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Abstract

We consider the online version of the isotonic regression problem. Given a set of linearly or-
dered points (e.g., on the real line), the learner must predict labels sequentially at adversarially
chosen positions and is evaluated by her total squared loss compared against the best isotonic (non-
decreasing) function in hindsight. We survey several standard online learning algorithms and show
that none of them achieve the optimal regret exponent; in fact, most of them (including Online
Gradient Descent, Follow the Leader and Exponential Weights) incur linear regret. We then prove
that the Exponential Weights algorithm played over a covering net of isotonic functions has a re-
gret bounded by O (T/3 log?/ 3(T)) and present a matching (7"'/3) lower bound on regret. We
provide a computationally efficient version of this algorithm. We also analyze the noise-free case,
in which the revealed labels are isotonic, and show that the bound can be improved to O(log T')
or even to O(1) (when the labels are revealed in isotonic order). Finally, we extend the analysis
beyond squared loss and give bounds for entropic loss and absolute loss.

Keywords: online learning, isotonic regression, isotonic function, monotonic, nonparametric re-
gression, exp-concave loss.

1. Introduction

We propose a problem of sequential prediction in the class of isotonic (non-decreasing) functions.
At the start of the game, the learner is given a set of 7" linearly ordered points (e.g., on the real
line). Then, over the course of 7" trials, the adversary picks a new (as of yet unlabeled) point and the
learner predicts a label from [0, 1] for that point. Then, the true label (also from [0, 1]) is revealed,
and the learner suffers the squared error loss. After 7" rounds the learner is evaluated by means of
the regret, which is its total squared loss minus the loss of the best isotonic function in hindsight.

Our problem is precisely the online version of isofonic regression, a fundamental problem in
statistics, which concerns fitting a sequence of data where the prediction is an isotonic function of
the covariate (Ayer et al., 1955; Brunk, 1955; Robertson et al., 1998). Isotonic constraints arise nat-
urally in many structured problems, e.g. predicting the height of children as a function of age, auto-
correlation functions, or biomedical applications such as estimating drug dose responses (Stylianou
and Flournoy, 2002). Despite being simple and commonly used in practice, isotonic regression is
an example of nonparametric regression where the number of parameters grows linearly with the
number of data points. A natural question to ask is whether there are efficient, provably low regret
algorithms for online isotonic regression.
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Since online isotonic regression concerns minimizing a convex loss function over the convex
set of feasible prediction strategies (isotonic functions), it can be analyzed within the framework of
online convex optimization (Shalev-Shwartz, 2012). We begin by surveying popular online learning
algorithms in our setting and showing that most of them (including Online Gradient Descent, Follow
the Leader and Exponential Weights) suffer regret that is linear in the number of data points in the
worst case. The failure of most standard approaches makes the problem particularly interesting.
We also show that the Exponentiated Gradient algorithm delivers a O(y/T log T') regret guarantee
which is nontrivial but suboptimal.

We then propose an algorithm which achieves the regret bound O(T 1/3 logz/ 3(T )) The al-
gorithm is a simple instance of Exponential Weights that plays on a covering net (discretization)
of the class of isotonic functions. Despite the exponential size of the covering net, we present a
computationally efficient implementation with O(T4/ 3) time per trial. We also show a lower bound
Q(Tl/ 3) on the regret of any algorithm, hence proving that the proposed algorithm is optimal (up to
a logarithmic factor).

We also analyze the noise-free case where the labels revealed by the adversary are isotonic and
therefore the loss of the best isotonic function is 0. We show that the achievable worst-case regret
in this case scales only logarithmically in 7. If we additionally assume that the labels are queried in
isotonic order (from left to right), the achievable worst-case regret drops to 1. In both cases, we are
able to determine the minimax algorithm and the actual value of the minimax regret.

Finally, we go beyond the squared loss and adapt our discretized Exponential Weights algorithm
to logarithmic loss and get the same regret guarantee. We also consider isotonic regression with ab-
solute loss and show that the minimax regret is of order O(\/T ) and is achieved, up to a logarithmic
factor, by the Exponentiated Gradient algorithm.

1.1. Related work

Isotonic regression has been extensively studied in statistics starting from work by Ayer et al. (1955);
Brunk (1955). The excellent book by Robertson et al. (1998) provides a history of the subject and
numerous references to the statistical literature. Isotonic regression has applications throughout
statistics (e.g. nonparametric regression, estimating monotone densities, parameter estimation and
statistical tests under order constraints, multidimensional scaling, see Robertson et al. 1998) and
to more practical problems in biology, medicine, psychology, etc. (Kruskal, 1964; Stylianou and
Flournoy, 2002; Obozinski et al., 2008; Luss et al., 2012).

The classical problem of minimizing an isotonic function under squared loss (the offline coun-
terpart of this paper) has usually been studied in statistics under a generative model y; = f(z;) +¢;
with f(x;) being some isotonic function and ¢; being random 1i.i.d. noise variables (Van de Geer,
1990; Birgé and Massart, 1993; Zhang, 2002). It Ais known (see, e.g., Zhang, 2002) that the statisti-
cal risk of the isotonic regression function E[|| f — f||?] converges at the rate of O(T~2/3), where
T is the sample size. Interestingly, this matches (up to a logarithmic factor) our results on online
isotonic regression, showing that the online version of the problem is not fundamentally harder.

In machine learning, isotonic regression is used to calibrate class probability estimates (Zadrozny
and Elkan, 2002; Niculescu-Mizil and Caruana, 2005; Menon et al., 2012; Narasimhan and Agar-
wal, 2013; Vovk et al., 2015), for ROC analysis (Fawcett and Niculescu-Mizil, 2007), for learning
Generalized Linear Models and Single Index Models (Kalai and Sastry, 2009; Kakade et al., 2011),
for data cleaning (Kotlowski and Stowiniski, 2009) and for ranking (Moon et al., 2010). Recent work
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by Kyng et al. (2015) proposes fast algorithms under general partial order constraints. None of these
works are directly related to the subject of this paper. The one related problem we found is online
learning with logarithmic loss for the class of monotone predictors as studied by Cesa-Bianchi and
Lugosi (2001), who give an upper bound on the minimax regret (the bound is not tight for our case).

We also note that the problem considered here falls into a general framework of online nonpara-
metric regression. Rakhlin and Sridharan (2014) give nonconstructive upper and lower bound on
the minimax regret, but using their bounds for a particular function class requires upper and lower
bounds on its sequential entropy. In turn, our upper bound is achieved by an efficient algorithm,
while the lower bound follows from a simple construction. Gaillard and Gerchinovitz (2015) pro-
pose an algorithm, called Chaining Exponentially Weighted Average Forecaster, that is based on
aggregation on two levels. On the first level, a multi-variable version of Exponentiated Gradient is
used, while on the second level, the Exponential Weights algorithm is used. The combined algo-
rithm works for any totally bounded (in terms of metric entropy) set of functions, which includes
our case. It is, however, computationally inefficient in general (an efficient adaptation of the algo-
rithm is given for the Holder class of functions, to which our class of isotonic functions does not
belong). In contrast, we achieve the optimal bound by using a simple and efficient Exponential
Weights algorithm on a properly discretized version of our function class (interestingly, Gaillard
and Gerchinovitz (2015) show that a general upper bound for Exponential Weights, which works
for any totally bounded nonparametric class, is suboptimal).

2. Problem statement

Let z; < 29 < ... < x7, be a set of T linearly ordered points (e.g., on the real line), denoted
by X. We call a function f: X — R isotonic (order-preserving) on X if f(x;) < f(x;) for any
x; < xj. Given data (y1,21), ..., (yr, z7), the isotonic regression problem is to find an isotonic f

that minimizes ZtT:l(yt — f(x¢))?, and the optimal such function is called the isotonic regression
function.

We consider the online version of the isotonic regression problem. The adversary chooses X =
{z1,...,xp} which is given in advance to the learner. In each trial t = 1,..., 7T, the adversary
picks a yet unlabeled point z;,, iy € {1,...,T} and the learner predicts with y;, € [0, 1]. Then,
the actual label y;, € [0, 1] is revealed, and the learner is penalized by the squared loss (y;, — 7, )%
Thus, the learner predicts at all points x1, . .. 7 but in an adversarial order.

The goal of the learner is to have small regret, which is defined to be the difference of the
cumulative loss and the cumulative loss of the best isotonic function in hindsight:

T T

Regr =Y (i, —0i)> — min > (y;, — f(23))*

1 isotonic f P
Note that neither the labels nor the learner’s predictions are required to be isotonic on X. In what
follows, we assume without loss of generality that 1 < 3 < ... < x, because equal consecutive
points x; = x4+ constrain the adversary (f(x;) = f(x;41) for any function f) but not the learner.

Fixed-design. We now argue that without showing X to the learner in advance, the problem is
hopeless; if the adversary can choose z;, online, any learning algorithm will suffer regret at least
%T (a linear regret implies very little learning is happening since playing randomly obtains linear
regret). To see this, assume the adversary chooses x;, = 0; given learner’s prediction ¥;,, the



KOTLOWSKI, KOOLEN AND MALEK

Attrialt =1...T":
Adversary chooses index i, such that iy & {i1,...,%1}.
Learner predicts ;, € [0, 1].
Adversary reveals label y;, € [0, 1].
Learner suffers squared loss (5, — i, )°.

Figure 1: Online protocol for isotonic regression.

adversary can choose y;, € {0, 1} to cause loss at least i. Now, after playing round ¢, the adversary
chooses ;,,, = x;, —2 " ify;, = lorw;,,, = x;,+2 " if y;, = 0. This allows the adversary to set
Yi,,, to any value and still respect isotonicity. Regardless of ¥;, , ,, the adversary inflicts loss at least
%. This guarantees that if y;, = 1 then z;, < z;, for all future points ¢ = ¢ + 1,...,T’; similarly, if
yi, = 0 then z;, > w;, for all ¢ > . Hence, the label assignment is always isotonic on X, and the
loss of the best isotonic function in hindsight is 0 (by choosing f(z;) = y;, ¢ = 1,...,T) while the
total loss of the learner is at least %T.

Thus, the learner needs to know X in advance. On the other hand, the particular values z; € X
do not play any role in this problem; it is only the order on X that matters. Thus, we may without
loss of generality assume that z; = 7 and represent isotonic functions by vectors f = (f1,..., fr),
where f; := f(i). We denote by F the set of all [0, 1]-valued isotonic functions:

F={f=0U1,-- fr):0<fi<fo<... < fr <15

Using this notation, the protocol for online isotonic regression is presented in Figure 1.

We will use ZT = ZtT:l(yt — ;)% to denote the total loss of the algorithm and Ly (f) =
Zthl (y¢ — f1)? to denote the total loss of the isotonic function f € F. The regret of the algorithm
can then be concisely expressed as Regp = ET —mingcr Lr(f).

The offline solution. The classic solution to the isotonic regression problem is computed by the
Pool Adjacent Violators Algorithm (PAVA) (Ayer et al., 1955). The algorithm is based on the obser-
vation that if the labels of any two consecutive points 7, ¢ + 1 violate isotonicity, then we must have
Ji = [f{, in the optimal solution and we may merge both points to their average. This process
repeats and terminates in at most 7" steps with the optimal solution. Efficient O(T") time implemen-
tations exist (De Leeuw et al., 2009). There are two important properties of the isotonic regression

function f* that we will need later (Robertson et al., 1998):
1. The function f* is piecewise constant and thus its level sets partition {1,...,T'}.

2. The value of f* on any level set is equal to the weighted average of labels within that set.

3. Blooper reel

The online isotonic regression problem concerns minimizing a convex loss function over the convex
class of isotonic functions. Hence, the problem can be analyzed with online convex optimization
tools (Shalev-Shwartz, 2012). Unfortunately, we find that most of the common online learning
algorithms completely fail on the isotonic regression problem in the sense of giving linear regret
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Algorithm General bound Bound for online IR
Online GD GoDoNT T
EG GooD1+V/T logd v1logT
FTL G2DadlogT T?log T
Exponential Weights dlogT TlogT

Table 1: Comparison of general bounds as well as bounds specialized to online isotonic regression
for various standard online learning algorithms. For general bounds, d denotes the dimen-
sion of the parameter vector (equal to 7" for this problem), G, is the bound on the L,-norm
of the loss gradient, and D, is the bound on the L,-norm of the parameter vector. Bounds
for FTL and Exponential Weights exploit the fact that the square loss is %—exp-concave
(Cesa-Bianchi and Lugosi, 2006).

guarantees or, at best, suboptimal rates of O(\/T ); see Table 1. We believe that the fact that most
standard approaches fail makes the considered problem particularly interesting and challenging.

In the usual formulation of online convex optimization, for trials ¢ = 1,...,T, the learner
predicts with a parameter vector w; € R%, the adversary reveals a convex loss function ¢, and the
learner suffers loss ¢;(w;). To cast our problem in this framework, we set the prediction of the
learner at trial  to 7;, = w]x;, and the loss to ¢;(w;) = (y;, — w]x;,)?. There are two natural
ways to parameterize wy, ©;, € R<:

1. The learner predicts some f € F and sets w = f. Then, x; is the i-th unit vector (with i-th
coordinate equal to 1 and the remaining coordinates equal to 0). Note that sup,, ||w|l2 = VT
and ||V/(w)||2 < 2 in this parameterization.

2. The learner predicts some f € F and sets w = (f1 — fo, fo — f1,.-., fre1 — fr) € RTHL,
i.e. the vector of differences of f (we used two dummy variables fo = 0 and fry; = 1);

then, x; has the first ¢ coordinates equal to 1 and the last T" — ¢ coordinates equal to 0. Note
that w1 = 1, [V{(w)][oc <2, butsup,,, [|[VI{(w)|2 = 2VT.

Table 1 lists the general bounds and their specialization to online isotonic regression for sev-
eral standard online learning algorithms: Online Gradient Descent (GD) (Zinkevich, 2003), Expo-
nentiated Gradient (EG) Kivinen and Warmuth (1997) when applied to exp-concave losses (which
include squared loss, see Cesa-Bianchi and Lugosi 2006), Follow the Leader!, and Exponential
Weights (Hazan et al., 2007). EG is assumed to be used in the second parameterization, while the
bounds for the remaining algorithms apply to both parameterizations (since GoDy = Q(ﬁ) in
both cases).

EG is the only algorithm that provides a meaningful bound of order O (/T log T'), as shown in
Appendix A. All the other bounds are vacuous (linear in 7" or worse). This fact does not completely
rule out these algorithms since we do not know a priori whether their bounds are tight in the worst
case for isotonic regression. Next we will exhibit sequences of outcomes that cause GD, FTL and
Exponential Weights to incur linear regret.

1. The Online Newton algorithm introduced by Hazan et al. (2007) is equivalent to FTL for squared loss.
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Theorem 1 For any learning rate n > 0 and any initial parameter vector f,; € F, the Online
Gradient Descent algorithm, defined as

. 1
o= onguin {517 = £ sl + 20iris — v |
feFr

T .
suffers at least 7 regret in the worst case.

Proof The adversary reveals the labels in isotonic order (i; = ¢ for all ¢), and all the labels are
zero. Then, 4, (f,) = €,(f,), and the total loss of the algorithm L is equal to the loss of the initial
parameter vector: Ly = Ly(fi) =3, ff’t. This follows from the fact that f, and f,_; can only
differ on the first ¢ — 1 coordinates (f; ; = fi—1,4 for ¢ > ) so only the coordinates of the already
labeled points are updated. To see this, note that the parameter update can be decomposed into the
“descent” step ft fi—1—2nfi—1,4—1€4—1 (Where e; is the i-th unit vector), and the “projection”
step f; = argmingcr || f — ftH2 (which is actually the isotonic regression problem). The descent
step decreases (¢ — 1)-th coordinate by some amount and leaves the remaining coordinates intact.
Since f,_; is isotonic, ft,t <...< fyrand ftq < ftt for all ¢ < t. Hence, the projection step
will only affect the first ¢t — 1 Coordmates.

By symmetry, one can show that when the adversary reveals the labels in antitonic order (i;
T —t + 1 for all t), and all the labels are 1, then Ly = Y, (1 — f1,4)%. Since f7, + (1 — f1,)* >

for any f1;, the loss suffered by the algorithm on one of these sequences is at least %.

H - |

Theorem 2 For any regularization parameter A\ > 0 and any regularization center f, € F, the
Follow the (Regularized) Leader algorithm defined as:

t—1
o = argmin {\|£ = £ol* +;<fiq v},

T .
suffers at least < regret in the worst case.

Proof The proof uses exactly the same arguments as the proof of Theorem 1: If the adversary
reveals labels equal to O in isotonic order, or labels equal to 1 in antitonic order, then f;; = fo
for all ¢. This is because the constraints in the minimization problem are never active (argmin over
f € RT returns an isotonic function). |

We used a regularized version of FTL in Theorem 2, because otherwise FTL does not give
unique predictions for unlabeled points.

Theorem 3 The Exponential Weights algorithm defined as:
e P aug)

with [ being the uniform (Lebesgue) measure over F, suffers regret Q(T') in the worst case.

)

fo= / Fo(f) du(F),  where pi(f) =
F

The proof of Theorem 3 is long and is deferred to Appendix B.
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4. Optimal algorithm

We have hopefully provided a convincing case that many of the standard online approaches do not
work for online isotonic regression. Is this section, we present an algorithm that does: Exponential
Weights over a discretized version of F. We show that it achieves O(T"/3(log T))%/?) regret which
matches, up to log factors, the Q(7'/3) lower bound we prove in the next section.

The basic idea is to form a covering net of all isotonic functions by discretizing F with resolution
%, to then play Exponential Weights on this covering net with a uniform prior, and to tune K to get
the best bound. We take as our covering net Fx C F the set of isotonic functions which take values
of the form %, k=0,...,K,ie.

k
FK = {fef:ft:[é for some k; € {0,..., K}, klg...ng}.

Note that Fx is finite. In fact |Fx| = (T}r{K ) , since the enumeration of all isotonic function in Fg

is equal to the number of ways to distribute the K possible increments among bins [0, 1), ..., [T —
1,T),[T,T + 1). The first and last bin are to allow for isotonic functions that start and end at
arbitrary values. It is a well known fact from combinatorics that there are (T}K ) ways to allocate
K items into T" + 1 bins, (see, e.g., DeTemple and Webb, 2014, section 2.4).

The algorithm we propose is the Exponential Weights algorithm over this covering net; at round
t, each f in Fi is given weight e 2 =1 (Fig =vig)® and we play the weighted average of f;,. An
efficient implementation is given in Algorithm 1.

4log(T+1)
prior on the covering net Fi has regret bounded by:

1/3
Theorem 4 Using K = RT) -‘, the regret of Exponential Weights with the uniform

3 2/3
Regr < 575 7"/% (log(T' + 1)) 3 4 2log(T + 1).
Proof Due to exp-concavity of the squared loss, running Exponential Weights with n = 1/2 guar-
antees that:
ZT — min LT(f)

feFk

1
n

(see, e.g., Cesa-Bianchi and Lugosi, 2006, Proposition 3.1).
Let f* = argming. L7 (f ) be the isotonic regression function. The regret is

Reg = Ly — Ly(f")

— Ty — Jmin Lo(f) + Join Lr(f) = Lr(f7).

=Ag

Let us start with bounding Ag. Let ' be a function obtained from f* by rounding each value

fi to the nearest number of the form % for some k; € {0,..., K}. It follows that f* € Ff and
A < Ly(f") — Lr(f*). Using £4(z) := (y; — )2, we have
GUE) = 0(FE) = (ye = J)2 = (e = 1% = (T = O+ 1 = 2u0)- (D
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Let 7. = {t: f = c} be the level set of the isotonic regression function. It is known (Robertson
et al., 1998, see also Section 2) that (as long as |7c| > 0):

teTe

i.e., the isotonic regression function is equal to the average over all labels within each level set.
Now, choose any level set 7. with | 7| > 0. Note that f T is also constant on 7, and denote its value
by ¢*. Summing (1) over 7, gives:

S U = () =D (¢t —o)(ct +c—2u)

teTe teTe
= [Tel(c™ = e)(c" +¢) )Y
teTe
(from (2)) = |T|(c™ —e)(c™ +¢) = 2|Te|(cT —¢)e
= [T(e" ~ o)
=D (=%
teTe

Since for any ¢, | f; — f;| < 5}, we can sum over the level sets of f* to bound A:

T T
* * T
A <Lr(f%) = Le(£) < Y 6D -6 =Y (5= )7 < ;o
t=1 t=1
Combining these two bounds, we get:
T
RegT<210g|.7:K\—|—4K2 <2Klog(T +1) + 1K

where we used | Fx | = (T;K)

< (T+1)%.2 Optimizing the bound over K by setting the derivative
1/3
to 0 gives K* = (ﬁ) . Taking K = [ K*] and plugging it in into the bound gives:
T 3
4(K*)2 — 22/3
where we used K* < K < K* + 1. |

Regy < 2(K* + 1)log(T + 1) + T3 (log(T + 1)) + 210g(T + 1),

We note that instead of predicting with weighted average over the discretized functions, one
can make use of the fact that the squared loss is 2-mixable and apply the prediction rule of the
Aggregating Forecaster (Vovk, 1990; Cesa-Bianchi and Lugosi, 2006, Section 3.6). This would let
us run the algorithm with 7 = 2 and improve the leading constant in the regret bound to %.

The importance of being discrete. Surprisingly, playing weighted averages over F does not
work (Theorem 3), but playing over a covering net does. Indeed, the uniform prior exhibits wild
behavior by concentrating all mass around the “diagonal” monotonic function with constant slope
1/T, whereas the discretized version with the suggested tuning for K still has non-negligible mass
everywhere.

2. (L5 = (T - e get the bound by noticing that 755 < 7' 41 for k > 1.
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Algorithm 1: Efficient Exponential Weights on the covering net

Input: Game length T, discretization K
Initialize 3 = 1 foralls=1,...,T, j=0,...,K;
fort=1,...,7T do

Receive i4;
Initialize w} = B¥ and v% = Bk forallk = 0,..., K
fors=2,...,i,do

| wk [k > 0Jwh™! + BY_jwk_ forallk =0,..., K;
end

fors=T—-1,...,i;do
k k41 ko ok _ .
| vF [k < KJwhtt + gF ok forallk = K, ..., 0;
end
K k .k Kk
Zk?(o K Wi Yiy .
Zk:o“’fﬂi )

Receive y;, and update Bft = 675(%7%1&)2 forall j =0,..., K;

Uiy <

end

Comparison with online nonparametric regression. We compare our approach to the work of
Rakhlin and Sridharan (2014) and Gaillard and Gerchinovitz (2015), which provide general upper
bounds on the minimax regret expressed by means of the sequential and metric entropies of the
function class under study. It turns out that we can use our covering net to show that the metric
entropy log No(3, F,T), as well as the sequential entropy log Noo (8, F, T), of the class of iso-
tonic functions are bounded by O(3~11logT'); this implies (by following the proof of Theorem 2
of Rakhlin and Sridharan, 2014, and by Theorem 2 of Gaillard and Gerchinovitz, 2015) that the
minimax regret is bounded by O(T"/3(log T')?/3), which matches our result up to a constant. Note,
however,that the bound of Rakhlin and Sridharan (2014) is nonconstructive, while ours is achieved
by an efficient algorithm. The bound of Gaillard and Gerchinovitz (2015) follows from applying the
Chaining Exponentially Weighted Average Forecaster, that is based on aggregation on two levels:
On the first level a multi-variable version of Exponentiated Gradient is used, while on the second
level the Exponential Weights algorithm is used. The algorithm is, however, computationally ineffi-
cient in general, and it is not clear whether an efficient adaptation to the class of isotonic functions
can easily be constructed. In contrast, we achieve the optimal bound by using a simple and efficient
Exponential Weights algorithm on a properly discretized version of our function class; the chaining
step turns out to be unnecessary for the class of isotonic functions due to the averaging property (2)
of the isotonic regression function.

4.1. An Efficient implementation

A naive implementation of exponential averaging has an intractable complexity of O(|Fy|) per
round. Fortunately, one can use dynamic programming to derive an efficient implicit weight update
that is able to predict in O(T K) time per round for arbitrary prediction orders and O(K) per round
when predicting in isotonic order. See Algorithm 1 for pseudocode.
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Say we currently need to predict at ;. We can compute the Exponential Weights prediction by

dynamic programming: foreach £ =0, ..., K, let
wlsc _ Z e*%ZqQ:iq@(fiq*yiq)z and vf _ Z e*%2q<tziq>s(f¢q*yiq)2’
0<fi<..<fo=E L=f<..<fr<i

so that the exponentially weighted average prediction is

1 2
o~ 5 2g<t(fig—vig) K k. k,k
Gi, = Do pery fue 2ot eI R 0 RW U,
it T _1 Sy 2 - K k k .
Zfe]:K e ? La<tlFia~¥ia) Zk:o Wi, Vi,
Now we can compute the w” in one sweep from s = 1to s = 4; forall k = 0, ..., K. If we define
j g 2. ) . . : :

Bl = e2lx ¥ if s € {i1,...,i;—1} and 1 otherwise, we can calculate w” by starting with

w} = BY and then sweeping right:

1
— § ’ 675 qu:z‘qgs(fiq*yiq)Q
0<f1 S-st-«-l:%

B S D SIS LT,

0ss=k  0<p<..<fo=

= Y plwl.

0<j<k

k
ws+1

g
K

The equations for v* are updated symmetrically right-to-left, which gives an O(T K?) per round
algorithm. We can speed it up to O(T' K) by using

k+1 _ § : Y k+1, k+1 __ k k+1, k+1
ws—i—l - Bsws + Bs Wg = Wgp + 68 Wy )
0<j<k

L k+1
and similarly for v .

Acceleration for predicting in isotonic order. When working in isotonic order (meaning ¢; = t),

we can speed up the computation to O(K) per round (independent of T') by the following tricks.

First, we do not need to spend work maintaining v as they satisfy vf = (T_?_I]{g_k). Moreover,

between rounds ¢ — 1 and ¢ the wf do not change for s < ¢, and we only need to compute w,’f for all
k, hence speeding up the computation to O(K) per round.
5. Lower bound

Theorem S All algorithms must suffer
Regr = Q(TV/3).

The full proof is given in Appendix C.
Proof (sketch) We proceed by constructing the difficult sequence explicitly. Split the 1" points
(1,...,T) into K consecutive segments (1,...,m), (m+1,...,2m),...,(m(K—-1)+1,...,T),

10
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where in each segment there are m = % consecutive points (for simplicity assume 7T is divisible

by K). Let t € k mean that ¢ is in the k-th segment, k = 1, ..., K. Now, suppose the adversary
generates the labels i.i.d. with y; ~ Bernoulli(px) when t € k, and p; < ... < pg. The total
loss of the best isotonic function is then bounded above by the total loss of the constant function
equal to p in each segment, hence the expected regret of any algorithm can be lower-bounded by

E[Regr] > Sr E[Ztek(’y} — pk)ﬂ. In each segment, the adversary picks pr, € {pk,0,Pk1},

where py o = i + % and py 1 = i + %, which guarantees that for any choice of the the adversary
p1 < ... < pg. We then show that the expected regret can be lower-bounded by:

K K
ERegr] = Y Y El@ — 1)’ = 7 > El(pi — pi)?)
k=1

k=1 tek

where Dy, € {pk0,pk,1} depends on the predictions {¥; }+cx (and hence on the data), but not on the
probabilities p;. We use Assouads lemma (Yu, 1997; Tsybakov, 2009) to bound the sum on the
right-hand side:

K
1 v/m
max E[(p). — 1> —(1- X ).
P17~~,PK¢PkG{Pk,oaka}; [Pk = pe) 2 8K < \/§K>

Using m = % and tuning the number of segments to K = ©(T"/ 3) to optimize the bound, gives
Q(Tl/ 3) lower bound on the worst-case regret. |

We note that an analogous lower bound of the form Q(7~2/3) is known in the statistical litera-
ture on isotonic regression as a lower bound for the statistical risk E[1- IIf = f|[%] of any estimator
fin the fixed-design setup under the standard i.i.d. noise assumption (see Zhang, 2002, for a brief
overview of the lower and upper bounds in this setting). This shows that the online version of the
problem is not fundamentally harder (up to a logarithmic factor) than the batch (statistical) version.

6. Noise-free case

In this section, we are concerned with a particular case of “easy data”, when the labels revealed by
the adversary are actually isotonic: y; < y2 < ... < yr, so that the loss of the best isotonic function
is zero. We show that the achievable worst-case regret in this case scales only logarithmically in 7.
Furthermore, if we additionally assume that the labels are revealed in isotonic order, the achievable
worst-case regret is bounded by 1. Interestingly, we were able to determine the minimax algorithm,
and the exact value of the minimax regret in both cases. Our findings are summarized in the two
theorems below. The proofs and the minimax predictions are given in Appendix D.

Theorem 6 Assume the labels revealed by the adversary are isotonic. Then, the regret of the
minimax algorithm is bounded above by:

1
Regr < ZlogQ(T +1).

Furthermore, when T = 2F — 1 for some positive integer k, any algorithm suffers regret at least
1 logy(T +1).

11
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Theorem 7 Assume the labels are isotonic, and they are revealed in isotonic order (iy = t for all
t). Then, the regret of the minimax algorithm is bounded above by:

Regr < ap <1,

. . 14132
where ar is defined recursively as: a; = % and o = (%)

suffers regret at least ar.

. Furthermore, any algorithm

Finally, we note that the logarithmic regret can also be obtained by using the Exponentiated
Gradient algorithm with its learning rate tuned for the noise-free case (see Appendix A and Kivinen
and Warmuth, 1997, for details).

7. Other loss functions

We discuss extensions of the isotonic regression problem where the squared loss is replaced by the
entropic loss and the absolute loss respectively.

7.1. Entropic loss

The entropic loss, defined for y,y € [0,1] by {(y,y) = —ylogy — (1 — y)log(1l — 3), plays
an important role in isotonic regression, as its minimization is equivalent to maximum likelihood
estimation for Bernoulli distributions under isotonic constraints (Robertson et al., 1998). It is con-
venient to replace the entropic loss by the relative entropy Dy (y||y) = ¢(y) —o(y) — (v —9)7¢' (y),
which is the Bregman divergence generated by ¢(y) = —ylogy — (1 — y) log(1 — y), the binary
entropy. A surprising fact in isotonic regression is that minimizing the sum of Bregman divergences
>+ Dy (y:]| f¢) in the class of isotonic functions f € F leads to the same optimal solution, no matter
what ¢ is: the isotonic regression function f* (Robertson et al., 1998).

Since the entropic loss is 1-exp-concave (Cesa-Bianchi and Lugosi, 2006, page 46), we may use
the Exponential Weights algorithm on the discretized class of functions:

fK:{fEJ:in,ft6{20,21,...,21(}}

(we now use a non-uniform discretization {zo, 21, ..., 2K }, to be specified later). Following the
steps of the proof of Theorem 4, we obtain a regret bound:

Rogy <tog (* 1) + Lo(F%) = La(r),

where Ly(f) = 31—y Dy(uill fi), £ is defined by: f;7 = argmin (. ., ..} Do(ff]|2), and
we used the fact that the isotonic regression function f* minimizes Ly (f) over F (see above). Let
Te = {t: f = c} be a non-empty level set of f*. Using the averaging property (2) of f*, and the

12
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fact that £ is constant on 7 (denote its value by c¢t), we have:

> Doyl £i7) = Do(well £7) =D d(e) — d(c™) = (wr — ") (") + (e — )(c)

teTe teTe
= |TelDy(clc™) + (¢/(c) = ¢'(c™) D (e — )
teTe
(from (2)) = [Te|Dy(cllc™)
= Do(ff 1)
teTe

Summing over the level sets gives Ly (f") — Lr(f*) = 32, Dy(f7]| ;7). To introduce the ap-
propriate discretization points, we follow (De Rooij and Van Erven, 2009). For any y € [0, 1]
and ¢ € [0,7/2], we let 1(y) = arcsin/y, so that y = sin®(¢)). The parameterization ¢ has a
nice property, that the values of D on uniformly located neighboring points are also close to uni-
form. We discretize the interval [0, /2] into K + 1 points {to, ..., Yk} = {55, .- ., “(é(lgl)} U
{&, s —ir }, which is almost uniform, with two additional points on the boundaries. Then, we
define z, = y(¢) = sin®(yx), k = 0,..., K. Using Lemma 4 from De Rooij and Van Erven

(2009):
* (2 B \@)71.2
D¢(ft Hft+) S K2 )
which bounds L7 (f7) — Ly (f*) by (2 — ﬁ)wz%. From now on we proceed as in the proof of
Theorem 4, to get O(T"/3 1og?/3(T')) bound. Thus, we showed:

1/3
Theorem 8 Using K = {(W) “, the entropic loss regret of discretized Exponential

Wights on the covering net:

FK:{fEF:Vt)ft6{207217'”721(}}7

T T

where zy) = sin2(4K), 2K = 0082(4K), and z, = sinQ(%)fork: =1,...,K—1, has the following

upper bound:

3(2 _ \/5)1/371.2/3
22/3

Regy < T3 (log(T + 1)) + 21og(T + 1).

7.2. Absolute loss

Absolute loss |y;, — v;,| is a popular loss function in modeling data with isotonic functions, espe-
cially in the context of isotonic discrimination/classification (Dykstra et al., 1999; Kottowski and
Stowinski, 2013). However, the online version of this problem turns out to be rather uninteresting
for us, since it can be solved in an essentially optimal way (up to an O(+/logT) factor) by using
the vanilla Exponentiated Gradient algorithm. Applying the standard EG regret bound (Kivinen
and Warmuth, 1997; Cesa-Bianchi and Lugosi, 2006, also c.f. Section 3) results in a O(y/T log T')
bound, whereas a lower bound of Q(\/T) comes from the setting of prediction with expert advice
(Cesa-Bianchi and Lugosi, 2006): we constrain the adversary to only play with one of the two con-
stant (isotonic) functions f; = 0 or f; = 1, and apply the standard lower bound for the 2-experts
case.

13
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8. Conclusions and open problem

We introduced the online version of the isotonic regression problem, in which the learner must
sequentially predict the labels as well as the best isotonic function. We gave a computationally
efficient version of the Exponential Weights algorithm which plays on a covering net for the set of
isotonic functions and proved that its regret is bounded by O(T"/3 1og?3(T')). We also showed an
Q(Tl/ 3) lower bound on the regret of any algorithm, essentially closing the gap.

There are some interesting directions for future research. First, we believe that the discretization
(covering net) is not needed in the algorithm, and a carefully devised continuous prior would work
as well. We were, however, unable to find a prior that would produce the optimal regret bound and
remain computationally efficient. Second, we are interested to see whether some regularized version
of FTL (e.g., by means of relative entropy), or the forward algorithm (Vovk-Azoury-Warmuth)
(Azoury and Warmuth, 2001) could work for this problem. However, the most interesting research
direction is the extension to the partial order case. In this setting, the learner is given a set of points
X = {x1,...,x7}, together with a partial order relation < on X. The goal of the learner is to
sequentially predict the labels not much worse than the best function which respects the isotonic
constraints: z; = xz; — f(x;) < f(x;). A typical application would be nonparametric data
modeling with multiple features, where domain knowledge may tell us that increasing the value
of any of the features is likely to increase the value of the label. The off-line counterpart has
been extensively studied in the statistics literature (Robertson et al., 1998), and the optimal isotonic
function shares many properties (e.g., averaging within level sets) with the linear order case. The
discretized Exponential Weights algorithm, which was presented in this paper, can be extended
to deal with partial orders. The analysis closely follows the proof of Theorem 4 except that the
size of the covering net Fy is no longer O(TX) but now depends on the structure of <. We
believe that | Fx| is the right quantity to measure the complexity of the problem and the algorithm
will remain competitive in this more general setting. Unfortunately, the algorithm is no longer
efficiently implementable and suffers from the same problems that plague inference in graphical
models on general graphs. It thus remains an open problem to find an efficient algorithm for the
partial order case.
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Appendix A. The Exponentiated Gradient (EG) bound

We will first cast the online isotonic regression problem to the equivalent problem of minimizing
square loss over (T + 1)-dimensional probability simplex AT+,

Given f € F, define the (7" + 1)-dimensional vector of increments of f by p(f) = (f1 —
fosfa—f1,-- -, fr+1 — fr), where we used two dummy variables fo = 0 and fr,1 = 1. Note that
p(f) € AT*!, and there is one-to-one mapping between elements from F and the corresponding
elements from A7*!, with the inverse mapping f(p) given by fi(p) = 22:1 p¢. The loss in the
simplex parameterization is given by:

2 2
b(py) = (yit - ZPt,j) = (yit - p{fbu) ;

J<it

where x;, is the vector with the first ¢; coordinates equal to 1. The Exponentiated Gradient (EG)
algorithm (Kivinen and Warmuth, 1997) is defined through the update:

Pi—1 'e_n(w“l(ptfl))j
—4J

S P ke_"(Wt_l(pt_l))“’ 7

Pt =

with p, being some initial distribution. The prediction of the algorithm is then 7;, = > <iy Pt.j-
We now use the standard upper bound for the regret of EG:

Theorem 9 (Theorem 5.10 by Kivinen and Warmuth 1997) Let {(z,y:)}1_, be a sequence of
outcomes such that for all t, max; x;; — min; x;; < R. Forany p € ATHY with Ly (p) < K and
D(pl|lpy) < D for some py, the EG algorithm with initial distribution p, and learning rate n tuned

as. B 2\/5
" R(V2K + RVD)’

have the following bound on its cumulative loss:

7 R?D
Ly < Lr(p) + V2KD + <2pHpo>

We apply this theorem to our problem with the sequence permuted by (i1,...,%) and R = 1.
We choose p,, to be a uniform distribution on A7+, which means D(p|p,) < log(T+1) = D. We
also use a crude bound on the loss of best comparator p* = argmin,, Lt (p), L7 (p*) < iT=K
(this is because the loss of the best comparator is lower than the loss of the constant function f
equal to the arithmetic mean of the data). This suggests tuning the learning rate to:

n— 2y/log(T' + 1)
\/g—i- Vd1og(T + 1)7

to get the following regret bound:

Tlog(T +1) log(T +1
Reg; < Og(2 + )+ Og(2+ ).
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Appendix B. Proof of Theorem 3 (bound for the Exponential Weights algorithm)

Let the adversary reveal the labels in isotonic order (i; = ¢ for all £), and they are all equal to 0. At
trial ¢, the prediction of the algorithm y; = flx; = fi, is given by:

AT S

~ e 2 2wq<tlq

Gi= [ fmf)dfidfn, where pu(f) =S ,
5 /6_22‘1<tf‘1 dfi...dfr

‘F

=Z

We calculate the marginal distribution p;(f; = 2):

(h=2= p(f)df - dfiydfis . dfy
0<fi<fi—1<2<fr+1...<fr<1

— l —3 gt 3 d d d d
7 e Jioo.dfioa Jerr. . dfr
0<fi<.<ft—1<z 2<fi1<.. <fr<1

1 (1— 2Tt
==-G(z,t —1)—————
where:
G(z,n) = / ez Dt dfi...dfp.
0<f1<..<fn<z
We now calculate G(z,n). Let F(z) = [e” 37" dz denote the antiderivative of the Gaussian.

Recursively applying the relation:

© el (F(2) — F(f)!
/ b - Fip = R
we get:

so that:

pe(fe =2) = Z1,(1 — )7 F(2) = F(0))™',  where Z'=Z(t—1){(T —1t)!.

Denote p;(f; = z) concisely as ¢(z). Then, we have:

1
m :/ z¢p(z)dz
0
Assume t > 1 and let @ = £4=L; note that 0 < « < 1. Define:
9(z) = (1 — a)log(l — 2) + alog(F(z) — F(0)).
Note that ¢(2) = 4 eT=D9(). We have:

R e o 1
A e (O ETIOM
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2 o 1.2
ze 277 < 0.

and: )
" - — _ a -2 _ =
T T e - F0?° T FR-F)
Thus, g is (strictly) concave, which implies that ¢ is log-concave. Furthermore, due to strict con-

cavity of F'(z) for z > 0, we have: F'(0) < F(z) — ze~2% for z > 0, which implies:

1
a+g for z > 0,
z

l p—
g(=) <=7
so that ¢’(a)) < 0. On the other hand, also from the concavity of F(z), F'(z) < F(0) + z, which

together with e=3% >1- %22 implies:
1,2
loa © <1 — 52 )
/
>
9(z) 2 1-=2 z
This means that:
9 <2>— g ( 8“) g At
5 and «, which means that the (unique) maximizer 2* =

argmax ¢(z) is in the range (3‘ , a)
densities, the density at the mean is not much smaller than the density at the mode:

Thus ¢'(z) switches the sign between
We now use (Saumard and Wellner, 2014, Proposition 5.2) which states that for log-concave
sup ¢(z) < ¢(yr) < sup ¢(2),
4 z

V3e

which means that after taking logarithms, dividing by 7" — 1 and using the definition of z*,
(1+1logV/3) < g(@) < g(=").

. 1
9(2)—ﬁ
From concavity of g,
@<g(5)+d(5)(0-5)<ese)+d(5)(0-3
g?/t_9292yt2_9 92%27
which, together with ¢’ ($) > 1, implies
~ 1
o g —g(z) _a i(l+logVi) a 1
t2 ot T ey 25 > = — ——(1+1logV3).
2 g (2 2 7 (%) 2 T-1
Hence, y; > ¢ when:
1 4(1+1 3
g—71(1+10g\/§)>% = T21+ng\f)‘
(6%

2 T-
Note, that this holds when a@ > % and when T > 14. Therefore, when 1" > 14, for all o > % we
have 7 > § > é, which means ¢;(f;) = (7 —0)? > le4' Since a > 3 isimplied by ¢t > [T/2] +1,

we conclude that when 1" > 14,
RegT == ET — min LT(f) = ET >
feF
t=|T]+1
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Appendix C. Full proof of Theorem 5

We proceed by constructing the difficult sequence explicitly. First, split the 7" points (1, ...,7T") into
K consecutive segments (1,...,m),(m+1,...,2m),...,(m(K —1)+1,...,T), where in each
segment there are m = % consecutive points (assume for now that 7' is divisible by K). Lett € k
mean that ¢ is in the k-th segment, k = 1,..., K, i.e. t € k whenever k = (%1 Now, suppose
the adversary picks a K-vector p = (p1,...,px) € [0, 1]K such that p; < po < ... < pg and
generates the labels in isotonic order (any order would work as well) such that y; ~ Bernoulli(py)
when t € k. Let f,, € F denote an isotonic function such that f; = py whent € k. We lower
bound the expected regret:

Ep[Regr] = E, [ET ~ inf Ly f)]

|Lr - L:r(fp)}

>E

bS]

I

M- T T
=
]

Ep Z@t - yt)2 — (k. — yt)2
tek

Z@t — o) (e + ke — 200)°

| tek
= By |> @ —m)?

k=1 | tek
where the last equality is from E,, [y;] = pr. Now we assume the adversary picks p from the
following set:

1 k-11 k

There are 2% vectors in P, all satisfying p; < po . < pk, and i < pr < % for all k. For
instance, when K = 2, P = {(i, %), (%7 %) (% %) (% %)}

Fix k and denote py, o = % + % and py 1 = —i— ,i.e. pr € {Pk,0, Pk} Define:

P = argmin {|7;, — Pk,z‘|},
Pk, 'L,l 0

where 3, = % > ici Yt We now show that:
. m
Z(yt —m)’ > Z(pk —p)” 3)

tek

Without loss of generality, assume p;, = py . Then, if D = py o, the inequality clearly holds
because the right-hand side is 0. On the other hand, if pj, = py, 1, then from the definition of pj, we
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, which means 7, > %(pk,o + pk,1). This implies:

have |5, — pr1| < |75 —

Z@\t —pro)’ = Z@t — i + Ui — Pro)’

ek tek
= <Z(§t —T)* 4+ 2(0 — Up) (U — Pk,o)) + m(Y — Pro)’
ek
= < > yk — Dk, 0)
ek
m
> m(yy, — Pro)’ > Z(pkl — pro)?

Thus, (3) holds. Note that p depends on {y;,t € k} (which in turn depend on the labels), but it
does not depend on pg. Hence, the worst-case regret can be lower bounded by:

R > — .
ymax Regp > max Z [(Pr — pr)?]
We will now use Assouads lemma (Yu, 1997; Tsybakov, 2009) to bound the sum on the right-hand
side. Let = {0, 1} be the set of all 2% binary sequences of length /K. The sequences from (2
will index the distributions from P by denoting p,, = (P1,w;,---,PKwx) € P forany w € Q. We

also define w € Q as pg = (p1, ..., PK), i.e. pp g, = Dk for any k. In this notation:
K m m 1
B (B — pr)?] > max ~E 2 o ®
e Dy BlBl — o] = e B 1Py — poll” = max T B bl ©)

where p(-, -) denotes the Hamming distance between two binary sequences. Using (Tsybakov, 2009,
Theorem 2.12.1i):

K
E > (1= TV(p,,p.) |,
B L Fra Pl 9) 2 ( wareid o | PP >>
where TV (-, -) is the total variation distance between distributions over (y1, . .., yr). From Pinsker’s
inequality:
1 1
TV2(pw>pw’) < §D(pw||pw’) = 5 Z D(pkvwk Hpk,wjv)v

k=1
where D(-||-) is the Kullback-Leibler divergence and we used the fact the p € P are product
distributions over segments. Since p(w,w’) =1, py ., = Phw, for all but one k, hence all but one

terms in the sum disappear and we have TV?(p,,,p.s) < 3D (pkol|pk,1) for some k. Using the
Taylor approximation of the KL-divergence with respect to py 1 around py, o, we get:

)= ™ (Pr1 ~Pro)’
2 p(l-p)

where p is some convex combination of py o and p, 1. Since py o, Pr,1 € [% %] =5 ! - is maximized

D(

for p € {§,3}, so that:

4m m

TV?(pr.o, Pr1) < ?(pk,l — k) = s
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Plugging this into our bound gives:

K
N SAY
s8> (1 )

which implies:

m vm T VT
Regr > —— ([ 1—- = 1—
yreor ST = 32K ( \/§K> 32K2 < \/§K3/2> ’

where we used the fact that m = L. Choosing K = ¢T"'/ for some ¢ > 1 gives:

3/2 _ 3-1/

2
max Reg, > — > T3
oy BT = Tag T/

Choosing any ¢ > 37/3, ¢ = O(1), such that K divides 7T finishes the proof.

Appendix D. Proofs for Section 6 (noise-free case)
D.1. Proof of Theorem 6 (arbitrary order of outcomes)

We first give a sequence of outcomes such that when 7" = 2% — 1 for some positive integer k, any
algorithm will suffer exactly i logy (T + 1) loss. The adversary picks a point in the middle of the
range, i; = 2F~1. After the algorithm predicts, the adversary chooses y;, to be 0 or 1, depending
which of these two incurs more loss to the algorithm. Hence, no matter what the algorithm predicts,
the loss is at least %. If y;, = 0, then 2¥~1 — 1 points on the left-hand side of y;, are labeled to 0 in
the next trials (which is required due to noise-free regime), and the algorithm will possibly suffer no
loss on these points. Then, the adversary repeats the above procedure of choosing the middle point
on the remaining 2¥~! — 1 points on the right-hand side of y;,. Analogously, when y;, = 1, the
points on the right-hand side are all labeled to 1, and the adversary recursively play on remaining
the left-hand side points. This procedure can be carried out k times, until no more points remains.
Hence, the total loss incurred by the algorithm is at least %k = % logy(n + 1).
Next, we determine the upper bound on the value of the minimax regret:

T

- 1
V = minmax. .. minmaxE:(yiz —0i,)% < = logy(T + 1),
Ui, Vi Vip Yip 4
where the labels are constrained to be isotonic, y; < ... < y7. We will get the predictions of the

minimax algorithm as a by-product of the calculations. This implies that the minimax algorithm
suffers regret at most i logy (T + 1), and the bound on V is tight whenever T = 2% — 1.

In the first trial, the adversary reveals outcome 7;, which splits the set of unknown labels
into two disjoint sets (y1,...,%i,—1) and (¥i,+1,...,yr). The minimax algorithm knows that
0 <wy1,...,¥Y,—1 <y, and y;, < Yi,+1,--.,yr < 1 (due to noise-free case). Then, in the fu-
ture trials, each of these sets of unknown consecutive labels will be recursively split into smaller
sets. At any moment of time, for any set of unknown labels (y;,...,y;) with j > 4, we know
that ;1 < v;,...,y; < yj+1, and y;_1 and y;41 has already been revealed (we use yo = 0 and
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yr+1 = 1). Hence, the minimax algorithm will play a separate minimax game for each set of un-
known labels (y;, ... ,y;), bounded in the range [y;—1, y;+1]. We use this observation as a basis for
the recursion. Let V (u, v, n) denote the minimax value of the game for a set of n not yet revealed
consecutive labels lower-bounded by u, and upper-bounded by v. We get the recursion:

V(u,v,n+1) = ke%axn} V(u,v,n+1,k), )

where:

V(u,v,n+1,k) = min max {(y — 2+ V(u,y, k) + V(y,v,n — k:)} ,
yeluv] yelu]
which follows from the fact that first the adversary reveals (k + 1)-th point, then the algorithm
predicts with 7 for that point, and finally the outcome y is revealed, while the set is split into two
sets of smaller size. The minimax regret can be read out from V' (0, 1, T"). To start the recursion, we
define V' (u,v,0) = 0.
We now prove by induction on n that:

V(u,v,n) = Bp(v — u)z, 5)

where (3, is some coefficient independent of u and v. Assume n+ 1 unknown labels, lower-bounded
by u, and upper-bounded by v. We fix k € {0,...,n} and calculate the optimal prediction of the
algorithm for V' (u,v,n + 1, k):

§ = argmin max {(y = )2+ By = w)? + Boi(v — 1)}
gelun] YE[u]

where we used the inductive assumption. The function inside max is convex in y, hence the solution
w.r.t. y is y € {u,v}. First note that if 8y, — 8, > 1, the function inside max is increasing in y for
any choice of § € [u, v], hence the optimal choice for the adversary is y = v, and the optimal choice
for the algorithm is ¥ = v. Similarly, if 8; — 8, < —1, the function inside max is decreasing in
y, which results in the optimal choice y = v and § = u. When —1 < B, — B, < 1, it is easy
to check that the optimal prediction is obtained by setting the function inside max equal for both
choices of y € {u,v}. This gives:

Uu+v uUu—v

2+2

y= (Bk — Bn—k) € [u,v].
Thus, depending on the value of 8y — B,,—k, V(u,v,n + 1, k) is given by:

V(u,v,n+1,k) = (u— U)Qﬂn,k,

where
Bk if Bg — Bk > 1,
Bn,k = i(ﬁk - ank>2 + %(Bk + /ank) + % if —1< Bk~ Bk <1, (6)
Bn—k if Bx — Bk < —1.
From (4), we have:
Brt1 = popax Br ks
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which proves our inductive hypothesis (5).

What is left to show is that 3, < %log2 (n + 1). We will prove it by induction on n. For
n = 0, o = 0 and thus the bound trivially holds. We now show that (3, ;, as defined in (6), is
nondecreasing in 8, and 3,,_x. We fix 3,,_, and calculate the derivative with respect to 5:

dﬂnk 1 if ﬁk - /Bn—k > ]-7
d,87 = LB = Bur+1) it —1< Bk — Bk <1,
k 0 if Bx — Bnk < —1,

which is nonnegative. Hence, 3, is nondecreasing with j3;, for any fixed 3,,_;. An analogous
arguments shows that /3, ;. is nondecreasing with /3,,_j, for any fixed 3. Hence, we can replace 3
and 3,,— by their upper bounds from the inductive argument, and then 3, . (as well as 3,,41) will
not decrease. Thus, to show that %10g2((n + 1) + 1) is the upper bound on f3,41, it suffices to
show that for any n, k, B, < %logg(n + 2) after substituting S = ilogg(k + 1) and B, =
11ogy(n — k + 1) in (6).

We proceed by cases in (6). When 8, — B— > 1, B p = Br = % logy(k+1) < i log,(n+2),
because k < n. Case By — Bn,—r < —1 is covered in an analogous way. We are left with the case
—1 < B — Bn—i < 1. It suffices to show that:

1 1 1
(B — Bn—k)* + §(Bk + Bn—k) + 151 logy (247 + 24Pn—k), (7

:g(ﬁkzﬁnfk) :f(ﬁk’ﬁnfk)

because the right-hand side is equal to 1 logy(n + 2) when B; = $logy(1 + k) and B,y =
% logy(14+n—k). Assume w.l.o.g. that 8, < (3,,_j (because both f(-,-) and g(-, -) are symmetric in
their arguments). For any §, g(z+9,y+0) = g(x,y)+0, and similarly f(z+3,y+0) = f(x,y)+0.
Thus, proving f(x,y) > g(x,y) is equivalent to proving f(0,y — z) > ¢(0,y — x). Given the
condition —1 < (,,_ — B < 1, we thus need to show that: f(0,y) > ¢(0,y) forany 0 <y < 1,
which translates to:

log, (1+24y) > (14+9)?% for 0 <y <1.

This inequality can be shown by splitting the range [0, 1] into [0, 1], [1, 3] and [2, 1], lower-bounding
the left-hand side by its Taylor expansion up to the second order around points 0, %, and %, respec-
tively (with the second derivative replaced by its lower bound in a given range), and showing that
the corresponding quadratic inequality always holds within its range. We omit the details here.

Unfortunately, we were unable to find a more elegant proof of this inequality.

D.2. Proof of Theorem 7 (isotonic order of outcomes)

We determine the value of the minimax regret:
T

V =min max min max ...min max E (ye — T,
1 y1€[0,1] Y1 y2€[y1,1] yr yrelyr-1,1

getting the predictions of the minimax algorithm as a by-product of the calculations. Note that any
algorithm will suffer regret at least V' for some sequences of labels, while the minimax algorithm
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will suffer regret at most V' for any sequence of labels. Let:

T
Vr_¢(y) =min max ...min max g (Yg — Uy)?
Yt+1 Yye+1€[Ye,1] yr yr€lyr-1,1] G—it1

be the value-to-go function, which is the worst-case loss suffered by the minimax algorithm in 7" —¢
trialst +1,...,T, given the last revealed label was y;. The minimax regret V' can be read out from
Vr(0). We use the following recursion:

V,(¢) = min max {(y — )2+ Vn_l(y)} ,
Y y€le]]
where we used Vp(y) = 0. We start with calculating V3 (c) (which corresponds to the last trial
t = T). The minimax prediction is given by:
c+1

argmin max (7 — y)? = argmin max{(7 — ¢), (7 — 1)*} = ,
7 velel] m 2

and the value-to-go function is V4(c) = (1 — ¢)2. We now prove by induction that V;,(c) =
an (1 — 0)2 for some o, > 0 (which clearly holds for n = 1 with oy = %, as shown above). By the
induction argument,

Vo (c) = min max {(@\— y)? + a1 (1 — y)Z} = min max {@— y)? + ay_ (1 — y)2} .
¥ y€lel] 7 ye{cl}
The last equality is due to the fact that the function inside the min max is convex in ¥, therefore the
optimal y is on the boundary of the feasible range [c, 1]. It is easy to check that the optimal y makes
the expression inside min max equal for both choices of y, so that:
c+1 c—1

9 + a1 5

Ut =

The expression inside max is a convex function of y;, therefore the optimal y; is on the boundary
of feasible range {y;_1, b}. The algorithm predicts with 7, such that the expression inside max has
the same value for y; = y;—1 and y; = b. This gives:

bty v b=y
Yt = 5 at+1Ta

and:

2
V(o) = G- = (2 ) - o2
—_—

=an

This finishes the inductive proof for V;,(c). The value of the minimax regret is given by V7 (0) = ar.
Now, given that oy = % < 1, we have inductively for all n:

L 41)? 1+1\?
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