
JMLR: Workshop and Conference Proceedings vol 49:1–19, 2016

Cortical Computation via Iterative Constructions

Christos Papadimitriou CHRISTOS@BERKELEY.EDU
UC Berkeley

Samantha Petti SPETTI3@GATECH.EDU
Georgia Tech

Santosh Vempala VEMPALA@GATECH.EDU

Georgia Tech

Abstract
We study Boolean functions of an arbitrary number of input variables that can be realized by sim-
ple iterative constructions based on constant-size primitives. This restricted type of construction
needs little global coordination or control and thus is a candidate for neurally feasible computation.
Valiant’s construction of a majority function can be realized in this manner and, as we show, can
be generalized to any uniform threshold function. We study the rate of convergence, finding that
while linear convergence to the correct function can be achieved for any threshold using a fixed
set of primitives, for quadratic convergence, the size of the primitives must grow as the threshold
approaches 0 or 1. We also study finite realizations of this process and the learnability of the func-
tions realized. We show that the constructions realized are accurate outside a small interval near
the target threshold, where the size of the construction grows as the inverse square of the interval
width. This phenomenon, that errors are higher closer to thresholds (and thresholds closer to the
boundary are harder to represent), is a well-known cognitive finding.
Keywords: Cortical Computation, Iterative Constructions, Monotone functions, Threshold func-
tions. 1

1. Introduction

Among the many unexplained faculties of the mammalian cortex is its ability learn complex patterns
and invariants from relatively few examples. This is manifested in a range of cognitive functions
including visual and auditory categorization, motor learning and language. In spite of the highly
varied perceptual and cognitive tasks accomplished, the substrate appears to be relatively uniform
in the distribution and type of cells. How could these 80 billion cells organize themselves so effec-
tively?

Cortical computation must therefore be highly distributed, require little synchrony (number of
pairs of events that must happen in lock-step across neurons), little global control (longest chain of
events that must happen in sequence) and be based on very simple primitives (Papadimitriou and
Vempala, 2015b). Assuming that external stimuli are parsed as sets of binary sensory features, our
central question is the following:

What functions can be represented and learned by algorithms so simple that one could imagine
them happening in the cortex?

1. Extended abstract. Full version appears as arXiv:1602.08357, v2

c© 2016 C. Papadimitriou, S. Petti & S. Vempala.

PAPADIMITRIOU PETTI VEMPALA

Perhaps the most natural primitives are the AND and OR functions on two input variables. These
functions are arguably neurally plausible. They were studied as JOIN and LINK by Valiant (1994,
2000, 2005); Feldman and Valiant (2009), who showed how to implement them in the neuroidal
model. An item is a collection of neurons (corresponding to a neural assembly in neuroscience)
that represents some learned or sensed concept. Given two items A,B, the JOIN operation forms
a new item C = JOIN(A,B), which “fires” when both A and B fire, i.e., C represents A ∧ B.
LINK(A,B) captures association, and causes B to fire whenever A fires. By setting LINK(A,C)
and LINK(B,C), we achieve that C is effectively A ∨ B. While the precise implementation and
neural correlates of JOIN and LINK are unclear, there is evidence that the brain routinely engages
in hierarchical memory formation.

Monotone Boolean functions. Functions constructed by recursive processes based on AND/OR
trees have been widely studied in the literature, motivated by the design of reliable circuits as in
(Moore and Shannon, 1956) and more recently, understanding the complexity-theoretic limitations
of monotone Boolean functions. One line of work studies the set of functions that could be the
limits of recursive processes, where at each step, the leaves of a tree are each replaced by constant-
size functions. Moore and Shannon (1956), showed that a simple recursive construction leads to
a threshold function, which can be applied to construct stable circuits. Valiant (1984) used their
4-variable primitive function (A ∨ B) ∧ (C ∨ D) to derive a small depth and size threshold func-
tion that evaluates to 1 if at least (2 − φ) ≈ 0.38 fraction of the inputs are set to 1 and to zero
otherwise. The depth and size were O(log n) and O(n5.3) respectively. Calling it the amplification
method, Boppana (1985) showed that Valiant’s construction is optimal. Dubiner and Zwick (1992)
extended the lower bound to classes of read-once formulae. Hoory et al. (2006) gave smaller size
Boolean circuits (where each gate can have fan out more than 1), of size O(n3) for the same thresh-
old function. Luby et al. (1998) gave an alternative analysis of Valiant’s construction along with
applications to coding. The construction of a Boolean formula was extended by Servedio (2004)
to monotone linear threshold functions, in that they can be approximated on most inputs by mono-
tone Boolean formulae of polynomial size. Friedman (1986) gave more efficient constructions for
threshold functions with small thresholds.

Savicky gives conditions under which the limit of such a process is the uniform distribution
on all Boolean functions with n inputs (Savicky, 1987, 1990) (see also Brodsky and Pippenger
(2005); Fournier et al. (2009)). In a different application, Goldman et al. (1993) showed how to use
properties of these constructions to identify read-once formulae from their input-output behavior.

Our work. Unlike previous work, where a single constant-sized function is chosen and applied
recursively, we will allow constructions that randomly choose one of two constant-sized functions.
To be neurally plausible, our constructions are bottom-up rather than top-down, i.e., at each step,
we apply a constant-size function to an existing set of outputs. In addition, the algorithm itself must
be very simple — our goal is not to find ways to realize all Boolean functions or to optimize the
size of such realizations. Here we address the following questions: What functions of n input items
can be constructed in this iterative manner? Can arbitrary uniform threshold functions be realized?
What size and depth of iterative constructions suffices to guarantee accurate computations? Can
such functions and constructions be learned from examples, where the learning algorithm is also
neurally plausible?

Our rationale for uniform threshold functions is two-fold. First, uniform threshold functions
are fundamental in computer science and likely also for cognition. Second, the restriction to JOIN

2

CORTICAL COMPUTATION VIA ITERATIVE CONSTRUCTIONS

and LINK as primitives ensures that any resulting function will be monotone since negation is not
possible in this framework. Moreover, if we require the construction to be symmetric, it would
seem that the only obtainable family of Boolean functions are uniform thresholds. However, as
we will see, there is a surprise here, and in fact we can get staircase functions, i.e., functions that
take value pi on the interval (ai, ai+1) where a0 = 0 < a1 < a2 < · · · < ak < ak+1 = 1 and
0 = p0 < p1 < p2 < · · · < pk−1 < pk = 1.

To be able to describe our results precisely, we begin with a definition of iterative constructions.

1.1. Iterative constructions

A sequence of AND/OR operations can be represented as a tree, as depicted in Figure 2. Such a
tree T with n leaves naturally computes a function gT : {0, 1}n → {0, 1}. We can build larger trees
in a neurally plausible way by using a set of small AND/OR trees as building blocks. Let C be a
probability distribution on a finite set of trees. We define a iterative tree for C as follows.

IterativeTree(L,m,C,X):

For each level j from 1 to L, apply the following iteration m times:
(level 0 consists of the input items X)

1. Choose a tree T according to C.

2. Choose items uniformly at random from the items on level j − 1.

3. Build the tree T with these items as leaves.

The construction of small AND/OR trees is a decentralized process requiring a short sequence
of steps, i.e., the synchrony and control parameters are small. Therefore, we consider them to be
neurally plausible.

The iterative tree construction has a well-defined sequence of levels, with items from the next
level having leaves only in the current level. A construction that needs even less coordination is
the following: each item has a active period and the probability that it participates in future item
creation decays exponentially with time. The weight of an item starts at 1 when it is created and
decays by a factor of e−α each time unit. We refer to such constructions as exponential iterative
constructions. An extreme version of this, which we call wild iterative construction, is to have
α = 0, i.e, all items are equally likely to participate in the creation of new items. Figure 1 illustrates
these constructions.

1.2. Results

We are interested in the functions computed by high level items of iterative constructions. In par-
ticular, we design iterative constructions so that high level items compute a threshold function with
high probability. We state our results here. A full version with complete proofs is available on the
arXiv.

Definition 1 The function f : [0, 1] → [0, 1] is a t-threshold if f(x) = 0 for x < t and f(x) = 1
for x > t.

3

PAPADIMITRIOU PETTI VEMPALA

ExponentialConstruction(k,C, α):

Initialize the weights of input items to 1.
Construct k items as follows:

1. Choose a tree T according to C.

2. Choose the leaves for T independently from existing items with probability proportional to
the weight of the item.

3. Build the tree T with these items as leaves.

4. Multiply the weight of every item by e−α.

Figure 1: Left: an iterative construction. Middle: a wild construction. Right: an exponential con-
struction. In the latter two images, the thickness of the outline representing each item
indicates the probability the item will be selected in the construction of the next item.

For given probability distribution on a set of trees, the output of high level items of a corre-
sponding iterative construction depends on the following: (i) the fraction of input items firing, (ii)
the width of the levels, and (iii) the number of levels. For an n item input, the fraction of input
items firing must take the form k/n, k ∈ Z. Throughout the paper, we assume that the distance
between the desired threshold and the fraction of input items firing is at least 1/n. To address (ii),
we first analyze the functions computed by high level items of an iterative construction when the
width of the levels is infinite, which is equivalent to the “top down” approach. Then, we remove
this assumption and analyze the “bottom-up” construction in which the items at level j−1 are fixed
before the items at level j are created. The following theorems give a guarantee on the probability
that an iterative tree with infinite width levels accurately computes a threshold function in terms of
the number of levels. To start, we restate Valiant’s result Valiant (1984). Here φ = (

√
5 + 1)/2 is

the golden ratio (2− φ ≈ 0.38).

Theorem 2 Let R be the tree that computes (A∨B)∧ (C ∨D). Then, an item at level Ω(log n+
log k) of an infinite width iteratively constructed tree for R computes a (2 − φ)-threshold function
accurately with probability at least 1− 2−k.

4

CORTICAL COMPUTATION VIA ITERATIVE CONSTRUCTIONS

In this construction, the iterative tree that computes the 2 − φ threshold function is built using
only one small tree. We show that it is possible to achieve arbitrary threshold functions if we allow
our iterative tree to be built according to a probability distribution on two distinct trees.

Theorem 3 Let 0 < t < 1 and let R = {Pr(T1) = t,Pr(T2) = 1 − t} where T1 is the tree
that computes (A ∨ B) ∧ C and T2 is the tree that computes (A ∧ B) ∨ C. Then, an item at level
Ω(log n+ k) of an infinite width iteratively constructed tree for R computes a t-threshold function
accurately with probability at least 1− 2−k.

The rate of convergence of this more general construction is linear rather than quadratic. While
both are interesting, the latter allows us to guarantee a correct function on every input with depth
only O(log n), since there are 2n possible inputs.

Definition 4 A construction exhibits linear convergence if items at level Ω(log n+ k) of an infinite
width iterative tree accurately compute the threshold function with probability at least 1 − 2−k. A
construction exhibits quadratic convergence if items at level Ω(log n + log k) of an infinite width
iterative tree accurately compute the threshold function with probability at least 1− 2−k.

The next theorem gives constructions using slightly larger trees with 4 and 5 leaves respectively
(illustrated in Figure 2) that converge quadratically to a t-threshold function for a range of values
of t, with more leaves giving a larger range. Moreover, these ranges are tight, i.e. no construction
on trees with 4 or 5 leaves yields quadratic convergence to a t-threshold function for t outside these
ranges.

OR OR

AND OR

AND AND

F2F1

OR

AND

ANDAND

AND

OR

OROR

V2V1

Figure 2: For .38 . t . 0.62, there exists a probability distribution on F1 and F2 that yields an iter-
ative tree that converges quadratically to a t-threshold function. For .26 . t . 0.74, there
exists a probability distribution on V1 and V2 that yields an iterative tree that converges
quadratically to a t-threshold function.

Theorem 5
(A) Let 2−φ ≤ t ≤ φ−1 and α(t) = 1−t−t2

2t(t−1) . DefineR = {Pr(F1) = α(t),Pr(F2) = 1−α(t)}
be the probably distribution on trees in Figure 2. Then, an item at level Ω(log n+log k) of an infinite

5

PAPADIMITRIOU PETTI VEMPALA

width iteratively constructed tree for R computes a t-threshold function accurately with probability
at least 1− 2−k. Moreover, for t outside this range, there exists no such construction on trees with
four leaves that converge quadratically to a t-threshold function.

(B) Let α(t) = −1+5t−4t2+t3
5t(t−1) and let t be a value for which 0 ≤ α(t) ≤ 1, so 0.26 . t . 0.74.

Let R = {Pr(V1) = α(t),Pr(V2) = 1 − α(t)} be the probably distribution on trees in Figure
2. Then, an item at level Ω(log n + log k) of an infinite width iteratively constructed tree for R
computes a t-threshold function accurately with probability at least 1−2−k . Moreover, for t outside
this range, there exists no such construction on trees with five leaves that converges quadratically
to a t-threshold function.

As the desired threshold t approaches 0 or 1, we show that an iterative tree that computes the
t-threshold function must use increasingly large trees as building blocks.

Theorem 6 Let t be a threshold, 0 < t < 1 and let s = min{t, 1 − t}. Then, the construction of
an iterative tree whose level Ω(log n+ log k) items compute a t-threshold function with probability
at least 1− 2−k must be defined over a probability distribution on trees with at least 1√

2s
leaves.

This raises the question of whether it is possible to have quadratic convergence for any threshold.
We can extend the constructions described in Theorem 5 by using analogous trees with six and
seven leaves to obtain quadratic convergence for thresholds in the ranges 0.15 . t . 0.85 and
0.11 . t . 0.89 respectively. However, it is not possible to generalize this construction beyond this
point. Instead, to achieve quadratic convergence for thresholds near the boundaries, we turn to the
following construction, which asymptotically matches the lower bound of Theorem 6. We define
Ak as a tree on 2k leaves that computes (x1 ∨ x2 ∨ · · · ∨ xk) ∧ (xk+1 ∨ xk+2 ∨ · · · ∨ x2k) and Bk
as a tree on 2k leaves that computes (x1 ∧ x2 ∧ · · · ∧ xk) ∨ (xk+1 ∧ xk+2 ∧ · · · ∧ x2k).

Theorem 7 For any 0 < t ≤ 2− φ, there exists k and a probability distribution on Ak and Ak+1

that yields an iterative tree with quadratic convergence to a t-threshold function. Similarly for any
φ− 1 ≤ t < 1, there exists k and a probability distribution on Bk and Bk+1 that yields an iterative
tree with quadratic convergence to a t-threshold function.

There is a trade-off between constructing iterative trees that converge faster and requiring min-
imal coordination in order to build the subtrees. Building a specified tree on a small number of
leaves requires less coordination than building a specified tree on many leaves. Therefore, as t
approaches 0 or 1, constructing an iterative tree with quadratic convergence becomes less neurally
plausible because the construction of each subtree requires much coordination. These results are in
line with behavioral findings (Rosch et al., 1976; Rosch, 1978) and computational models (Arriaga
and Vempala, 2006; Arriaga et al., 2015) about categorization being easier when concepts are more
robust.

We characterize the class of functions that can be achieved by iterative constructions allowing
building block trees of any size. We show that it is possible to achieve an arbitrarily close approxi-
mation of any staircase function in which each step intersects the line y = x.

Next we turn to finite realizations of iterative trees. The above theorems analyze the behavior
of an iterative construction where the width of the levels is infinite. We assumed that for any input
the number of items firing at given level of the tree is equal to its expectation. However, imagining

6

CORTICAL COMPUTATION VIA ITERATIVE CONSTRUCTIONS

a “bottom up” construction, we note that the chance that the number of items firing at a given
level deviates from expectation is non-trivial. Such deviations percolate up the tree and effect the
probability that high level items compute the threshold function accurately. The smaller the width
of a level, the more likely that the number of items firing at that level deviates significantly from
expectation, rendering the tree less accurate. How large do the levels of an iteratively constructed
tree need to be in order to ensure a reasonable degree of accuracy?

Theorem 8 Consider a construction of a t-threshold function with quadratic convergence described
in Theorem 5 or Theorem 7 in which each level ` hasm` items and the fraction of input items firing is
at least ε from the threshold t. Then, with probability at least 1−γ, items at level Ω(log 1

γ + log 1
ε))

will accurately compute the threshold function for m1 = Ω
(
ln(1/γ)
ε2

)
and

∑
`m` = O(m1).

As a direct corollary, by setting ε = O(1/n) and γ = 2−n−1, we realize a t-threshold con-
struction of size O(n3) for any t, matching the best-known construction which was for a specific
threshold (Hoory et al., 2006). The finite-width version of Theorem 3 is given in Section 4.

The exponential iterative construction also converges to a t-threshold function for appropriate
α. We give the statements here for the wild iterative construction (with no weight decay) and the
general exponential construction.

Theorem 9 Consider a wild construction on n inputs for the t-threshold function given in Theorem
3 in which n > log(1

8εδ) max{ 1
ε2
, 1
δ2
} where ε is the distance between t and the fraction of inputs

firing. Then, there is an absolute constant c such that for k = Ω
(
n
(

1
δc + 1

εc

))
, the kth item

accurately computes the t-threshold function with probability at least 1− δ.

Theorem 10 Consider an exponential construction on n inputs for the t-threshold function given
in Theorem 3 in which α ≤ min{ε2,δ2}

2 log(1/εδ) and n > 1/α. Then for

k = Ω

(
n

min{ε2, δ2}

(
log n+ log2

1

εδ

))
,

with probability at least 1− δ, the kth item will compute the t-threshold function.

Finally, we give a simple cortical algorithm to learn a uniform threshold function from a single
example, described more precisely by the following theorem.

Theorem 11 LetX ∈ {0, 1}n such that ||X||1 = tn,L = Ω
(

log 1
γ + log 1

ε

)
, and ε = Ω

(√
ln(1/γ)
m

)
.

Then, on any input in which the fraction of input items firing is outside [t− ε, t+ ε], items at level L
of an iterative tree produced by LearnThreshold(L,m,X) will compute a t-threshold function with
probability at least 1− γ.

2. Polynomials of AND/OR Trees

Let gT : {0, 1}n → {0, 1} be the Boolean function computed by an AND/OR tree T with n leaves.
We define fT as the probability that T evaluates to 1 if each input item is independently set to 1
with probability p.

fT (p) = Pr (gT (X) = 1 |X ∼ B(n, p)) .

7

PAPADIMITRIOU PETTI VEMPALA

We analogously define fC(p) for probability distributions on trees; let fC be the probability
that a tree chosen according to C evaluates to 1 if each input item is independently set to 1 with
probability p. Let λT be the probability of T in distribution C. We have

fC(p) =
∑
T∈C

λT fT (p).

In an iterative construction for the probability distribution C, an item at level k evaluates to 1
with probability fC(pk−1) where pk−1 is the probability that an item at level k − 1 evaluates to 1.
In the case where the width of the levels is infinite, the fraction of inputs firing any level is exactly
equal its expectation. Therefore, the probability that items at level k evaluate to 1 is f (k)C (p) where
p is the probability an input is set to 1. This follows directly from the recurrence relation:

f
(k)
C (p) = fC(f

(k−1)
C (p)).

We call a polynomial achievable if it can be written as fT for some AND/OR tree T . We call a
polynomial achievable through convex combinations if it can be written as fC for some probability
distribution on AND/OR trees C. Note that A is closed under the AND and OR operations. If
a, b ∈ A, then a · b ∈ A and a+ b− a · b ∈ A. The set of polynomials achievable through convex
combinations is the convex hull of A.

Lemma 12 Let f ∈ A be an achievable polynomial of degree d, f = a0 + a1x+ a2x
2 + . . . adx

d.
Then |a`| ≤ d`.

Proof Proceed by induction. The only achievable polynomial of degree 1 is f(x) = x, so the
statement clearly holds. Next, assume |al′ | ≤ dl

′
holds for all l′ < l. Let f be a degree d achievable

polynomial. We may assume f = g+ h− gh or f = gh where g and h are achievable polynomials
with degree k and d − k respectively where k ≤ l

2 . First consider the case when f = g + h − gh,
meaning the root of the tree corresponding to f is an OR operation. Observe

|a`(f)| =
∣∣a`(g) + a`(h)−

l−1∑
i=1

ai(g)al−i(h)
∣∣

≤ kl + (d− k)l +

l−1∑
i=1

ki(d− k)l−i

≤ ((d− k) + k)l

= dl.

Next consider the case when f = gh, meaning the root of the tree corresponding to f is an AND
operation. Observe that

|a`(f)| =
∣∣ l−1∑
i=1

ai(g)al−i(h)
∣∣ ≤ l−1∑

i=1

ki(d− k)l−i < dl.

8

CORTICAL COMPUTATION VIA ITERATIVE CONSTRUCTIONS

We observe a relationship between the polynomial of a tree and the polynomial of its comple-
ment. We define the complement of the AND/OR tree T to be the tree obtained from T by switching
the operation at each node.

Lemma 13 LetA andB be complementary AND/OR trees and let fA and fB be the corresponding
polynomials. Then fB(1− p) = 1− fA(p) for all 0 < p < 1.

Let fA be a polynomial achievable through convex combinations, fA =
∑n

i=1 λifAi . Let Ai
and Bi be complementary AND/OR trees. Let fB =

∑n
i=1 λifBi . We say that fA and fB are

complementary polynomials.

Corollary 14 Let fA and fB be complementary polynomials. Then

1. For all 0 < p < 1, fB(1− p) = 1− fA(p)

2. If p is a fixed point of fA then 1− p is a fixed point of fB

3. For all 0 < p < 1, f (k)B (1− p) = 1− f (k)A (p).

Finally, we make some observations about the polynomials associated with the specific family
of trees we use in many of our constructions.

Definition 15 LetAk be a tree on 2k leaves that computes (x1∨x2∨· · ·∨xk)∧(xk+1∨xk+2∨· · ·∨
x2k). Let Bk be a tree on 2k leaves that computes (x1 ∧x2 ∧ · · · ∧xk)∨ (xk+1 ∧xk+2 ∧ · · · ∧x2k).

Lemma 16 Let fAk and fBk be the polynomials corresponding to Ak and Bk respectively. Then

fAk has a unique fixed point in the interval
(

1
k2
, 1
k(k−1)

)
and fBk has a fixed point in the interval(

1− 1
k(k−1) , 1−

1
k2

)
.

Lemma 17 Let fAk and fBk be the polynomials corresponding to Ak and Bk respectively. For
0 < t ≤ 2 − φ, there exists some k and α such that fA = αfAk + (1 − α)fAk+1

has fixed point t.

Moreover, t−fA(p)t−p ≥
(

1 + p(1−p)
t

)
. Similarly, for φ − 1 ≤ t < 1, there exists some k and α such

that fB = αfBk + (1− α)fBk+1
has fixed point t. Moreover, t−fB(p)

t−p ≥
(

1 + p(1−p)
t

)
.

3. Convergence of iterative trees to threshold functions

In the previous section, we showed that if the width of each level is infinite, then items at level k
of an iterative tree evaluate to 1 with probability f (k)C (p) when each input is independently set to
1 with probability p. In this section we prove that the probability distribution given in Theorem 3
converges to a t-threshold function.

By an abuse of notation, we say that f(p) converges to a t-threshold function if

lim
k→∞

f (k)(p) =


0 0 ≤ p < t
1 t < p ≤ 1
t p = t.

9

PAPADIMITRIOU PETTI VEMPALA

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3: A function f that converges to a 1/2-threshold function. Left to right:
f(p), f (5)(p), f (10)(p), f (30)(p).

Moreover, we say that f converges quadratically to a t-threshold function if the corresponding
iterative construction exhibits quadratic convergence. The function depicted in Figure 3 converges
to a 1/2-threshold function.

The following lemma gives sufficient conditions for convergence to a t-threshold function.

Lemma 18 Let f be a function corresponding to an iterative construction on n inputs.

1. On the interval [0, 1], f has precisely three fixed points: 0, t, and 1.

2. (Linear Divergence) There exists constants u, v satisfying 0 < u < t and t < v < 1 and
constants c1, c2 > 1 such that

(a) t− f(p) ≥ c1(t− p) for p ∈ [u, t− 1
n], and

(b) f(p)− t ≥ c2(p− t) for p ∈ [t+ 1
n , v].

3. (Linear Convergence) For the constants u, v as above, there exists constants c3, c4 such that
c3u < 1 and c4(1− v) < 1 and

(a) f(p) < c3p for p ∈ (0, u), and

(b) 1− f(p) < c4(1− p) for p ∈ (v, 1).

4. (Quadratic Convergence) For the constants u, v as above, there exists constants c3, c4 such
that c3u < 1 and c4(1− v) < 1 and

(a) f(p) < c3p
2 for p ∈ (0, u), and

(b) 1− f(p) < c4(1− p)2 for p ∈ (v, 1).

If f satisfies conditions 1, 2, and 3, then f exhibits linear convergence to a t-threshold function,
meaning items at level Ω(log n+ k) of the corresponding infinite width iterative construction com-
pute a t-threshold function with probability at least 1−2−k. If f satisfies conditions 1, 2, and 4, then
f exhibits quadratic convergence to a t-threshold function, meaning items at level Ω(log n+ log k)
of the corresponding infinite width iterative construction compute a t-threshold function with prob-
ability at least 1− 2−k.

10

CORTICAL COMPUTATION VIA ITERATIVE CONSTRUCTIONS

We now prove that the construction described in Theorem 3 converges linearly to a t-threshold
function.

Proof [of Thm. 3.] Let fR be the polynomial that describes the iterative construction in which
T1 and T2 are selected with probability t and 1 − t respectively. Since, fT1(p) = 2p2 − p3 and
fT2(p) = p+ p2 − p3,

fR(p) = tfT1(p) + (1− t)fT2(p) = (1− t)p+ (1 + t)p2 − p3.

Since fR(p)− p = p(1− p)(p− t), the fixed points of fR are 0, t, and 1. We claim that fR exhibits
linear convergence to a t-threshold function.

Let p be the probability that an input item fires. It suffices to consider the case when p ≤ t−1/n.
By Corollary 14, convergence to 1 for p ≥ t+ 1

n follows from the complementary construction.
First we show that the probability an item at level Ω(log n) fires is less than t

2 . By definition
p− f(p) = p(1− p)(t− p). Observe that for t/2 < p ≤ t− 1/n

t− f(p)

t− p
= 1 +

p− f(p)

t− p
= 1 + p(1− t) ≥ 1 +

t(1− t)
2

.

It follows that for all ` either f (`)(p) < t
2 or

t− f (l)(p) ≥
(

1 +
t(1− t)

2

)l
(t− p) ≥

(
1 +

t(1− t)
2

)l 1

n
.

For l = log
1+

t(1−t)
2

tn
2 , f

l(p) < t
2 .

Next, we show that at Ω(k) additional levels, the probability an items fires is less than 2−k. For
p < t

2 ,

f(p) = p(1− p)(p− t) + p = p(1− (1− p)(t− p)) ≤ p
(

1−
(

1− t

2

)
t

2

)
.

It follows

f (l)(p) <

(
1−

(
1− t

2

)
t

2

)l
p <

(
1−

(
1− t

2

)
t

2

)l t
2
.

Thus, for l = log(1−(1− t2) t2)
1

t2k−1 , f l(p) < 2−k. We have shown that when the input items fire
with probability p ≤ t− 1/n, items level Ω(k + log n) will evaluate to 1 with probability less than
2−k.

3.1. Quadratic convergence for arbitrary thresholds.

In this section we show that as t approaches 0 or 1, increasingly large building blocks trees are
needed to construct an iterative tree that converges quadratically to a t-threshold function. Further,
we give a construction that exhibits quadratic convergence for arbitrary thresholds near 0 and 1.
We begin by proving Theorem 6, which can also be restated as follows: Let f be an achievable

11

PAPADIMITRIOU PETTI VEMPALA

polynomial with fixed points 0, t, and 1 that exhibits quadratic convergence to a t-threshold function.
Then, f has degree at least 1√

2s
where s = min{t, 1− t}.

Proof [of Thm. 6.] Let f be a degree d achievable polynomial with fixed points 0, t, and 1 that
exhibits quadratic convergence. Then for ε sufficiently small, f(ε) = O(ε2), which implies a1 = 0.
For x < 1

2d , by Lemma 12 we have

f(x) = a2x
2 + a3x

2 + · · ·+ adx
d ≤ d2x2 + d3x3 + . . . ddxd < d2x2

(
1

1− dx

)
< 2d2x2.

Since t is a fixed point of f , f(t) = t. Thus, t < 2d2t2. It follows that d > 1√
2t

. By Lemma 13,
if there exists an achievable polynomial with fixed point t, then there also exists a complementary
achievable polynomial with fixed point 1− t. Thus, d > 1√

2(1−t)
.

We now prove that a nearly matching iterative construction exists. To achieve quadratic con-
vergence to thresholds near 0 or 1, we average trees of the form Ak and Ak+1 or Bk and Bk+1

respectively.

Proof [of Thm. 7.] By Corollary 14, it suffices to prove the theorem for 1 − φ ≤ t < 1. The
complement of a construction that achieves quadratic convergence to a t-threshold function yields
quadratic convergence for to a (1− t)-threshold function. By Lemma 17, there exists k and α such
that f = αfBk + (1− α)fBk+1

has fixed point t. Moreover, t−f(p)t−p ≥
(

1 + p(1−p)
t

)
.

We apply Lemma 18 to prove that f converges to a t-threshold function. Let p be the probability
an input item is on. First suppose that p ≤ t− 1

n . We show linear divergence away from t. For any
constant 0 < u < t, and u ≤ p ≤ t− 1

n by Lemma 17 we have

t− f(p) ≥ (t− p)
(

1 +
p(1− p)

t

)
≥ (t− p)

(
1 +

u(1− t)
t

)
.

Thus, c1 = 1 + u(1−t)
t is a valid choice for c1 in Lemma 18.

Next, we claim that u = 1 − 1
k−1 is a valid starting point for quadratic convergence towards

0. We write f(p) = p2(αdk(p) + (1 − α)dk+1(p)) where dk(p) = 2pk−2 − p2k−2. Let d(p) =
αdk(p) +(1−α)dk+1(p). Note that d(p) is increasing on the interval (0, u) since each dk increases
on this interval. For p < u,

2k − 4

2k − 2
= u > uk > pk.

It follows that d′k(p) = pk−3((2k − 4) − (2k − 2)pk) > 0. Thus, dk is increasing on the interval
(0, u). Thus, c3 = d(u) is a valid choice for c3 in Lemma 18.

It remains to show that for p ≥ t + 1
n we observe linear divergence from t then quadratic

convergence to 1. We show linear divergence away from t. For any constant t < v < 1, and
t+ 1

n ≤ p ≤ 1 by Lemma 17 we have

f(p)− t ≥ (p− t)
(

1 +
p(1− p)

t

)
≥ (p− t)

(
1 +

t(1− v)

t

)
.

Thus, c2 = 1 + t(1−v)
t is a valid choice for c2 in Lemma 18.

12

CORTICAL COMPUTATION VIA ITERATIVE CONSTRUCTIONS

We claim that v > 1 − 1
8(k+1)2

is a valid starting point for quadratic convergence to 1. By
Corollary 14, fAk(1− p) = 1− fBk(p). It follows

1− f(p) = α− αfBk(p) + (1− α)− (1− α)fBk+1
(p) = αfAk(1− p) + (1− α)fAk+1

(1− p).

Recall from the proof of Theorem 6, f(x) < 2dx2 where d is the degree of x. Therefore,

fAk(1− p) < 8k2(1− p)2 < 8(k + 1)2(1− p)2 and fAk+1
(1− p) < 8(k + 1)2(1− p)2.

Since (1− v)8(k + 1)2 < 1, c4 = 8(k + 1)2 is a valid choice for c4 in Lemma 18.

4. Finite iterative constructions of threshold trees

In the above section, we analyzed the behavior of iterative trees in the limit with respect to level
width. We assumed that for any input the number of items firing at level l of the tree is equal to its
expectation, mf (l)(p) where m is the width of level l and p is the fraction of the inputs firing. In a
“bottom up” construction in which the items of one level are fixed before the next level is built, we
note that the chance that the number of items that fire at a given level deviates from expectation is
non-trivial. In this section, we give a bound on the width of the levels required to achieve a desired
degree of accuracy for a finite realization of iterative constructions.

We will use the following concentration inequality.

Lemma 19 (Chernoff) Let Y1, Y2, . . . Ym be independent with 0 ≤ Yi ≤ 1 and Y =
∑n

i=1 Yi.
Then, for any δ > 0,

Pr(Y − E(Y) ≥ δE(Y)) ≤ exp

(
−δ2E(Y)

2 + δ

)
.

For ease of notation, all statements in this section about the probability of Xi+1 taking some values
refers to the probability of Xi+1 taking some values given Xi. The following lemma describes
linear divergence for finite width constructions.

Lemma 20 Consider the construction of a t-threshold function in which each level ` has m` items
and the fraction of input items firing is at least ε below the threshold t. Let d be the minimum value
of f(p)−p

p(1−p)(p−t) on the interval [0, 1]. Then, with probability at least 1−γ, the fraction of inputs firing

at level Ω(1ε) will be less than any fixed constant u when

m` =
8 ln(1

u(1−t)γ)

d2u(1− t)2
(
1 + c1

2

)`−1
ε2

where c1 is the linear divergence constant.

Proof Let Xi be the fraction of items firing at level i. Then E(Xi) = f(Xi−1). In expectation,
the sequence X1, X2, X3, . . . converges to 0. We will show that with probability at least 1− γ, the
sequence obeys the half-progress relation Xi+1 ≤ Xi+f(Xi)

2 and therefore XL < u for L = Ω(1ε).

13

PAPADIMITRIOU PETTI VEMPALA

Write f(p) − p = p(1 − p)(p − t)g(p) where g is a polynomial in p. Let d be the minimum
value obtained by g on the interval [0, 1]. First we compute probability that Xi+1 >

Xi+f(Xi)
2 given

Xi by applying Lemma 19. Observe

Pr

(
Xi+1 >

Xi + f(Xi)

2

)
= Pr

(
Xi+1 − E(Xi+1) >

Xi − f(Xi)

2

)

≤ exp

−
(
Xi−f(Xi)
2f(Xi)

)2
mf(Xi)

2 + Xi−f(Xi)
2f(Xi)


= exp

(
− (Xi(1−Xi)(Xi − t)g(Xi))

2m

2(Xi + 3(Xi +Xi(1−Xi)(Xi − t)g(Xi)))

)
≤ exp

(
−Xi(1−Xi)

2(t−Xi)
2d2m

8

)
Let εi = t−Xi and α = u(1−t)2d2

8 . Then for u ≤ Xi ≤ t− ε,

Pr

(
Xi+1 >

Xi + f(Xi)

2

)
< exp

(
−αmε2i

)
.

Next we compute the probability that i is the first value for which the half-progress relation is
not satisfied given Xi > u. If the half-progress relation is satisfied meaning Xi+1 >

Xi+f(Xi)
2 , then

εi+1 ≥ εiβ where β = 1 + u
2 (1 − t). It follows that if the half-progress relation is satisfied for all

j < i, then εi+1 ≥ εβi. Thus,

Pr

(
i is the first value for which Xi+1 >

Xi + f(Xi)

2

)
≤ exp

(
−αmε2β2i

)
.

By linear divergence, there existsL = Ω(log(1ε)) such that if the sequence satisfies the half-progress
relation for all i < L, then XL < u. We bound the probability that this does not happen. Let

m` =
8 ln(1

u(1−t)γ)

d2u(1−t)2βiε2 . For ease of notation, let c = ln 1
u(1−t)γ < 1. Observe

Pr(XL > u) ≤
L∑
i=0

exp
(
−αm`ε

2β2i
)

=

L∑
i=0

exp
(
−cβi

)
≤

L∑
i=0

exp (−c(1 + iu(1− t)))

< exp (−c)
L∑
i=0

e−iu(1−t))

<
exp (−c)

1− exp (−u(1− t))

<
exp (−c)
u(1− t)

= γ.

14

CORTICAL COMPUTATION VIA ITERATIVE CONSTRUCTIONS

Theorem 21 Consider the construction of a t-threshold function with linear convergence given in
Theorem 3 in which each level ` has m` items and the fraction of input items firing is at least ε from
the threshold t. Then, with probability at least 1−γ, items at level Ω(log 1

γ +log 1
ε)) will accurately

compute the threshold function for m = Ω
(

ln(1γ)(1γ + 1
ε2

)
)
.

Proof Let Xi be the fraction of items firing at level i. Then E(Xi) = f(Xi−1). By Corollary 14,
it suffices to consider the case when the fraction of inputs firing is less than t − ε. As proved in
Theorem 3, the sequenceX1, X2, X3, . . . convergences to 0 if eachXi achieves its expectation. We
will show that with probability at least 1 − γ

2 , the sequence drops below γ
2 . First we apply Lemma

20. Recall that the polynomial corresponding to this construction is f(p) = p+ p(1− p)(p− t) and

therefore d in the statement of Lemma 20 is 1. Let u be a constant 0 < u < t, m ≥
8 ln(4

u(1−t)γ)

u(1−t)2ε2 and

L = Ω(1ε). Thus, XL < u with probability at least 1− γ
4 .

Next we show that given XL < u the probability that the sequence continues to obey the half-
progress relation (as defined in Lemma 20) and drops below γ

2 is at least 1−γ
4 . Let α = (1−u)2(t−u)2

8 .
Given a fixed value Xi < u,

Pr

(
Xi+1 >

Xi + f(Xi)

2

)
< exp

(
−αmX2

i

)
.

We compute the probability that N + i is the first value for which the half-progress relation is not
satisfied given XL < u. If Xi < u and the half-progress relation is satisfied at i then Xi+1 ≤
Xi(1 − β) where β = 1

2(1 − u)(t − u). It follows that if the half-progress relation is satisfied for

all j < i, then XN+i ≤ (1 − β)iu. Let L′ = 4
(1−u)(t−u) log2

(
2u
γ

)
. If for all L ≤ i ≤ L + L′, the

half-progress relation is satisfied then XL+L′ < u(1 − β)L
′
< γ

2 . We bound the probability that

this does not happen. Let m ≥
16 ln

(
16

(1−u)(t−u)γ

)
(1−u)2(t−u)2γ . For ease of notation, let c = ln

(
8
βγ

)
. Observe

Pr
(
XL+L′ >

γ

2

)
≤

L′∑
i=0

exp (−mXiα)

=

L′∑
i=1

exp

(
−2cXi

γ

)

≤
L′∑
i=0

exp
(
−c(1− β)−(L

′−i)
)

=
L′∑
i=0

exp
(
−c(1− β)i

)
≤

βL′∑
i=0

1

β
exp

(
−cei

)
≤ 2exp (−c)

β

=
γ

4
.

15

PAPADIMITRIOU PETTI VEMPALA

Therefore, with probability at least 1− γ
2 , items at level Ω

(
log 1

γ + log 1
ε

)
of an iterative construc-

tion with width m fire with probability at most γ2 for m = Ω
(

ln(1γ)(1γ + 1
ε2

)
)
. Thus, the iterative

construction accurately computes the threshold function with probability at least (1− γ
2)2 > 1−γ.

5. Learning

So far we have studied the realizability of thresholds via neurally plausible simple iterative construc-
tions. These constructions were based on prior knowledge of the target threshold. Here we study
the learnability of thresholds from examples. It is important that the learning algorithm should be
neurally plausible and not overly specialized to the learning task. We believe the simple results
presented here are suggestive of considerably richer possibilities.

We begin with a one-shot learning algorithm. We show that given a single example of a string
X ∈ {0, 1}n with ‖X‖1 = tn, we can build an iterative tree that computes a t-threshold function
with high probability. Let T1 and T2 be the building block trees in the construction given in Theorem
3. The simple LearnThreshold algorithm, described below, has the guarantee stated in Theorem 11,
which follows from Theorem 3.

LearnThreshold(L,m,X):
Input: Levels parameter L, a string X ∈ {0, 1}n such that ‖X‖1 = tn, width parameter m.
Output: A finite realization of iterative tree with width m.

For each level j from 1 to L, apply the following iteration m times:
(level 0 consists of the input items X)

1. Pick a random input item i.

2. If Xi = 1 then let T = T1, else let T = T2.

3. Pick 3 items uniformly at random from the previous level.

4. Build T with these items as leaves.

6. Discussion

We have seen that very simple, distributed algorithms requiring minimal global coordination and
control can lead to stable and efficient constructions of important classes of functions. Our work
raises several interesting questions.

1. What are the ways in which threshold functions are applied in cognition? Object recognition
is one application of threshold functions in cognition. For instance, suppose we have items
representing features such as “trunk,” “grey,” “wrinkled skin,” and “big ears,” and an item
representing our concept of an “elephant.” If a certain threshold of items representing the
features we associate with an elephant fire, then the “elephant” item will fire. This structure

16

CORTICAL COMPUTATION VIA ITERATIVE CONSTRUCTIONS

lends itself to a hierarchical organization of concepts that is consistent with the fact that as
we learn, we build on our existing set of knowledge. For example, when a toddler learns to
identify an elephant, he does not need to re-learn how to identify an ear. The item representing
“ear” already exists and will fire as a result of some threshold function created when the
toddler learned to identify ears. Now the item representing “ear” may be used as an input as
the toddler learns to identify elephants and other animals.

2. The hierarchical structure of iterative trees makes them a promising representation for learn-
ing in a setting where knowledge is built on existing knowledge. An ideal algorithm for this
setting should successfully learn from only a few examples and non-examples. Further, the
algorithm must be neurally plausible. In addition to being highly distributed, and requiring
little synchrony and global control, the algorithm should only use information from items that
are currently firing. At any moment in the brain the majority of neurons are not firing. In our
current model there is no way to distinguish between relevant but not currently firing items
from any item that is not currently firing. To remedy this, it might be beneficial introduce a
third “predictive state” in which items that are predicted to be relevant are primed to fire, e.g.
as done by Papadimitriou and Vempala (2015a).

The one-shot learning algorithm described in Section 5 relies on sampling items not currently
firing and therefore fails this last measure of neural plausibility. However, we believe the
simple result of the one-shot learning algorithm is suggestive of richer possibilities. The
following two items outline more specific learning tasks pertaining to iterative constructions.

3. What is an interesting model and neurally plausible algorithm for learning threshold functions
of k relevant input items? In this scenario, the input is a set of sparse binary strings of length
n representing examples in which at least tk of k relevant items are firing. The output is an
iterative tree that computes a t-threshold function on the k relevant items. We can formulate
the previously described example of learning to identify an elephant as an instance of this
problem. Each time the toddler sees an example of an elephant, many features associated
with elephant will fire in addition to some features that are not associated with elephants.
There may also be features associated with an elephant that are not present in this example
and therefore not firing. A learning algorithm must rely on information about the items that
are currently firing to learn both the set of relevant items and a threshold function on this set
of items.

4. More generally, given a set of inputs and outputs, can we devise an algorithm to learn the
distribution on building block trees for which the corresponding iterative tree would produce
the outputs?

5. To what extent can general linear threshold functions with general weights be constructed/learned
by cortical algorithms?

6. A concrete question is whether the construction of Theorem 7 is optimal, similar to the opti-
mality of the constructions in Theorem 5.

7. A simple way to include non monotone Boolean functions with the same constructions as we
study here, would be to have input items together with their negations (as in e.g., (Savicky,
1990)). What functions can be realized this way, using a distribution on a small set of fixed-
size trees?

17

PAPADIMITRIOU PETTI VEMPALA

Acknowledgements. We thank an anonymous referee for helpful comments. This work was sup-
ported in part by NSF awards CCF-1217793, EAGER-1415498 and EAGER-1555447.

References

Rosa I. Arriaga and Santosh Vempala. An algorithmic theory of learning: Robust concepts and
random projection. Machine Learning, 63(2):161–182, 2006. doi: 10.1007/s10994-006-6265-7.
URL http://dx.doi.org/10.1007/s10994-006-6265-7.

Rosa I. Arriaga, David Rutter, Maya Cakmak, and Santosh S. Vempala. Visual categorization
with random projection. Neural Computation, 27(10):2132–2147, 2015. doi: 10.1162/NECO a
00769. URL http://dx.doi.org/10.1162/NECO_a_00769.

Ravi B. Boppana. Amplification of probabilistic boolean formulas. In Foundations of Computer
Science, 1985., 26th Annual Symposium on, pages 20–29, Oct 1985. doi: 10.1109/SFCS.1985.5.

Alex Brodsky and Nicholas Pippenger. The boolean functions computed by random boolean formu-
las or how to grow the right function. Random Structures & Algorithms, 27(4):490–519, 2005.
ISSN 1098-2418. doi: 10.1002/rsa.20095. URL http://dx.doi.org/10.1002/rsa.
20095.

M. Dubiner and U. Zwick. Amplification and percolation [probabilistic boolean functions]. In
Foundations of Computer Science, 1992. Proceedings., 33rd Annual Symposium on, pages 258–
267, Oct 1992. doi: 10.1109/SFCS.1992.267766.

Vitaly Feldman and Leslie G. Valiant. Experience-induced neural circuits that achieve high capacity.
Neural Computation, 21(10):2715–2754, 2009. doi: 10.1162/neco.2009.08-08-851.

Hervé Fournier, Danièle Gardy, and Antoine Genitrini. Balanced and/or trees and linear threshold
functions. In Proceedings of the Meeting on Analytic Algorithmics and Combinatorics, ANALCO
’09, pages 51–57, Philadelphia, PA, USA, 2009. Society for Industrial and Applied Mathematics.
URL http://dl.acm.org/citation.cfm?id=2791158.2791166.

Joel Friedman. Constructing O(nlogn) size monotone formulae for the kth threshold function of n
boolean variables. SIAM Journal on Computing, 15(3):641–654, 1986.

Sally A Goldman, Michael J Kearns, and Robert E Schapire. Exact identification of read-once
formulas using fixed points of amplification functions. SIAM Journal on Computing, 22(4):705–
726, 1993.

Shlomo Hoory, Avner Magen, and Toniann Pitassi. Monotone circuits for the majority function. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 410–425. Springer, 2006.

Michael Luby, Michael Mitzenmacher, and Mohammad Amin Shokrollahi. Analysis of random
processes via and-or tree evaluation. In SODA, volume 98, pages 364–373, 1998.

Edward F Moore and Claude E Shannon. Reliable circuits using less reliable relays. Journal of the
Franklin Institute, 262(3):191–208, 1956.

18

http://dx.doi.org/10.1007/s10994-006-6265-7
http://dx.doi.org/10.1162/NECO_a_00769
http://dx.doi.org/10.1002/rsa.20095
http://dx.doi.org/10.1002/rsa.20095
http://dl.acm.org/citation.cfm?id=2791158.2791166

CORTICAL COMPUTATION VIA ITERATIVE CONSTRUCTIONS

Christos H. Papadimitriou and Santosh S. Vempala. Cortical learning via prediction. In Proc. of
COLT, 2015a.

Christos H. Papadimitriou and Santosh S. Vempala. Cortical computation. In Proc. of PODC,
2015b.

E. Rosch. Principles of categorization. In Eleanor Rosch and Barbara Lloyd, editors, Cognition and
Categorization. Lawrence Elbaum Associates, 1978.

Eleanor Rosch, Carolyn B. Mervis, Wayne D. Gray, David M. Johnson, and Penny Boyes-braem.
Basic objects in natural categories. COGNITIVE PSYCHOLOGY, 8:382–439, 1976.

Petr Savicky. Boolean functions represented by random formulas. Commentationes Mathematicae
Universitatis Carolinae, 28(2):397–398, 1987.

Petr Savicky. Random boolean formulas representing any boolean function with asymptotically
equal probability. Discrete Mathematics, 83(1):95 – 103, 1990. ISSN 0012-365X. doi: http:
//dx.doi.org/10.1016/0012-365X(90)90223-5. URL http://www.sciencedirect.com/
science/article/pii/0012365X90902235.

Rocco A. Servedio. Monotone boolean formulas can approximate monotone linear threshold
functions. Discrete Applied Mathematics, 142(13):181 – 187, 2004. ISSN 0166-218X. doi:
http://dx.doi.org/10.1016/j.dam.2004.02.003. URL http://www.sciencedirect.com/
science/article/pii/S0166218X04000174. Boolean and Pseudo-Boolean Func-
tions.

Leslie G. Valiant. Short monotone formulae for the majority function. Journal of Algorithms, 5(3),
1984.

Leslie G. Valiant. Circuits of the mind. Oxford University Press, 1994. ISBN 978-0-19-508926-4.

Leslie G. Valiant. A neuroidal architecture for cognitive computation. J. ACM, 47(5):854–882,
2000. doi: 10.1145/355483.355486.

Leslie G. Valiant. Memorization and association on a realistic neural model. Neural Computation,
17(3):527–555, 2005. doi: 10.1162/0899766053019890.

19

http://www.sciencedirect.com/science/article/pii/0012365X90902235
http://www.sciencedirect.com/science/article/pii/0012365X90902235
http://www.sciencedirect.com/science/article/pii/S0166218X04000174
http://www.sciencedirect.com/science/article/pii/S0166218X04000174

	Introduction
	Iterative constructions
	Results

	Polynomials of AND/OR Trees
	Convergence of iterative trees to threshold functions
	 Quadratic convergence for arbitrary thresholds.

	Finite iterative constructions of threshold trees
	Learning
	Discussion

