 1− p
for all i, j with σ(i) < σ(j), then one can use noisy sorting algorithms to learn a ranking close
to σ by observing comparisons of only O(n log n) pairs (using only one comparison per pair), but
again, these algorithms require active selection of pairs. Similarly, the embedding-based algorithms
of Jamieson and Nowak (2011), which apply when P corresponds to either a full deterministic
ordering of the n items or a noisy permutation as above, but with the further restriction that the
associated permutation can be realized by an embedding of the n items in d dimensions, involve
comparisons of only O(d log n) and O(d log2 n) pairs, respectively, but also require these pairs
to be chosen actively. Ailon (2012) gives a decomposition-based algorithm that applies when P
corresponds to a deterministic tournament, i.e. when Pij ∈ {0, 1} ∀i 6= j; the algorithm compares
O(n poly(log n)) actively chosen pairs. The dueling bandits literature (e.g. see the recent survey by
Busa-Fekete and Hüllermeier (2014)) also involves comparing actively chosen pairs.

On the other hand, statistical approaches to ranking from pairwise comparisons generally start
with an observed sample of randomly drawn pairwise comparisons, and infer a ranking from these;
no active selection of pairs is involved. For example, two widely-studied statistical models for
pairwise comparisons are the Thurstone model, under which P is parametrized by a score vector s ∈
Rn such that Pij = Φ(si−sj) ∀i, j (where Φ(·) denotes the standard normal CDF), and the Bradley-
Terry-Luce (BTL) model, under which P is parametrized by a score vector w ∈ (0,∞)n such that
Pij = wi

wi+wj
∀i, j; indeed, there has been much work on developing algorithms for maximum

likelihood estimation (MLE) of the parameters s or w from observed pairwise comparisons drawn
according to these models, which can then be used to rank the n items by sorting them in descending
order of the estimated scores (Thurstone, 1927; Bradley and Terry, 1952; Luce, 1959; Hunter, 2004).
However, most analyses of these algorithms implicitly assume all

(
n
2

)
pairs are compared (e.g.

see recent work by Rajkumar and Agarwal (2014) for an analysis of BTL maximum likelihood
estimation and other algorithms when all

(
n
2

)
pairs are compared).1

Recently, Negahban et al. (2012) proposed a spectral ranking algorithm termed Rank Central-
ity, and showed that if the underlying preference matrix P follows a BTL model as above, then
comparing only O(n log n) randomly chosen pairs, each O(log n) times, is sufficient to ensure that
the ranking of the n items learned by the Rank Centrality algorithm is close to their ranking under
the BTL score vector. Somewhat along similar lines, Wauthier et al. (2013) analyzed a simple al-
gorithm termed Balanced Rank Estimation (BRE) that ranks items by their observed Borda scores,
and showed that if P follows a noisy permutation (NP) model (see above), then comparing only
O(n log n) randomly chosen pairs (in this case using just one comparison per pair) suffices to en-
sure that the ranking learned by BRE is close to the underlying NP permutation σ. The BTL and NP
classes are both natural but relatively limited classes of pairwise comparison models (see Figure 1);
our interest here is in understanding under what other classes of preference matrices P one can

1. We conjecture that for MLE under BTL (and possibly also under other parametric models for pairwise comparisons),
comparisons of O(n logn) pairs may suffice to obtain a good ranking. However we do not investigate this issue here
as it is beyond the scope of our work. Moreover, the algorithms we propose here provide an alternative to MLE for
estimating a good ranking from comparisons of O(n logn) pairs under BTL, Thurstone, and other models.
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Figure 1: Classes of pairwise preference matrices. See Section 2.2 for detailed definitions.

Table 1: Summary of our results in relation to previous work.
Algorithm # Pairs # Comparisons Class of Selection

Compared per Pair Models P of Pairs
Sorting (Computer Science) O(n log n) 1 PDO Active
Noisy Sorting O(n log n) 1 PNP Active

(Braverman and Mossel, 2008)
Sorting under Embedding O(d log n) 1 PDO(X) (X ∈ Rd×n) Active

(Jamieson and Nowak, 2011)
Noisy Sorting under Embedding O(d log2 n) 1 PNP(X) (X ∈ Rd×n) Active

(Jamieson and Nowak, 2011)
Decomposition-Based Algorithm O(n poly(log n)) 1 PDTour Active

(Ailon, 2012)

MLE (Statistics) typically O(n2) multiple PBTL, PThu, etc Non-active
Rank Centrality (Negahban et al., 2012) O(n log n) O(log n) PBTL Non-active
BRE (Wauthier et al., 2013) O(n log n) 1 PNP Non-active
This work O(nr log n) O(r log n) PLR(ψ,r) ∩ PST Non-active

learn a good ranking from comparisons of only O(n log n) non-actively chosen pairs. The quality
of a learned ranking will be measured in terms of the number of pairwise disagreements w.r.t. the
underlying preference matrix P; since minimizing the number of pairwise disagreements in general
is NP-hard even under knowledge of the exact matrix P (Alon, 2006; Ailon et al., 2008), we will
restrict our attention to pairwise preferences satisfying the stochastic transitivity (ST) condition,
namely Pij > 1

2 , Pjk >
1
2 =⇒ Pik >

1
2 , for which minimizing the number of pairwise disagree-

ments under knowledge of the exact matrix P can be done efficiently (e.g. by running topological
sort on the induced acyclic pairwise preference graph). We note that the previously studied classes
of BTL and NP preferences also satisfy the ST condition (see Figure 1).

In this paper, we define broad classes PLR(ψ,r) of ‘low-rank’ preference matrices P that have
rank at most r under a suitable link transform ψ : [0, 1]→R, and design a family of low-rank
pairwise ranking (LRPR) algorithms which, for stochastically transitive preference matrices P in
PLR(ψ,r), require comparisons of only O(nr log n) randomly chosen pairs to learn a good ranking.
We show that the class of BTL preference matrices is a strict subset of the class (PLR(logit,2) ∩PST)
of stochastically transitive matrices that have rank≤ 2 under the logit link ψlogit(p) = log( p

1−p), and
that the class of Thurstone preferences matrices is a strict subset of the class (PLR(probit,2) ∩ PST)
of stochastically transitive matrices that have rank ≤ 2 under the probit link ψprobit(p) = Φ−1(p),
so that instantiations of our LRPR algorithm apply to both these classes. However our approach is
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Figure 2: Our proposed low-rank pairwise ranking (LRPR) approach first applies a low-rank matrix
completion routine to (a link-transformed version of) the incomplete pairwise comparison
matrix P̂ containing O(nr log n) entries, and then applies a pairwise ranking algorithm
to (an inverse link-transformed version of) the completed matrix to obtain a ranking σ̂.

considerably more general and yields efficient algorithms for learning rankings from comparisons
of O(n log n) non-actively chosen pairs for other types of preferences as well (see Figure 1 and
Table 1). We also give results showing our approach yields good rankings even when the underlying
preference matrix P is only close to a low-rank matrix under a link ψ.

Our algorithmic framework is based on tools from the theory of low-rank matrix completion
(Candès and Recht, 2009; Candès and Tao, 2010). Specifically, given the outcomes of pairwise
comparisons among the (randomly chosen) O(nr log n) pairs, we construct an incomplete pairwise
comparison matrix P̂ that contains O(nr log n) observed (noisy) entries, apply a low-rank matrix
completion algorithm to (a link-transformed version of) P̂ to obtain a completed comparison matrix
P̂, and then apply a pairwise ranking algorithm to P̂ (see Figure 2). One can apply this framework in
conjunction with any low-rank matrix completion routine that has exact recovery guarantees under
noisy observations of matrix entries; we use the OptSpace algorithm of Keshavan et al. (2009). Our
framework also recovers as a special case the nuclear norm aggregation (NNA) algorithm of Gleich
and Lim (2011), which makes use of rank-2 approximations using singular value projection (Jain
et al., 2010); however there are no known formal guarantees for NNA in the setting we consider.2

We conduct experiments comparing our LRPR algorithms with RC, BRE, and NNA, and find
that our LRPR algorithms generally outperform all three.

1.1. Summary of Contributions
In summary, our main contributions in this paper are the following:

• We identify broad classes PLR(ψ,r) of ‘low-rank’ preference matrices P under which one can
rank well from comparisons of O(n log n) randomly chosen pairs, and establish relationships
between the well-studied BTL and Thurstone classes and these new classes that we define;

• We give a family of efficient low-rank pairwise ranking (LRPR) algorithms that use tools
from low-rank matrix completion to learn a ranking from comparisons of O(n log n) pairs,
and show that these algorithms provably learn a good ranking under the new classes PLR(ψ,r);

• We give supporting experimental evidence of the broad applicability of our LRPR algorithms
by applying them to pairwise comparisons drawn from various preference structures, where
we find our LRPR algorithms generally outperform existing baselines.

1.2. Organization
We start with preliminaries and background in Section 2. Section 3 introduces low-rank preferences.
Section 4 outlines our low-rank pairwise ranking (LRPR) algorithmic framework. Section 5 gives
formal guarantees on the ability of our LRPR algorithms to learn good rankings from comparisons

2. The recovery guarantee of Gleich and Lim (2011) applies in a ‘noiseless’ setting where one has access to O(n logn)
exact entries of the underlying matrix P, rather than noisy versions from observed pairwise comparisons.

4



WHEN CAN WE RANK WELL FROM COMPARISONS OF O(n log n) NON-ACTIVELY CHOSEN PAIRS?

of O(n log n) randomly chosen pairs under low-rank preferences. Section 6 gives experimental
results. All proofs are deferred to the Appendix.

2. Preliminaries and Background
We describe the problem setup formally in Section 2.1, summarize various classes of preference
matrices in Section 2.2, and give some background on low-rank matrix completion in Section 2.3.

2.1. Problem Setup
Let [n] = {1, . . . , n} denote the set of n items to be ranked, and

(
[n]
2

)
= {(i, j) : 1 ≤ i < j ≤ n}

denote the set of all
(
n
2

)
item pairs. Let P ∈ [0, 1]n×n (with Pij + Pji = 1 ∀i, j) denote an

unknown preference matrix according to which outcomes of pairwise comparisons are randomly
drawn: every time a pair of items (i, j) is compared, i beats j with probability Pij and j beats i
with probability 1 − Pij (independently of other comparisons). We are interested in this paper in
algorithms which, given a pairwise comparison data set of the form S = {(i, j, {ykij}Kk=1)}(i,j)∈E ,
consisting of a (non-actively chosen) set of pairs E ⊆

(
[n]
2

)
together with K pairwise comparison

outcomes ykij ∈ {0, 1} (k ∈ [K]) for each pair (i, j) ∈ E (drawn according to P), where ykij = 1

denotes that i beats j in the k-th comparison of (i, j) and ykij = 0 denotes j beats i, learn from S
a ranking or permutation of the n items, σ̂ ∈ Sn. We will denote by m = |E| the number of pairs
compared; our goal is to understand under what conditions on P one can learn a ‘good’ ranking
from comparisons of m = O(n log n) pairs. The quality of the learned ranking σ̂ will be measured
by the fraction of pairs on which σ̂ disagrees with P:

dis(σ̂,P) =
1(
n
2

)∑
i<j

1
((
i �P j

)
∧
(
σ̂(i) > σ̂(j)

))
+ 1
((
j �P i

)
∧
(
σ̂(i) < σ̂(j)

))
,

where we denote
i �P j ⇐⇒ Pij >

1
2 .

2.2. Classes of Preference Matrices
We will denote by Pn the set of all pairwise preference matrices over n items:

Pn =
{
P ∈ [0, 1]n×n

∣∣Pij + Pji = 1 ∀i, j
}
.

An important class of preference matrices is those that satisfy stochastic transitivity (ST), also re-
ferred to as the directed acyclic graph (DAG) condition by Rajkumar et al. (2015):

PST
n =

{
P ∈ Pn

∣∣ i �P j, j �P k =⇒ i �P k
}
.

The deterministic ordering (DO) model can be described simply as

PDO
n =

{
P ∈ Pn

∣∣∃σ ∈ Sn : σ(i) < σ(j) =⇒ Pij = 1
}
.

The noisy permutation (NP) model studied by Braverman and Mossel (2009) and Wauthier et al.
(2013) can be described as follows:

PNP
n =

{
P ∈ Pn

∣∣∃σ ∈ Sn, p ∈ [0, 1
2) : σ(i) < σ(j) =⇒ Pij = 1− p

}
.

It is easy to see that PDO
n ( PNP

n ( PST
n . Jamieson and Nowak (2011) consider embedding-based

variants of the above classes, where items i ∈ [n] are assumed to be embedded as points xi ∈ Rd
via an embedding matrix X = [x1 . . .xn] ∈ Rd×n, and one effectively considers only permutations
that can be realized via distances from some point x ∈ Rd to these embedded points:
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PDO(X)
n =

{
P ∈ Pn

∣∣∃x ∈ Rd : ‖x− xi‖ < ‖x− xj‖ =⇒ Pij = 1
}

;

PNP(X)
n =

{
P ∈ Pn

∣∣∃x ∈ Rd, p ∈ [0, 1
2) : ‖x− xi‖ < ‖x− xj‖ =⇒ Pij = 1− p

}
.

The deterministic tournaments studied by Ailon (2012) can be described as

PDtour
n =

{
P ∈ Pn

∣∣Pij ∈ {0, 1} ∀i 6= j
}
.

The Bradley-Terry-Luce (BTL) and Thurstone models studied in statistics can be defined as

PBTL
n =

{
P ∈ Pn

∣∣∃w ∈ Rn++ : Pij = wi
wi+wj

∀i, j
}

;

PThu
n =

{
P ∈ Pn

∣∣∃s ∈ Rn : Pij = Φ(si − sj) ∀i, j
}
,

where Φ(·) is the standard normal CDF. Again, it is easy to see that PBTL
n ( PST

n and PThu
n ( PST

n .
When n is clear from context, we will sometimes drop it from the subscript in the above classes,

e.g. writing Pn as P , PST
n as PST, and so on.

2.3. Low-Rank Matrix Completion
In low-rank matrix completion, one is given an incomplete matrix M̂ ∈ (R ∪ {?})n×n, and the

goal is to construct from this a complete matrix M̂ ∈ Rn×n that has low rank (usually ≤ some
target rank r) and that is close to M̂ on the observed entries Ω = {(i, j) | M̂ij 6= ?}. One of the
remarkable results in applied mathematics in recent years is that if the observed entries in M̂ come
from an underlying low-rank matrix M ∈ Rn×n, i.e. if M̂Ω = MΩ (where for a matrix A we
denote AΩ = (Aij)(i,j)∈Ω), and if Ω is sampled uniformly at random from all subsets of [n] × [n]

of size |Ω| ≈ nr log n, then with high probability, one can recover M from M̂ exactly (Candès and
Recht, 2009; Candès and Tao, 2010). Several matrix completion algorithms are known to achieve
this, including singular value thresholding (Cai et al., 2010), singular value projection (Jain et al.,
2010), and OptSpace (Keshavan et al., 2009).

We make use of the OptSpace matrix completion algorithm of Keshavan et al. (2009), which
comes with (approximate) recovery guarantees even in noisy settings, where the observed entries in
M̂ are not directly from a low-rank matrix M but rather are noisy realizations of such a low-rank
matrix. In order to state the result of Keshavan et al. (2009), we will need the following definition:

Definition 1 ((µ0, µ1)-Incoherence) A rank-r matrix M = UΣV> ∈ Rn×n, where U,V ∈ Rn×r
are orthogonal matrices with U>U = V>V = nIr and Σ ∈ Rr×r is a diagonal matrix, is said to
be (µ0, µ1)-incoherent if the following hold:

(i) ∀i ∈ [n] :
∑r

k=1 U
2
ik ≤ µ0r ,

∑r
k=1 V

2
ik ≤ µ0r ;

(ii) ∀i, j ∈ [n] :
∣∣∑r

k=1 Uik
(

Σk
Σ1

)
Vjk
∣∣ ≤ µ1

√
r .

Theorem 2 (Keshavan et al. (2009)) Let M = UΣV> ∈ Rn×n be a (µ0, µ1)-incoherent matrix
of rank r, where U,V ∈ Rn×r are orthogonal matrices with U>U = V>V = nIr and Σ ∈ Rr×r
is a diagonal matrix with Σmin = Σ1 ≤ . . . ≤ Σr = Σmax, and let κ = (Σmax/Σmin). Let
Z ∈ Rn×n. Let Ω ⊆ [n] × [n], and let M̂ ∈ (R ∪ {?})n×n be such that M̂Ω = (M + Z)Ω, and
M̂ij = ? ∀(i, j) /∈ Ω. There exist constants C,C ′ such that if

|Ω| ≥ Cκ2nmax
(
µ0r log(n), µ2

0r
2κ4, µ2

1r
2κ4
)
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and if Ω is drawn uniformly at random from all subsets of [n]× [n] of size |Ω|, then with probability

at least 1− 1
n3 , the matrix M̂ output by running OptSpace on M̂ satisfies

1

n

∥∥M̂−M
∥∥
F
≤ C ′κ2n

√
r

|Ω|
‖ZΩ‖2 ,

provided that the right hand side above is less than Σmin.

3. Low-Rank Preferences
We now introduce the notion of ‘low-rank’ preference matrices.

A pairwise preference matrix P may not be low-rank itself. Indeed, if we replace the diagonal
entries of P with zeros (which does not affect the entries of interest, i.e. entries Pij for i 6= j), then
the resulting matrix is always of high rank:

Proposition 3 Let P ∈ Pn. Then rank(P− 1
2In) ≥ n− 1.

However, in many settings of interest, a suitably transformed version of P may have low rank. In
particular, we will consider transformation via link functions, which are widely used in machine
learning and statistics to map probabilities to real numbers and vice-versa:

Definition 4 (Link functions) A link function is any strictly increasing function ψ : [0, 1]→R.3

Two commonly used link functions are the logit and probit links:

ψlogit(p) = log
( p

1− p

)
; ψprobit(p) = Φ−1(p) .

(Recall that Φ(·) is the standard normal CDF.) We will be interested in broad classes of preference
matrices that have low rank under some link:

Definition 5 (Low-rank preferences under link ψ) Let ψ : [0, 1]→R be a link function and r ∈
[n]. Define the class of rank-r preference matrices under ψ, denoted PLR(ψ,r)

n , as

PLR(ψ,r)
n =

{
P ∈ Pn

∣∣ rank(ψ(P)) ≤ r
}
.

As concrete examples, the following propositions show that all preference matrices P satisfying
the BTL or Thurstone conditions have rank at most 2 under the logit and probit links, respectively;
moreover, the corresponding classes of rank-2 preference matrices under these links are strictly
more general than the BTL and Thurstone classes:

Proposition 6 PBTL
n ( (PLR(logit,2)

n ∩ PST
n ) ( PLR(logit,2)

n .

Proposition 7 PThu
n ( (PLR(probit,2)

n ∩ PST
n ) ( PLR(probit,2)

n .

The following characterization of (PLR(logit,2)
n ∩ PST

n ) and PBTL
n makes clear the difference

between the two classes:

3. Strictly speaking, we allow ψ : [0, 1]→R, where R = R ∪ {−∞,∞}; we ignore this issue for simplicity.
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Theorem 8 (Characterization of (PLR(logit,2)
n ∩ PST

n ) and PBTL
n ) Let P ∈ Pn.

Part 1. P ∈ (PLR(logit,2)
n ∩ PST

n ) iff ∃x ∈ Rn,y ∈ Rn+ with x>y = 0 such that

ψlogit(P) = xy> − yx> .

Part 2. P ∈ PBTL
n iff ∃x ∈ Rn with x>en = 0 such that

ψlogit(P) = xe>n − enx
> .

Thus, a general preference matrix P in (PLR(logit,2)
n ∩PST

n ) is characterized by 2n parameters, rather
than n parameters as is the case for preference matrices in PBTL

n . This can be useful for capturing
preferences in settings where the probability of an item i beating an item j is determined not just
by a single score for each of the two items, but rather by two numbers for each item; for example,
in tennis, each player might be characterized by two numbers denoting the forehand and backhand
quality, and the probability of one player beating the other might depend on both forehand and
backhand quality of both the players. A similar result holds for (PLR(probit,2)

n ∩ PST
n ) and PThu

n :

Theorem 9 (Characterization of (PLR(probit,2)
n ∩ PST

n ) and PThu
n ) Let P ∈ Pn.

Part 1. P ∈ (PLR(probit,2)
n ∩ PST

n ) iff ∃x ∈ Rn,y ∈ Rn+ with x>y = 0 such that

ψprobit(P) = xy> − yx> .

Part 2. P ∈ PThu
n iff ∃x ∈ Rn with x>en = 0 such that

ψprobit(P) = xe>n − enx
> .

More generally, preference matrices that have a small rank r under some link ψ can be described by
a smaller number of parameters than the

(
n
2

)
parameters needed to describe an arbitrary preference

matrix in Pn.
Unlike BTL and Thurstone preference matrices which have rank ≤ 2 under the logit and probit

links as above, preference matrices in the NP class do not have low rank under any ‘skew-symmetric’
link (including in particular the logit and probit links, both of which are skew-symmetric):

Proposition 10 Let P ∈ PNP
n , and let ψ : [0, 1]→R be any link function satisfying ψ(1 − q) =

−ψ(q) ∀q ∈ [0, 1]. Then
rank(ψ(P)) =

{
n if n is even
n− 1 if n is odd.

We will also consider approximately low rank preferences:

Definition 11 (Approximately low-rank preferences under link ψ) Let ψ : [0, 1]→R be a link
function and r ∈ [n]. Let β > 0. Define the class of β-approximately rank-r preference matrices
under ψ, denoted PLR(ψ,r,β)

n , as

PLR(ψ,r,β)
n =

{
P ∈ Pn

∣∣ ∃M ∈ Rn×n : rank(M) ≤ r and ‖ψ(P)−M‖F ≤ β
}
.

Below we describe our family of low-rank pairwise ranking algorithms that find good rankings under
both low-rank and approximately low-rank preferences from comparisons of O(rn log n) pairs.
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4. Low-Rank Pairwise Ranking Algorithm
Algorithm 1 describes our low-rank pairwise ranking (LRPR) algorithm (see also Figure 2). The
algorithm is parametrized by a link function ψ and target rank r ∈ [n].4 Given pairwise comparisons
S, the algorithm first constructs an incomplete empirical comparison matrix P̂, and applies the link
ψ to P̂ to construct an incomplete matrix M̂ with entries in R. It then applies a matrix completion

subroutine MC to M̂ to obtain a rank-r completed matrix M̂ with entries in R, applies the inverse
link ψ−1 to this completed matrix to obtain a completed comparison matrix P̂, and then uses a
pairwise ranking subroutine PR to estimate a ranking σ̂ from this completed comparison matrix.

Each setting of ψ, r, MC and PR in Algorithm 1 yields a specific instantiation of the LRPR algo-
rithmic framework. As a special case, the LRPR framework recovers the nuclear norm aggregation
(NNA) algorithm of Gleich and Lim (2011): when used with their ‘log-odds’ method for obtaining
pairwise comparisons, the NNA algorithm can be viewed as applying a logit link (ψ = ψlogit), using
a singular value projection (SVP) based matrix completion routine (MC = SVP) with target rank
2 (r = 2), and then constructing a ranking based on Borda scores (PR = Borda). However there
are no known guarantees on the quality of the ranking σ̂ returned by NNA when one starts with P̂
constructed from observed pairwise comparisons S rather than the true preference matrix P.

In our analysis and experiments, we will take MC to be the OptSpace algorithm of Keshavan
et al. (2009) (see Section 2.3). For the pairwise ranking routine PR, our theorems will hold for any
constant-factor approximate pairwise ranking algorithm (which we define formally in Section 5); in
our experiments, we will take PR to be the Copeland ranking procedure (Copeland, 1951), which
simply ranks items by their Copeland scores (number of wins in input matrix; in our case, the
Copeland score of item i is simply

∑n
j=1 1(P̂ ij >

1
2)), and which has a 5-approximation guarantee.

We will consider various choices of link function ψ and target rank r.

5. Analysis
Here we give our main results establishing theoretical guarantees for the LRPR algorithm when
instantiated with MC = OptSpace as the matrix completion routine, and with PR taken to be any
constant-factor approximate pairwise ranking algorithm, which we define as follows:

Definition 12 (Approximate pairwise ranking algorithm) Let PR be a pairwise ranking routine
that given as input a preference/comparison matrix Q ∈ Pn, returns as output a permutation
σ̂ ∈ Sn. Let γ > 1. We will say PR is a γ-approximate pairwise ranking algorithm if for all
Q ∈ Pn, the permutation σ̂ returned by PR when given Q as input satisfies

dis(σ̂,Q) ≤ γ min
σ∈Sn

dis(σ,Q) .

In particular, any γ-approximation algorithm for the minimum feedback arc set problem in tour-
naments (MFAST) immediately yields a γ-approximate pairwise ranking algorithm PR as follows:
given as input a preference/comparison matrix Q ∈ Pn, one simply applies the γ-approximation
algorithm for MFAST to a 0-1 version of the probabilistic tournament induced by Q, where an edge
(i, j) is present with weight 1 if Qij > 1

2 ; if Qij = 1
2 , one can randomly choose the direction of the

associated edge. For example, one could use any of the approximation algorithms of Ailon et al.
(2008) or the PTAS of Kenyon-Mathieu and Schudy (2007) in this manner. In our experiments, we

4. Strictly speaking, the target rank r is not necessarily required as one can often estimate it as part of the matrix
completion routine, but we include it here for simplicity.

9
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Algorithm 1 Low-Rank Pairwise Ranking (LRPR)
Parameters:

Link function ψ : [0, 1]→R
Target rank r ∈ [n]

Subroutines:
Low-rank matrix completion algorithm MC
Pairwise ranking algorithm PR

Input: Pairwise comparison data set S = {(i, j, {ykij}Kk=1)}(i,j)∈E
• Construct (incomplete) empirical comparison matrix P̂ ∈ ([0, 1] ∪ {?})n×n from S:

P̂ij =


1
K

∑K
k=1 y

k
ij if (i, j) ∈ E

1
K

∑K
k=1(1− ykji) if (j, i) ∈ E

1
2 if i = j

? otherwise.

• Construct link-transformed matrix: M̂ = ψ(P̂) ∈
(
R ∪ {?}

)n×n
• Obtain completed rank-r matrix: M̂ = MC(M̂, r) ∈ Rn×n

• Apply inverse link transform to M̂ to obtain completed comparison matrix P̂ ∈ [0, 1]n×n:

P̂ ij =


1
2 + min

(∣∣ψ−1(M̂ ij)− 1
2

∣∣, ∣∣ψ−1(M̂ ji)− 1
2

∣∣) if i 6= j and M̂ ij > M̂ ji

1
2 −min

(∣∣ψ−1(M̂ ij)− 1
2

∣∣, ∣∣ψ−1(M̂ ji)− 1
2

∣∣) if i 6= j and M̂ ij < M̂ ji

1
2 if i = j .

• Obtain ranking: σ̂ = PR(P̂) ∈ Sn
Output: Permutation σ̂ ∈ Sn

will take PR to be the Copeland ranking procedure (Copeland, 1951), which simply ranks items i
by their Copeland scores (number of wins in input matrix,

∑n
j=1 1(Qij >

1
2)), and which is known

to have a 5-approximation guarantee (Coppersmith et al., 2006).
We will find it useful to define the following quantities associated with a preference matrix P

and link function ψ:

Pmin = min
i 6=j

Pij ; ∆P,ψ
min = min

i 6=j
|ψ(Pij)− ψ(1

2)| .

5.1. Guarantees for LRPR Algorithm under Low-Rank Preferences

The following result shows that if the underlying preference matrix P has rank r under some link
function, then comparisons ofO(nr log n) randomly chosen pairs, withO(r log n) comparisons per
pair, are sufficient for the LRPR algorithm to return a good ranking:

Theorem 13 (Performance of LRPR algorithm for low-rank preferences) Let ψ : [0, 1]→R be
a link function and let r ∈ [n]. Let P ∈ (PLR(ψ,r)

n ∩ PST
n ). Let ψ(P) = UΣV> be a (µ0, µ1)-

incoherent matrix, where U,V ∈ Rn×r are orthogonal matrices with U>U = V>V = nIr and
Σ ∈ Rr×r is a diagonal matrix with Σmin = Σ1 ≤ . . . ≤ Σr = Σmax, and let κ = (Σmax/Σmin).

10
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Let ψ be L-Lipschitz in [Pmin
2 , 1 − Pmin

2 ]. Let MC = OptSpace, and let PR be any γ-approximate
pairwise ranking algorithm. Let 0 < ε < 1

2 . There exist constants C,C ′ such that if
m ≥ Cκ2nmax

(
µ0r log(n), µ2

0r
2κ4, µ2

1r
2κ4
)

and
K ≥ log(n) max

(
4C ′L2κ4r(1 + γ)

(∆P,ψ
min)2ε

,
C ′L2κ4r

Σ2
min

,
11

P 2
min

)
,

and if E ⊆
(

[n]
2

)
with |E| = m is chosen uniformly at random from all such subsets of size m and

S =
{(
i, j, {ykij}Kk=1

)}
(i,j)∈E is generated by comparing each pair (i, j) ∈ E (independently) K

times according to P, then with probability at least 1− 2
n3 , the permutation σ̂ produced by running

the LRPR(ψ, r) algorithm on S, with subroutines MC and PR as above, satisfies
dis(σ̂,P) ≤ ε .

The above result requires the link-transformed preference matrix ψ(P) to satisfy incoherence
properties. It is not hard to see that rank-2 preference matrices under the logit link (and therefore as
a special case, BTL preference matrices) satisfy such incoherence properties:

Lemma 14 (Incoherence of rank-2 preferences under logit link) Let P ∈ (PLR(logit,2)
n ∩ PST

n ),
with x ∈ Rn,y ∈ Rn+ such that x>y = 0 and ψlogit(P) = xy> − yx>. Let µ = 1

2

(x2max

x2min
+ y2max

y2min

)
,

where xmin = mini |xi|, xmax = maxi |xi|, ymin = mini |yi|, and ymax = maxi |yi|. Then
ψlogit(P) is (µ,

√
2µ)-incoherent.

Corollary 15 (Incoherence of BTL preferences) Let P ∈ PBTL
n , with parameter vector w ∈

Rn++. Let µ = 1
2

(
(logwmax− 1

n

∑n
j=1 logwj)

2

(logwmin− 1
n

∑n
j=1 logwj)2

+ 1
)

. Then ψlogit(P) is (µ,
√

2µ)-incoherent.

We also have the following result on Lipschitz-ness of ψlogit:

Lemma 16 For any q ∈ (0, 1
2 ], ψlogit is (4

q )-Lipschitz in [ q2 , 1−
q
2 ].

Thus, as a special case of Theorem 13, we have the following results for the performance of the
LRPR algorithm for rank-2 preferences under the logit link (Corollary 17), and more specifically,
for BTL preferences (Corollary 18):

Corollary 17 (Performance of LRPR algorithm for rank-2 preferences under logit link) Let P ∈
(PLR(logit,2)

n ∩ PST
n ), with x ∈ Rn,y ∈ Rn+ such that x>y = 0 and ψlogit(P) = xy> − yx>. Let µ

be as in Lemma 14, let x =
√

1
n

∑n
i=1 x

2
i and y =

√
1
n

∑n
i=1 y

2
i , and let ∆ = mini 6=j |xiyj−yixj |.

Let MC = OptSpace, and let PR be any γ-approximate pairwise ranking algorithm. Let 0 < ε < 1
2 .

There exist constants C,C ′ such that if
m ≥ Cnmax

(
2µ log(n), 8µ2

)
and

K ≥ 1

P 2
min

log(n) max

((512

9

)C ′(1 + γ)

∆2ε
,
(128

9

) C ′

x2y2 , 11

)
,

and if E ⊆
(

[n]
2

)
with |E| = m is chosen uniformly at random from all such subsets of size m and

S =
{(
i, j, {ykij}Kk=1

)}
(i,j)∈E is generated by comparing each pair (i, j) ∈ E (independently) K

times according to P, then with probability at least 1− 2
n3 , the permutation σ̂ produced by running

the LRPR(ψlogit, 2) algorithm on S, with subroutines MC and PR as above, satisfies
dis(σ̂,P) ≤ ε .

11
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Corollary 18 (Performance of LRPR algorithm for BTL preferences) Let P ∈ PBTL
n , with pa-

rameter vector w ∈ Rn++. Letwmax = maxiwi andwmin = miniwi. Let µ = 1
2

(
(logwmax− 1

n

∑n
j=1 logwj)

2

(logwmin− 1
n

∑n
j=1 logwj)2

+ 1
)

,

x =
√

1
n

∑n
i=1(logwi − 1

n

∑n
j=1 logwj)2, and ∆ = mini 6=j | log(wiwj )|, and let b = wmax

wmin
. Let

MC = OptSpace, and let PR be any γ-approximate pairwise ranking algorithm. Let 0 < ε < 1
2 .

There exist constants C,C ′ such that if

m ≥ Cnmax
(
2µ log(n), 8µ2

)
and

K ≥ (b+ 1)2 log(n) max

((512

9

)C ′(1 + γ)

∆2ε
,
(128

9

)C ′
x2 , 11

)
,

and if E ⊆
(

[n]
2

)
with |E| = m is chosen uniformly at random from all such subsets of size m and

S =
{(
i, j, {ykij}Kk=1

)}
(i,j)∈E is generated by comparing each pair (i, j) ∈ E (independently) K

times according to P, then with probability at least 1− 2
n3 , the permutation σ̂ produced by running

the LRPR(ψlogit, 2) algorithm on S, with subroutines MC and PR as above, satisfies

dis(σ̂,P) ≤ ε .

Similar results also hold for rank-2 preferences under the probit link and for Thurstone prefer-
ences; we omit details for brevity.

Remark 1 The above results suggest that the number of comparisons per pair, K, increases as
Pmin decreases. This may seem counter-intuitive at first, since in some sense, a smaller value of
Pmin should make the problem of learning a good ranking easier. The reason for K increasing as
Pmin decreases is that while learning a good ranking w.r.t. P requires knowledge of only whether the
entries Pij are larger than or smaller than 1

2 , the LRPR algorithm effectively estimates the entries
Pij themselves (via estimation of the link-transformed values ψ(Pij)). A similar phenomenon is
observed for example in the analysis of the Rank Centrality algorithm (Negahban et al., 2012),
which effectively estimates the parameters wi of the BTL model assumed (via estimation of the
stationary probability vector of an associated Markov chain); in this case too, a smaller value of
wmin in the BTL model, which amounts to a smaller value of Pmin in the corresponding preference
matrix P, leads to a larger number of comparisons K. It remains an open question to design
algorithms that directly estimate a good ranking from comparisons of O(n log n) pairs under the
types of preference classes considered here and to improve the dependence of K on Pmin.

5.2. Guarantees for LRPR Algorithm under Approximately Low-Rank Preferences

The following result shows that the LRPR algorithm finds a good ranking even when the underlying
preference matrix P is only approximately (but reasonably close to) low rank under some link
function:

Theorem 19 (Performance of LRPR algorithm for approximately low-rank preferences) Letψ :

[0, 1]→R be a link function and let r ∈ [n] and β > 0. Let P ∈ (PLR(ψ,r,β)
n ∩ PST

n ). Let
M = UΣV> ∈ Rn×n be a (µ0, µ1)-incoherent matrix of rank r such that ‖ψ(P) −M‖F ≤ β,
where U,V ∈ Rn×r are orthogonal matrices with U>U = V>V = nIr and Σ ∈ Rr×r is a
diagonal matrix with Σmin = Σ1 ≤ . . . ≤ Σr = Σmax, and let κ = (Σmax/Σmin). Let ψ be

12
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L-Lipschitz in [Pmin, 1 − Pmin]. Let MC = OptSpace, and let PR be any γ-approximate pairwise
ranking algorithm. Let 0 < ε < 1

2 . There exist constants C,C ′ such that if β ≤ α Σmin

C′κ2
√
r

for some
α ∈ (0, 1), if m satisfies the conditions of Theorem 13 and

K ≥ log(n) max

(
4C ′L2κ4r(1 + γ)

(∆P,ψ
min)2ε

,
C ′L2κ4r

(1− α)2Σ2
min

,
11

P 2
min

)
,

and if E ⊆
(

[n]
2

)
and S =

{(
i, j, {ykij}Kk=1

)}
(i,j)∈E are chosen randomly as described in Theo-

rem 13, then with probability at least 1− 2
n3 , the permutation σ̂ produced by running the LRPR(ψ, r)

algorithm on S, with subroutines MC and PR as above, satisfies

dis(σ̂,P) ≤ ε + (1 + γ)

(
4αΣmin

∆P,ψ
min

)2

+ 8
√
ε(1 + γ)

(
αΣmin

∆P,ψ
min

)
.

Clearly, as α (and therefore β) approaches zero, both the second and third terms in the bound on
dis(σ̂,P) above vanish, and we recover the result for low-rank preferences in Theorem 13.

6. Experiments

In this section we describe results of experiments with our LRPR algorithm applied to pairwise
comparisons drawn from various low-rank preference matrices. Specifically, we took the number of
items to be n = 500, and constructed three preference matrices as follows:

(1) P1 ∈ PBTL
500 .

This was constructed by generating a score vector w ∈ [0, 1]500 with entries drawn uniformly
at random from [0, 1], and then setting Pij = wi

wi+wj
∀i, j.

(2) P2 ∈ (PLR(logit,2)
500 ∩ PST

500) \ PBTL
500 .

This was constructed by generating two score vectors x,y ∈ [0, 1]500 with entries drawn
uniformly at random from [0, 1], and then setting P = ψ−1

logit(xy> − yx>).

(3) P3 ∈ (PLR(logit,4)
500 ∩ PST

500) \ PBTL
500 .

This was constructed by generating a skew-symmetric matrix Y ∈ R500×500 with upper
triangular entries drawn randomly from N (5, 1), finding its rank-4 projection Y (also skew-
symmetric; see (Gleich and Lim, 2011, Lemma 2)), and then setting P = ψ−1

logit(Y). 5

In each case, we generated pairwise comparison data from these preference matrices, in which we
varied m, the number of pairs compared, as well as K, the number of times each pair was sampled,
and measured dis(σ̂,P), the fraction of pairs on which the learned ranking σ̂ disagreed with the
true preference matrix P where P = P1, P2 or P3, respectively. For comparison, we also applied
the following three algorithms as baselines: the Rank Centrality (RC) algorithm, for which the
stationary distribution constructed by the algorithm is known to converge to a stationary distribution
associated with the underlying preference matrix P when P ∈ PBTL (Negahban et al., 2012);
the Balanced Rank Estimation (BRE) algorithm, which has recovery guarantees when P ∈ PNP

5. This procedure can in general lead to a preference matrix P ∈ P(logit,4)
500 \ PST

500. We checked to make sure that the
generated matrix satisfied the stochastic transitivity condition.
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Figure 3: Ranking results when pairwise comparisons come from P1 ∈ PBTL
500 .

Figure 4: Ranking results when pairwise comparisons come from P2 ∈ (P(logit,2)
500 ∩ PST

500) \ PBTL
500 .

Figure 5: Ranking results when pairwise comparisons come from P3 ∈ (P(logit,4)
500 ∩ PST

500) \ PBTL
500 .

(Wauthier et al., 2013); and the nuclear norm aggregation (NNA) algorithm (Gleich and Lim, 2011),
which also uses a matrix completion approach (and can be viewed as a special case of our LRPR
framework) but for which no theoretical guarantees are known in our setting (i.e. in the setting
where a ranking is to be learned from noisy comparisons of O(n log n) pairs).

The results are shown in Figures 3, 4 and 5 (in the plots where m is fixed and K varies, K =∞
corresponds to being given the true preference matrix entries Pij for compared pairs (i, j) ∈ E).
As can be seen, for P1, which satisfies the BTL condition, when the number of pairs compared, m,
is very small, our LRPR algorithm outperforms all the others; when m is larger, LRPR and NNA
perform similarly, with both outperforming RC and BRE. For P2 and P3, LRPR clearly outperforms
all three baselines.

7. Conclusion
We have considered the question of when one can learn a good ranking of n items from comparisons
of only O(n log n) non-actively chosen pairs. Previous results have established this possibility only
under the Bradley-Terry-Luce (BTL) and noisy permutation (NP) classes of pairwise preferences.

14
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In this paper we have shown this is possible under a broad family of pairwise preference structures
that we call low-rank preferences, which include for example the BTL and Thurstone classes as
special cases but are significantly more general. In particular, our new pairwise ranking algorithm,
called low-rank pairwise ranking (LRPR), makes use of tools from the theory of low-rank matrix
completion to learn provably good rankings from comparisons ofO(n log n) randomly chosen pairs
under any such low-rank preference structure, including BTL and Thurstone but also more general
classes of preference structures.

Our LRPR algorithmic framework applies a low-rank matrix completion algorithm to a link-
transformed version of the empirical pairwise comparison probability matrix. Here we have used
the OptSpace matrix completion algorithm of Keshavan et al. (2009), which has strong recovery
guarantees under noisy observation of matrix entries. It may also be interesting to explore other low-
rank matrix completion methods with noisy recovery guarantees, such as those of Lafond (2015).

Acknowledgments

Thanks to Sewoong Oh for discussions related to this work and to the anonymous reviewers for
helpful comments. SA thanks DST, the Indo-US Science & Technology Forum, and the Radcliffe
Institute for their support.

Appendix A. Proof of Proposition 3

Proof Denote L = P− 1
2In. Denote by en the n× 1 all-ones vector, and by En the n× n all-ones

matrix. Let B = [L> en] ∈ Rn×(n+1). Now suppose there exists x ∈ Rn such that x>B = 0. Then
we have

x>(En − In)x = x>((P + P>)− In)x = x>Lx + x>L>x = 0 .

Since x>en = 0, this gives x>x = 0 , and therefore x = 0. Thus the columns of L> along with
the all-ones vector en span Rn, and therefore rank(L) is at least n− 1.

Appendix B. Proof of Proposition 6

Proof It is easy to see that PBTL
n ⊆ PST

n . To see that PBTL
n ⊆ PLR(logit,2)

n , let P ∈ PBTL
n , with

score vector w ∈ Rn++ such that Pij = wi
wi+wj

∀i, j. Let Y = ψlogit(P). Then it is easy to see that

Yij = log(wi) − log(wj) ∀i, j, i.e. Y = se> − es>, where si = log(wi) ∀i. Thus rank(Y) = 2,
and therefore P ∈ PLR(logit,2)

n . This gives PBTL
n ⊆ (PLR(logit,2)

n ∩ PST
n ).

To see that the above containment is strict, consider Y = xy> − yx>, where xi = i ∀i, and
yi = 1 ∀i ∈ [n−1] and yn = 1

2 . It can be verified that P = ψ−1
logit(Y) ∈ (PLR(logit,2)

n ∩PST
n )\PBTL

n .

To see that (PLR(logit,2)
n ∩ PST

n ) ( PLR(logit,2)
n , consider any x,y ∈ Rn such that

x1 = −1 x2 = 1 x3 = 1
y1 = 1 y2 = −2 y3 = 1 ,

and let P = ψ−1
logit(xy> − yx>). Then by construction, P ∈ P(logit,2)

n . However it can be verified
that

P12 = ψ−1
logit(1) > 1

2 ; P23 = ψ−1
logit(3) > 1

2 ; P31 = ψ−1
logit(2) > 1

2 ;
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i.e. that
1 �P 2 ; 2 �P 3 ; 3 �P 1 ,

and therefore P /∈ PST
n . The claim follows.

Appendix C. Proof of Proposition 7

Proof The proof is similar to that of Proposition 6. It is easy to see that PThu
n ⊆ PST

n . To see that
PThu
n ⊆ PLR(probit,2)

n , let P ∈ PThu
n , with score vector s ∈ Rn such that Pij = Φ(si − sj) ∀i, j. Let

Y = ψprobit(P). Then clearly Yij = si − sj ∀i, j, i.e. Y = se> − es>. Thus rank(Y) = 2, and
therefore P ∈ PLR(probit,2)

n . This gives PThu
n ⊆ (PLR(probit,2)

n ∩ PST
n ).

To see that the above containment is strict, consider Y = xy> − yx>, where xi = i ∀i, and
yi = 1 ∀i ∈ [n−1] and yn = 1

2 . It can be verified that P = ψ−1
probit(Y) ∈ (PLR(probit,2)

n ∩PST
n )\PThu

n .

To see that (PLR(probit,2)
n ∩ PST

n ) ( PLR(probit,2)
n , consider any x,y ∈ Rn such that

x1 = −1 x2 = 1 x3 = 1
y1 = 1 y2 = −2 y3 = 1 ,

and let P = ψ−1
probit(xy> − yx>). Then by construction, P ∈ P(probit,2)

n . However it can be verified
that

P12 = ψ−1
probit(1) > 1

2 ; P23 = ψ−1
probit(3) > 1

2 ; P31 = ψ−1
probit(2) > 1

2 ;

i.e. that
1 �P 2 ; 2 �P 3 ; 3 �P 1 ,

and therefore P /∈ PST
n . The claim follows.

Appendix D. Proof of Theorem 8

Proof
Proof of Part 1:
We first prove the ‘if’ direction. Suppose ∃x ∈ Rn,y ∈ Rn+ with x>y = 0 such that ψlogit(P) =

xy>−yx>. Then clearly P ∈ PLR(logit,2)
n . If n = 2, then Pn = PST

n and the claim follows trivially.
Therefore assume n ≥ 3; we will show that Pn = PST

n in this case as well. Observe that for any
i 6= j,

i �P j ⇐⇒ Pij >
1
2 ⇐⇒ ψlogit(Pij) > 0 ⇐⇒ xiyj > xjyi . (1)

Now consider any three items i, j, k for which i �P j and j �P k. We will show that i �P k. By
Eq. (1), we have

xiyj > xjyi (2)

xjyk > xkyj . (3)

We will show that
xiyk > xkyi ; (4)
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the claim that i �P k will then follow from Eq. (1). By Eqs. (2-3), at most one of xi, xj , xk can
be zero; if any of them is zero, then Eq. (4) follows trivially. Therefore assume xi, xj , xk are all
non-zero. We will consider all 8 possibilities for the signs (positive or negative) of xi, xj , xk, and
will see that in each case, either Eq. (4) holds, or the combination of signs is simply not possible as
it contradicts Eq. (2) or Eq. (3). The following table explains each of these cases; here + indicates
the corresponding element is positive and − indicates that it is negative:

xi xj xk Explanation
+ + + By Eqs. (2-3), (xiyj)(xjyk) > (xjyi)(xkyj); dividing by xjyj > 0 gives xiyk > xkyi
+ + − Not possible (implies xjyk > 0 and xkyj < 0, which contradicts Eq. (3))
+ − + Not possible (implies xjyk < 0 and xkyj > 0, which contradicts Eq. (3))
+ − − In this case xiyk > 0 and xkyi < 0; thus xiyk > xkyi
− + + Not possible (implies xiyj < 0 and xjyi > 0, which contradicts Eq. (2))
− + − Not possible (implies xiyj > 0 and xjyi < 0, which contradicts Eq. (2))
− − + Not possible (implies xjyk < 0 and xkyj > 0, which contradicts Eq. (3))
− − − By Eqs. (2-3), (xiyj)(xjyk) < (xjyi)(xkyj); dividing by xjyj < 0 gives xiyk > xkyi

Thus Eq. (4) holds in all realizable settings of xi, xj , xk. This proves the ‘if’ direction.
Next we prove the ‘only if’ direction. Suppose P ∈ (PLR(logit,2)

n ∩PST
n ). Since P ∈ PLR(logit,2)

n

and ψlogit is ‘skew-symmetric’ around 1
2 in that ψlogit(p) = −ψlogit(1− p) ∀p, we have ∃x,y ∈ Rn

such that ψlogit(P) = xy> − yx>. For any α ∈ R, define

yα = y + αx

xα = x− ((yα)>x)

((yα)>yα)
yα .

Then it can be verified that for all α ∈ R, (xα)>yα = 0 and ψlogit(P) = xα(yα)>− yα(xα)>. We
will show that there is a choice of α for which yα ∈ Rn+. Specifically, since P ∈ PST

n , we have that
∃i ∈ [n] such that Pij ≥ 1

2 ∀j, i.e. such that j 6�P i ∀j. Choose α = − yi
xi

. We claim that yαk ≥ 0 ∀k.
To see this, suppose for the sake of contradiction that ∃k such that yαk < 0. By definition of yα, this
gives yk + αxk = yk + (− yi

xi
)xk < 0, which gives xiyk − yixk < 0. But

xiyk − yixk < 0 ⇐⇒ ψlogit(Pik) < 0 ⇐⇒ Pik <
1
2 ⇐⇒ k �P i ,

which contradicts the choice of i. Thus for α chosen as above, we have yα ∈ Rn+. This proves the
‘only if’ direction.

Proof of Part 2:
For the ‘if’ direction, suppose ∃x ∈ Rn with x>en = 0 such that ψlogit(P) = xe>n − enx

>. Define
w ∈ Rn+ as wi = exp(xi) ∀i. Then it can be verified that Pij = wi

wi+wj
∀i, j, and so P ∈ PBTL

n .
For the ‘only if’ direction, suppose that P ∈ PBTL

n . Then ∃w ∈ Rn++ such that Pij =
wi

wi+wj
∀i, j. Define x ∈ Rn as xi = log(wi) − 1

n

∑n
j=1 log(wj). Then it can be verified that

x>en = 0 and ψlogit(P) = xe>n − enx
>.
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Appendix E. Proof of Theorem 9

Proof
Proof of Part 1:
This follows the same steps as in the proof of Theorem 8.

Proof of Part 2:
This follows immediately from the definition of PThu

n .

Appendix F. Proof of Proposition 10

Proof Let σ ∈ Sn, p ∈ [0, 1
2) be such that

σ(i) < σ(j) =⇒ Pij = 1− p .

Without loss of generality, we will assume that σ is the identity permutation, σ(i) = i (note that
reordering the rows and columns of a matrix according to a permutation preserves the rank). Then

ψ(Pij) =


−ψ(p) if i < j

ψ(p) if i > j

0 if i = j.

In other words, ψ(P) = ψ(p) ·A, where the matrix A is given by

Aij =


−1 if i < j

1 if i > j

0 if i = j.

Clearly, rank(ψ(P)) = rank(A). It can be seen that if n is even, then the columns of A are lin-
early independent, so that rank(A) = n. Similarly, if n is odd, then the nullspace of A contains just
the span of the vector (1,−1, 1,−1, . . .−1, 1)>, so that rank(A) = n−1. This proves the result.

Appendix G. Proof of Theorem 13

For P,Q ∈ Pn, we will denote the fraction of pairs on which P and Q disagree as

dis(P,Q) =
1(
n
2

)∑
i<j

1
((
i �P j

)
∧
(
j �Q i

))
+ 1
((
j �P i

)
∧
(
i �Q j

))
.

We will need the following lemma:

Lemma 20 Let P ∈ PST
n and Q ∈ Pn. Let γ > 1, and let PR be any γ-approximate pairwise

ranking algorithm. Let σ̂ = PR(Q) ∈ Sn. Then

dis(σ̂,P) ≤ (1 + γ) · dis(Q,P) .

18
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Proof For any permutation σ ∈ Sn, define Bσ ∈ PDO
n as follows:

Bσ
ij =


1 if σ(i) < σ(j)

0 if σ(i) > σ(j)
1
2 if i = j .

Similarly, for any P ∈ Pn, define BP ∈ PDTour
n as follows:

BP
ij =


1 if i �P j

0 if j �P i
1
2 if i = j .

Then for any σ ∈ Sn and P,Q ∈ Pn, we can write

dis(σ,P) =
1

2
‖Bσ −BP‖1 (5)

dis(P,Q) =
1

2
‖BP −BQ‖1 . (6)

Now, for the given P, Q, and σ̂, we have

dis(σ̂,P) =
1

2
‖BP −Bσ̂‖1 (from Equation 5)

≤ 1

2
‖BP −BQ‖1 +

1

2
‖BQ −Bσ̂‖1 (by triangle inequality)

≤ 1

2
‖BP −BQ‖1 +

γ

2
·min

σ
‖BQ −Bσ̂‖1 (since σ̂ = PR(Q))

≤ 1

2
‖BP −BQ‖1 +

γ

2
· ‖BQ −Bπ‖1 , where π = PR(P)

=
1

2
‖BP −BQ‖1 +

γ

2
· ‖BQ −BP‖1

(since P ∈ PST
n , we have dis(π,P) = 0 and therefore Bπ = BP)

=
(1 + γ

2

)
· ‖BP −BQ‖1

= (1 + γ) · dis(P,Q) .

This proves the claim.

We will also need the following theorem of Keshavan et al. (2009), which bounds the spectral
norm of any (incomplete) matrix in terms of the maximum size of its entries:

Theorem 21 (Keshavan et al. (2009)) For any matrix Z ∈ Rn×n and any set Ω ⊆ [n]× [n],

‖ZΩ‖2 ≤
2|Ω|
n

max
(i,j)∈Ω

|Zij | .

Proof [Proof of Theorem 13] Let C,C ′ be the constants given by Theorem 2. Let m and K satisfy
the given conditions, and let P̂ denote the (incomplete) empirical comparison matrix constructed
from S in the LRPR algorithm. We can write
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ψ(P̂)E = ψ(P)E + (ψ(P̂)− ψ(P))E︸ ︷︷ ︸
ZE

.

We will show that with high probability, ‖ZE‖2 = ‖(ψ(P̂) − ψ(P))E‖2 is small; by Theorem 2,

it will then follow that the completed matrix M̂ obtained by running OptSpace on M̂ = ψ(P̂)E in
the LRPR algorithm is close to ψ(P), which in turn will imply that the number of disagreements

between the completed comparison matrix P̂ and the true preference matrix P is small. This will
then allow us to show (by virtue of Lemma 20) that the ranking σ̂ produced by running PR on P̂ is
also good w.r.t. P.

For any fixed E ⊆ [n]× [n] of size |E| = m, consider the following event:

AE =

{
|P̂ij − Pij | <

Pmin

2
∀(i, j) ∈ E

}
⊆

{
P̂ij ∈

(Pmin

2
, 1− Pmin

2

)
∀(i, j) ∈ E

}
.

Since K ≥ 11 log(n)
P 2
min

, it is easy to see (using Hoeffding’s inequality) that

P (AE) ≥ 1− 1

2n3
. (7)

Now, let

τ =
m

C ′κ2n
√
r

min
(√ ε

1 + γ

∆P,ψ
min

2
,Σmin

)
.

Then (for fixed E), we have,

P
(
‖ZE‖2 > τ

)
≤ P

(
max

(i,j)∈E
|ZEij | >

n

m
τ
)

(by Theorem 21)

= P
(

max
(i,j)∈E

|ψ(P̂ij)− ψ(Pij)| >
n

m
τ
)

= P
(
∃(i, j) ∈ E : |ψ(P̂ij)− ψ(Pij)| >

n

m
τ
)

≤ P
(
∃(i, j) ∈ E : |ψ(P̂ij)− ψ(Pij)| >

n

m
τ
∣∣∣AE)P

(
AE
)

+ P
(
AcE
)

≤
( ∑

(i,j)∈E

P
(
|ψ(P̂ij)− ψ(Pij)| >

n

m
τ
∣∣∣AE)P

(
AE
))

+ P
(
AcE
)

(by union bound)

≤
( ∑

(i,j)∈E

P
(
|ψ(P̂ij)− ψ(Pij)| >

n

m
τ
∣∣∣AE)P

(
AE
))

+
1

2n3
(by Eq. (7))

≤
( ∑

(i,j)∈E

P
(
|P̂ij − Pij | >

n

mL
τ
∣∣∣AE)P

(
AE
))

+
1

2n3

(by definition of AE and since ψ is L-Lipschitz in [Pmin
2 , 1− Pmin

2 ])

≤
( ∑

(i,j)∈E

P
(
|P̂ij − Pij | >

n

mL
τ
))

+
1

2n3

≤ 1

2n3
+

1

2n3
=

1

n3
(by Hoeffding’s inequality, since K ≥ m2L2 log(n)

n2τ2
).
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Since the above holds for all fixed E, we have that it holds under the random choice of E as well.
Therefore, under the random choice of both E and S, we have that with probability at least 1− 1

n3 ,

‖ZE‖2 ≤
m

C ′κ2n
√
r

min
(√ ε

1 + γ

∆P,ψ
min

2
,Σmin

)
.

Thus, by Theorem 2, we have that with probability at least 1− 2
n3 ,

‖M̂− ψ(P)‖F ≤ n

√
ε

1 + γ

∆P,ψ
min

2
. (8)

The above inequality implies that there can be at most ε
1+γn

2 pairs for which |M̂ ij − ψ(Pij)| is

greater than or equal to ∆P,ψ
min
2 . Thus, for at least ε

1+γ fraction of pairs i < j, we must have

|M̂ ij − ψ(Pij)| <
∆P,ψ

min

2
and |M̂ ji − ψ(Pji)| <

∆P,ψ
min

2
, (9)

which gives for these pairs

i �P j ⇐⇒ Pij >
1
2

⇐⇒ ψ(Pij) > ψ(1
2) (since ψ is strictly increasing)

⇐⇒ M̂ ij > ψ(1
2) and M̂ ji < ψ(1

2) (from Eq. (9) and definition of ∆P,ψ
min)

⇐⇒ P̂ ij >
1
2 (by construction of P̂, and since ψ is strictly increasing)

⇐⇒ i �
P̂
j ,

and similarly j �P i ⇐⇒ j �
P̂
i. Thus, we have that with probability at least 1− 2

n3 , the fraction

of pairs on which P̂ and P and disagree is at most ε
1+γ :

dis(P̂,P) ≤ ε

1 + γ
.

By Lemma 20, we thus have with probability at least 1− 2
n3 , dis(σ̂,P) ≤ ε .

Appendix H. Proof of Lemma 14

Proof We have rank(ψlogit(P)) ≤ 2 = r. Let

u1 =

√
nx

‖x‖2
, u2 =

√
ny

‖y‖2
, v1 = u2, v2 = −u1, Σ1 = Σ2 =

‖x‖2‖y‖2
n

.

Then we have

ψlogit(P) = xy> − yx>

= Σ1u1v
>
1 + Σ2u2v

>
2

= UΣV> ,
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where U = [u1 u2] with U>U = nI2, V = [v1 v2] with V>V = nI2, and Σ = diag(Σ1,Σ2).
Now, for all i ∈ [n], we have

2∑
k=1

U2
ik =

(√nxi
‖x‖2

)2
+
(√nyi
‖y‖2

)2

≤
(xmax

xmin

)2
+
(ymax

ymin

)2
= 2µ .

Moreover, for all i, j ∈ [n], we have∣∣∣ 2∑
k=1

Uik

(Σk

Σ1

)
Vjk

∣∣∣ =
∣∣∣ 2∑
k=1

UikVjk

∣∣∣
=

∣∣∣∣∣ nxiyj
‖x‖2‖y‖2

− nxjyi
‖x‖2‖y‖2

∣∣∣∣∣
≤

∣∣∣∣∣ nxiyj
‖x‖2‖y‖2

∣∣∣∣∣+

∣∣∣∣∣ nxjyi
‖x‖2‖y‖2

∣∣∣∣∣
≤ 2

(xmax

xmin

)(ymax

ymin

)
≤

(xmax

xmin

)2
+
(ymax

ymin

)2
(since 2ab ≤ a2 + b2)

=
√

2
(√

2µ
)
.

Thus ψlogit(P) is (µ,
√

2µ)-incoherent.

Appendix I. Proof of Corollary 15

Proof This follows by setting x ∈ Rn as xi = log(wi)− 1
n

∑n
j=1 log(wj) and y ∈ Rn+ as y = en,

and then proceeding as in Lemma 14.

Appendix J. Proof of Lemma 16

Proof Let q ∈ (0, 1
2 ]. We know that ψlogit is L′-Lipschitz in [ q2 , 1 −

q
2 ] for any L′ ≥ L, where

L = supp∈[ q
2
,1− q

2
] |ψ′logit(p)|. We have ψ′logit(p) = 1

p(1−p) , and therefore

L = sup
p∈[ q

2
,1− q

2
]

1

p(1− p)

≤ 1
q
2(1− q

2)
(since 1

p(1−p) in the above interval is maximized at p = q
2 and p = 1− q

2 )

=
4

q(2− q)

≤ 8

3q
(since q ≤ 1

2 and therefore 2− q ≥ 3
2 ).
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The result follows.

Appendix K. Proof of Corollary 17

Proof As in Lemma 14, we can define matrices U,V,Σ such that ψlogit(P) = UΣV> is a rank-2,
(µ,
√

2µ)-incoherent matrix with Σmin = Σmax = x y, and therefore κ = Σmax
Σmin

= 1. Moreover, by
Lemma 16, we have that ψlogit is ( 8

3Pmin
)-Lipschitz in [Pmin

2 , 1 − Pmin
2 ], and by definition, we have

∆
P,ψlogit
min = ∆. The result then follows by substituting the above quantities in Theorem 13.

Appendix L. Proof of Corollary 18

Proof The proof follows from Corollary 17, by observing that here ψlogit(P) = xy> − yx> and
x>y = 0 with xi = logwi − 1

n

∑n
j=1 log(wj) ∀i and yi = 1 ∀i, and Pmin = 1

b+1 .

Appendix M. Proof of Theorem 19

Proof The proof is broadly similar to that of Theorem 13. Let C,C ′ be the constants given by
Theorem 2. Let β ≤ α Σmin

C′κ2
√
r

for some α ∈ (0, 1). Let m and K satisfy the given conditions,

and let P̂ denote the (incomplete) empirical comparison matrix constructed from S in the LRPR
algorithm. Here we can write

ψ(P̂)E = ME + (ψ(P̂)−M)E︸ ︷︷ ︸
ZE

= ME + (ψ(P̂)− ψ(P))E︸ ︷︷ ︸
XE

+ (ψ(P)−M)E︸ ︷︷ ︸
YE

.

By assumption, we have

max
(i,j)∈E

|Y E
ij | ≤ ‖YE‖F ≤ β ≤ α

Σmin

C ′κ2
√
r
.

As in the proof of Theorem 13, we can show that under the random choice of both E and S, we
have that with probability at least 1− 1

n3 ,

max
(i,j)∈E

|XE
ij | ≤

1

C ′κ2
√
r

min
(√ ε

1 + γ

∆P,ψ
min

2
, (1− α)Σmin

)
.
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Thus, by Theorem 21, we have with probability at least 1− 1
n3 ,

‖ZE‖2 ≤ 2m

n
max

(i,j)∈E
|ZEij |

≤ 2m

n

(
max

(i,j)∈E
|XE

ij |+ max
(i,j)∈E

|Y E
ij |
)

≤ 2m

C ′κ2n
√
r

min
(√ ε

1 + γ

∆P,ψ
min

2
+ αΣmin ,Σmin

)
.

Now, by Theorem 2, we have that with probability at least 1− 1
n3 ,

‖M̂−M‖F ≤ C ′κ2n
2√r
2m
‖ZE‖2 ,

provided that ‖ZE‖2 ≤ 2m
C′κ2n

√
r
Σmin. Thus, combining the above two statements, we have that

with probability at least 1− 2
n3 ,

‖M̂−M‖F ≤ C ′κ2n
2√r
2m

(
2m

C ′κ2n
√
r

(√
ε

1 + γ

∆P,ψ
min

2
+ αΣmin

))
= n

(√
ε

1 + γ

∆P,ψ
min

2
+ αΣmin

)
.

This gives that with probability at least 1− 2
n3 ,

‖M̂− ψ(P)‖F ≤ ‖M̂−M‖F + ‖M− ψ(P)‖F

≤ n

(√
ε

1 + γ

∆P,ψ
min

2
+ αΣmin

)
+ α

Σmin

C ′κ2
√
r

= n

(√
ε

1 + γ
+

2αΣmin

∆P,ψ
min

(
1 +

1

C ′κ2n
√
r

))
∆P,ψ

min

2

≤ n

(√
ε

1 + γ
+

4αΣmin

∆P,ψ
min

)
∆P,ψ

min

2
(since

1

C ′κ2n
√
r
≤ 1).

Similar to the argument in Theorem 13, this gives that with probability at least 1− 2
n3 ,

dis(P̂,P) ≤ ε

1 + γ
+

(
4αΣmin

∆P,ψ
min

)2

+ 8

√
ε

1 + γ

(
αΣmin

∆P,ψ
min

)
.

Again, by Lemma 20, this gives with probability at least 1− 2
n3 ,

dis(σ̂,P) ≤ ε + (1 + γ)

(
4αΣmin

∆P,ψ
min

)2

+ 8
√
ε(1 + γ)

(
αΣmin

∆P,ψ
min

)
.
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