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Abstract
Motivated by its practical success, we show that the 2D total variation denoiser satisfies a sharp
oracle inequality that leads to near optimal rates of estimation for a large class of image models such
as bi-isotonic, Hölder smooth and cartoons. Our analysis hinges on properties of the unnormalized
Laplacian of the two-dimensional grid such as eigenvector delocalization and spectral decay. We
also present extensions to more than two dimensions as well as several other graphs.
Keywords: Total variation regularization, TV denoising, sharp oracle inequalities, image denois-
ing, edge Lasso, trend filtering, nonparametric regression, shape constrained regression, minimax

1. Introduction

Total variation image denoising has known a spectacular practical success since its introduction by
Rudin et al. (1992) more than two decades ago. Surprisingly, little is known about its statistical
performance. In this paper, we close this gap between theory and practice by providing a novel
analysis for this estimator in a Gaussian white noise model. In this model, we observe a vector
y ∈ IRn defined as

y = θ∗ + ε , (1.1)

where θ∗ ∈ IRn is the unknown parameter of interest and ε ∼ N (0, σ2In) is a Gaussian random
vector. In practice, θ∗ corresponds to a vectorization of an image and we observe it corrupted by the
noise ε. The goal of image denoising is to estimate θ∗ as accurately as possible. In this paper, we
follow the standard employed in the image denoising literature and measure the performance of an
estimator θ̂ by its mean squared error. It is defined by

MSE(θ̂) :=
1

n
‖θ̂ − θ∗‖22.

Note that a lot of the work concerning the fused Lasso in the context of graphs has been focused
on sparsistency results, i.e., conditions under which we can expect to recover the set of edges along
which the signal has a jump (Harchaoui and Lévy-Leduc, 2012; Qian and Jia, 2012; Sharpnack et al.,
2012; Ollier and Viallon, 2015; Viallon et al., 2016), which is a different objective than controlling
the MSE.

The total variation (TV) denoiser θ̂ is defined as follows. Let G = (V,E) be an undirected
connected graph with vertex set V and edge set E such that |V | = n, |E| = m. The graph G tra-
ditionally employed in image denoising is the two-dimensional (2D) grid graph defined as follows.
The vertex set is V = [N ]2 and the edge set E ⊂ [N ]2 × [N ]2 contains edge e =

(
[i, j], [k, l]

)
if

and only if [k, l]− [i, j] ∈ {[1, 0], [0, 1]}. Nevertheless, our results remain valid for other graphs as
discussed in Section 4 and we work with a general graph G unless otherwise mentioned.
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Throughout this paper it will be convenient to represent a graph G by its edge-vertex incidence
matrix D = D(G) ∈ {−1, 0, 1}m×n. Without loss of generality, identify V to [n] and E to [m]
whenever convenient. To each edge e = (i, j) ∈ E corresponds a row De,: of D with entries given
as follows. The kth entry De,k of De,: is given by

De,k =


1 if k = min(i, j)
−1 if k = max(i, j)

0 otherwise.

Note that the matrix L = D>D is the unnormalized Laplacian of the graph G (Chung, 1997). It
can be represented as L = diag(A1In) − A, where A is the adjacency matrix of G and diag(A1n)
is the diagonal matrix with jth diagonal element given by the degree of vertex j.

The TV denoiser θ̂ associated to G is then given by any solution to the following minimization
problem

θ̂ ∈ argmin
θ∈IRn

1

n
‖θ − y‖22 + λ‖Dθ‖1 , (1.2)

where λ > 0 is a regularization parameter to be chosen carefully. Our results below give a precise
choice for this parameter. Note that (1.2) is a convex problem that may be solved efficiently (see
Arnold and Tibshirani (2016) and references therein).

Akin to the sparse case, the TV penalty in (1.2) is a convex relaxation for the number of times
θ changes values along the edges of G. Intuitively, this is a good idea if θ∗ takes small number of
values for example. In this paper, we favor an analysis where θ∗ is not of such form but may be
well approximated by a piecewise constant vector. Our main result, Theorem 2, is a sharp oracle
inequality that trades off approximation error against estimation error. In Section 5, we present
several examples where approximation error can be explicitly controlled: Hölder functions, Isotonic
matrices and cartoon images. In each case, our results are near optimal in a minimax sense.

Our analysis partially leverages insight gained from recent results for the one-dimensional case
where G is the path graph by Dalalyan et al. (2014). In this case, the TV denoiser is often referred
to as a fused (or fusion) Lasso (Tibshirani et al., 2005; Rinaldo, 2009). Moreover, the TV denoiser
θ̂ defined in (1.2) is often called to generalized fused Lasso. The analysis provided in Dalalyan
et al. (2014) is specific to the path graph and does not extend to more general graphs. We extend
these results to other graphs, with particular emphasis on the 2D grid. Critically, our analysis can be
extended to graphs with specific spectral properties, such as random graphs with bounded degree. It
is worth mentioning that our techniques, unfortunately do not recover the results of Dalalyan et al.
(2014) for the path graph.

1.1. Notation

For two integers n,m ∈ IN, we write [n] = {1, . . . , n}, Jn,mJ= {n, n + 1, . . . ,m − 1} and
Jn,mK = {n, n+ 1, . . . ,m}. Moreover, for two real numbers a, b, we write a∨ b = max(a, b) and
a ∧ b = min(a, b).

We reserve bold-face letters like i, j,k for multi-indices whose elements are written in regular
font, e.g., i = (i1, . . . , id).

We denote by 1d the all-ones vector of IRd.
We write 1I(·) for the indicator function.
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For any two setsA,B ⊂ IRd we define their Minkowski sum asA+B = {a+b , a ∈ A, b ∈ B}.
Moreover, for any η ≥ 0, we denote by B(η) = {x ∈ IRd , ‖x‖ ≤ η} the Euclidean ball of radius η.

For any vector x ∈ IRd, T ⊂ [d], we define xT ∈ IRd to be the vector with j coordinate given
by (xT )j = xj1I(j ∈ T ).

We denote by A† the Moore-Penrose pseudo-inverse of a matrix A and by ⊗ the Kronecker
product between matrices, (A⊗B)p(r−1)+v,q(s−1)+w = Ar,sBv,w.

The notation . means that the left-hand side is bounded by the right-hand side up to numerical
constant that might change from line to line. Similarly, the constants C, c are generic as well and
are allowed to change.

1.2. Previous work

Despite an overwhelming practical success, theoretical results for the TV denoiser on the 2D grid
have been very limited. Mammen and van de Geer (1997) obtained the first suboptimal statistical
rates and more recent advances were made in Needell and Ward (2013b) and Wang et al. (2015).

First and foremost, both Mammen and van de Geer (1997) and Wang et al. (2015) study the
more general framework of trend filtering where instead of applying the difference operator D in
the penalty, one may apply Dk+1 (with appropriate corrections due to the shrinking dimension of
the image space). In this paper, we focus on the case where k = 0.

Second, while our paper focuses on fast rates (of the order 1/n), Wang et al. (2015) also studies
graphs that lead to slower rates. A prime example is the path graph that is omitted from the present
work and for which Wang et al. (2015) recover the optimal rate n−2/3 for signals θ∗ such that
‖Dθ∗‖1 ≤ C. This rate was previously known to be optimal (Donoho and Johnstone, 1995) for
such signals, using comparison with Besov spaces. Remarkably, if θ∗ is piecewise constant with
large enough pieces, Dalalyan et al. (2014) proved that this rate can be improved to a rate of order
1/n using a rather delicate argument. Moreover, their result is also valid in a oracle sense, allowing
for model misspecification and leading to adaptive estimation of smooth functions on the real line.
Part of our results extend this application to higher dimensions.

Our paper improves upon the work of Mammen and van de Geer (1997) and Wang et al. (2015)
in three directions. First, our analysis leads to an optimal fast rate of order ‖Dθ∗‖1/n for the 2D
grid, unlike the rates (‖Dθ∗‖1/n)3/5 and (‖Dθ∗‖1/n)4/5 that were obtained by Mammen and van
de Geer (1997) and Wang et al. (2015), respectively. Our results are achieved by a careful analysis
of the pseudo inverse D† of D. In particular, our argument bypasses truncation of the spectrum
altogether. Second, we also derive a “scale free” result where the jumps in a piecewise constant
signal θ∗ may be of arbitrary size as instantiated by bounds of the order of ‖Dθ∗‖0/n. Finally, in
the spirit of Dalalyan et al. (2014), our results are expressed in terms of oracle inequalities. It gives
us the ability to handle approximation error and ultimately prove adaptive and near optimal rates in
several nonparametric regression models. These applications are detailed in section 5. The scale-
free results are key in obtaining optimal rates for cartoon images in subsection 5.2. Both the oracle
part and the scale-free results are entirely novel compared to Mammen and van de Geer (1997)
and Wang et al. (2015).

Another step towards understanding the behavior of the TV denoiser was made in Needell and
Ward (2013a,b), where the authors focus on the case where the noise ε has small `2 norm but is
otherwise arbitrary as opposed to Gaussian in the present paper. This framework is fairly common
in the literature on noisy compressed sensing. These results often do not translate directly the
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Gaussian noise setting since properties of ε other than its `2 norm are employed. Nevertheless, one
of their key lemmas, (Needell and Ward, 2013a, Proposition 7), provides additional insight into the
relationship between Haar wavelet thresholding and total variation regularization. In particular, it
allows to prove that thresholding in the Haar wavelet basis attains rates comparable to the one we
obtain for TV denoising, and it also can be used to prove the rates for TV denoising itself, albeit
with an additional log factor. We include these results in Appendix C.

2. Sharp oracle inequality

We start by defining two quantities involved in estimating the performance of the Lasso.

Definition 1 (Compatibility factor, inverse scaling factor) Let D be an incidence matrix, D ∈
{−1, 0, 1}m×n, and write S := D† = [s1, . . . , sm]. The compatibility factor ofD for a set T ⊆ [m]
is defined as

κ∅ := 1, κT = κT (D) := inf
θ∈IRn

√
|T |‖θ‖2
‖(Dθ)T ‖1

for T 6= ∅ .

If we omit the subscript, then we mean the worst possible value of the constant, i.e., κ = infT⊆[m] κT .
Moreover, the inverse scaling factor of D is defined as

ρ = ρ(D) := max
j∈[m]

‖sj‖2 .

We prove the following main result.

Theorem 2 (Sharp oracle inequality for TV denoising) Fix δ ∈ (0, 1), T ⊂ [m] and let D being
the incidence matrix of a connected graph G. Define the regularization parameter

λ :=
1

n
σρ

√
2 log

(em
δ

)
,

With this choice of λ, the TV denoiser θ̂ defined in (1.2) satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈IRn

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(Dθ̄)T c‖1

}
+

8σ2

n

(
|T |ρ2

κ2
T

log
(em
δ

)
+ log

(e
δ

))
. (2.3)

on the estimation error with probability at least 1− 2δ.

We delay the proof to the Appendix, Subsection B.1.
The sharp oracle inequality (2.3) allows trading off |T | with ‖(Dθ̄)T c‖1. For T = supp(Dθ̄),

we recover the `0 rate σ2κ−2
T ρ2 log(m/δ)|T |/n, while setting T to be the empty set, T = ∅, yields

the `1 rate σρ
√

log(m/δ)‖Dθ̄‖1/n. We will see in Section 5 that both rates are essential to get
minimax rates for certain complexity classes

In order to evaluate the performance of the TV denoiser θ̂ on any graph G and in particular on
the 2D grid, we need estimates on ρ and κ.

It turns out that bounding the compatibility factor is rather easy for all bounded degree graphs.
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Lemma 3 Let D be the incidence matrix of a graph G with maximal degree d and ∅ 6= T ⊆ E.
Then,

κT = inf
θ∈IRn

√
|T |‖θ‖

‖(Dθ)T ‖1
≥ 1

2 min{
√
d,
√
|T |}

.

Proof Let D be the incidence matrix of a graph G = (V,E), θ ∈ IRn, and let T ⊂ E = [m].
Moreover, denote by di = #{j ∈ [n] : (i, j) ∈ E} the degree of vertex i and by d = maxi∈[n] di
the maximum degree of the graph.

Then, by triangle inequality,

‖(Dθ)T ‖1 ≤
√
|T |
√ ∑

(i,j)∈T

|θi − θj |2 ≤ 2
√
|T |min{

√
|T |,
√
d}‖θ‖2

3. Total variation regularization on the grid

3.1. TV regularization in 2D

In this section, we show that ρ .
√

log n. Note that this is different from the 1D case: if we consider
the incidence matrix D̃ of the path graph and for simplification add an additional row penalizing the
absolute value of the first entry, i.e.,

(D̃θ)1 = θ1, (D̃θ)i = θi − θi−1, i = 2, . . . , n,

then one can show that (D†)i,j = (D−1)i,j = 1I(i ≥ j). Hence, in this case ρ =
√
n. Moreover, the

inverse scaling factor ρ remains of the order
√
n even if we close the path into a cycle. The analyses

of Wang et al. (2015) and Dalalyan et al. (2014) are geared towards refining the estimates used in
the proof of Theorem 2 in order to recover rates faster than n−1/2. Rather, we focus on extending
results to the central example of the two dimensional grid, which is paramount in image processing.

We proceed to estimate ρ in the case of the total variation regularization on the N ×N 2D grid.
Let n = N2 and write D1 ∈ IR(N−1)×N for the incidence matrix of the path graph on N vertices,
D1x = xj+1 − xj , j = 1, . . . , N − 1 for x ∈ IRN .

Reshaping a signal θ on the N × N square in column major form as a vector θ ∈ IRn, we can
write the incidence matrix of the grid as

D2 =

[
D1 ⊗ I
I ⊗D1

]
.

Proposition 4 The incidence matrix D2 of the 2D grid on n vertices has inverse scaling factor
ρ .
√

log n.

We delay the proof to the Appendix, Subsection B.2. By combining the estimates from Lemma 3
and Proposition 4 with Theorem 2, we get the following rate for TV regularization on a regular grid
in 2D.
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Corollary 5 Fix δ ∈ (0, 1) and let D denote the incidence matrix of the 2D grid. Then there exist
constants C, c > 0 such that the TV denoiser θ̂ with λ = cσ

√
(log n) log(en/δ)/n defined in (1.2)

satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈IRn

T⊆[m]

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(Dθ̄)T c‖1

}
+
Cσ2

n
(|T |(log n) log(en/δ) + log(e/δ)) ,

(3.4)

with probability at least 1− 2δ. In particular, it yields

MSE(θ̂) .
σ‖Dθ∗‖1 ∧ σ2‖Dθ∗‖0

n
log2(en/δ)

where ‖Dθ∗‖0 denotes the number of nonzero components of Dθ∗.

3.2. TV regularization in higher dimensions

Akin to the 2D case, in d dimensions, we have n = Nd and we can write

Dd =


D1 ⊗ I ⊗ · · · ⊗ I
I ⊗D1 ⊗ · · · ⊗ I

...
I ⊗ I ⊗ · · · ⊗D1

 .
Using similar calculations as in the 2D case, we can show that the inverse scaling factor ρ is now
bounded by a constant, uniformly in N .

Proposition 6 For the incidence matrix of the regular grid on Nd nodes in d dimensions, ρ ≤
C(d), for some C(d) > 0.

We delay the proof to the Appendix, subsection B.3. It readily yields the following rate for TV
regularization on a regular grid in d ≥ 3 dimensions:

Corollary 7 Fix δ ∈ (0, 1), an integer d ≥ 3 and let Dd denote the incidence matrix of the d-
dimensional grid. Then there exist constants C, c > 0 such that the TV denoiser θ̂ defined in (1.2)
with λ = cσ

√
log(en/δ)/n satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈IRn

T⊆[m]

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(Ddθ̄)T c‖1

}
+
Cσ2

n
(|T | log(en/δ) + log(e/δ)) ,

with probability at least 1− 2δ. In particular, it yields

MSE(θ̂) .
σ‖Ddθ

∗‖1 ∧ σ2‖Ddθ
∗‖0

n
log(en/δ) .
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3.3. The hypercube

We note that in the case N = 2, the grid becomes the d-dimensional hypercube. In this case, we
can refine our analysis in this case to get the same result as in Proposition 6 without dependence on
the dimension.

Proposition 8 For any d ≥ 1, the inverse scaling factor associated to the d-dimensional hypercube
satisfies ρ ≤ 1.

Proof We use the same analysis as in the proof of Proposition 6, Subsection B.3, noting that the
eigenvectors of the 1-dimensional hypercube are given by v1 =

[
1 1

]>
/
√

2 and v2 =
[
1 −1

]>
/
√

2
with associated eigenvalues 0 and 2, respectively. Using the same notation as before, we have

〈vkj , eij 〉
2 ≤ 1/2, for k, i ∈ {0, 1}d, j ∈ [d], 〈vk1 , di1〉2 ≤ 2.

This gives

‖s(1)
i ‖

2
2 =

∑
k∈{0,1}d\{0}

 d∑
j=1

λkj

−2

〈vk1 , di1〉2
d∏
j=2

〈vkj , eij 〉
2

≤ 22−d
∑

k∈{0,1}d\{0}

 d∑
j=1

2kj

−2

≤ 1.

Corollary 9 Fix δ ∈ (0, 1), an integer d ≥ 1 and let D� denote the incidence matrix of the d-
dimensional hypercube. Then there exist constants C, c > 0 such that the TV denoiser θ̂ defined in
(1.2) with n = 2d and λ = cσ

√
log(en/δ)/n satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈IRn

T⊆[m]

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(D�θ̄)T c‖1

}
+
Cσ2

n
(d|T | log(en/δ) + log(e/δ)) ,

with probability at least 1− 2δ. In particular, it yields

MSE(θ̂) .
σ‖D�θ∗‖1 ∧ σ2d‖D�θ∗‖0

n
log(en/δ) .

4. Other graphs

4.1. Complete graph

Considering jumps along the complete graph has been proposed as a way to regularize when there
is no actual structural prior information available; see She (2010) where it has been studied under
the name clustered Lasso.

Proposition 10 For the complete graph Kn, we have κ & 1/
√
n and ρ . 1/n.
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Proof The bound on κ follows from Lemma 3. To bound ρ, note that we can write the pseudoinverse
of the incidence matrix as

S = D† = (D>D)†D>.

The matrix D>D is the graph Laplacian of the complete graph which has the form nI − 11> from
which we can read off its eigenvalues as λ1 = 0, λi = n, for i = 2, . . . , n. Choose an eigenbasis
{vi}i=1,...,n for D>D. Then,

‖sj‖22 =
n∑
k=2

1

λ2
k

〈vk, dj〉2 =
1

n2

n∑
k=2

〈vk, dj〉2 ≤
1

n2
‖dj‖22 ≤

2

n2
,

for all j.

It yields the following corollary.

Corollary 11 Fix δ ∈ (0, 1), and let DKn denote the incidence matrix of the complete graph on
n vertices. Then there exist constants C, c > 0 such that the TV denoiser θ̂ defined in (1.2) with
λ = cσ

√
log(en/δ)/n2 satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈IRn

T⊆[m]

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(DKn θ̄)T c‖1

}
+
Cσ2

n2
(|T | log(en/δ) + log(e/δ)) ,

with probability at least 1− 2δ. In particular, it yields

MSE(θ̂) .
σ‖DKnθ

∗‖1 ∧ σ2‖DKnθ
∗‖0

n2
log(en/δ) .

This implies that up to log factors, one performance bound on the TV denoiser for the clique is of
the order |T |/n2, where |T | is the number of edges with a jump in the ground truth θ∗. In the case
of a signal that takes on k � n different values, with k− 1 of them attained on small islands of size
l� n, this leads to a rate of kl/n, the same we would get for the Lasso if the background value on
the complement of the islands was zero.

On the other hand, if there are two large components with different values, |T | will be of the
order of n2, so the result is not informative in this case.

4.2. Star graph

Denote by Sn the star graph on n nodes, having one center node that is connected to n − 1 leaves.
Note that the question of sparsistency of TV denoising for this graph, together with related ones,
has been studied in Ollier and Viallon (2015) as a way to regularize stratified data.

Proposition 12 For the star graph Sn, we have κT & 1/
√
|T | and ρ ≤ 1.

Proof The estimate on κ follows directly from Lemma 3. To compute ρ, observe that

di,j =


1, j = 1,

−1, i = j − 1 ≥ 2,

0, otherwise,

si,j = D†i,j =


−n− 1

n
, i = j + 1,

1

n
, otherwise,

8



OPTIMAL RATES FOR TOTAL VARIATION DENOISING

whence the properties of the pseudoinverse can be verified by direct calculation. From this, we can
estimate the norm of the columns of S by

‖sj‖2 =
n−1∑
i=1

1

n2
+

(
n− 1

n

)2

=
n2 − n
n2

≤ 1.

The following corollary immediately follows.

Corollary 13 Fix δ ∈ (0, 1), and let D? denote the incidence matrix of the star graph on n
vertices. Then there exist constants C, c > 0 such that the TV denoiser θ̂ defined in (1.2) with
λ = cσ

√
log(en/δ)/n satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈IRn

T⊆[m]

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(D?θ̄)T c‖1

}
+
Cσ2

n

(
|T |2 log(en/δ) + log(e/δ)

)
,

with probability at least 1− 2δ. In particular, it yields

MSE(θ̂) .
σ‖D?θ

∗‖1 ∧ σ2‖D?θ
∗‖20

n
log(en/δ) .

The star graph leads to a useful regularization when most of the outer nodes take the same value
as the central node and only a few outer nodes take a different one. Specifically, let 1 denote the
central vertex and consider the set Θ?(s) ⊂ IRn defined for any integer s ∈ [n− 1] by

Θ?(s) =
{
θ ∈ IRn :

n∑
j=2

1I(θj 6= θ1) ≤ s
}
.

Then it holds that

sup
θ∗∈Θ?(s)

1

n
‖θ̂ − θ∗‖2 . σ2s2

n
log(en/δ)

with probability at least 1− 2δ.

4.3. Random graphs

In the case of random graphs, it was noted in Wang et al. (2015) that one can bound ρ if one has
bounds on the second smallest eigenvalue of the Laplacian of the graph. We can slightly improve
on their estimation of ρ.

Proposition 14 Suppose G is a connected graph whose Laplacian admits an eigenvalue decompo-
sition D>D = V ΛV >, with Λ = diag(λ1, . . . , λn), V = [v1, . . . , vn], 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

If the graph Laplacian has a spectral gap, i.e., there exists a constant c1 > 0 such that λ2 ≥ c1,
then ρ ≤

√
2/c1.
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Proof Writing D† = [s1, . . . , sm] = (D>D)†D>, D> = [d1, . . . , dm], we note that the columns
dj have 2-norm ‖dj‖2 =

√
2 because D is the incidence matrix of a graph, so

‖sj‖22 =

n∑
k=2

1

λ2
k

〈vk, dj〉2 ≤
1

λ2
2

n∑
k=2

〈vk, dj〉2 ≤
1

λ2
2

‖dj‖22 ≤
2

c2
1

.

We can combine this with bounds on the spectral gap of two families of random graphs, Erdős-
Rényi random graphs G(n, p) and random regular graphs. Both of these models exhibit a spectral
gap of the order O(d) in a regime where the degree increases logarithmically with the number of
vertices, see Kolokolnikov et al. (2014) and Friedman (2004), respectively. Together with the bound
on κ from Lemma 3, we get the following rate.

Corollary 15 Fix δ ∈ (0, 1) and let D denote the incidence matrix of either a random d-regular
graph with dn = d0(log n)β or Erdős-Rényi random graph with G(n, p) with pn = dn/n for some
constant β > 0 and d0 > 1. Then there exist constants C, c > 0 such that the TV denoiser θ̂ defined
in (1.2) with λ = cσ

√
log(ednn/δ)/(dnn) satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈IRn

T⊆[m]

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(Dθ̄)T c‖1

}
+
Cσ2

dnn
(|T | log(en/δ) + log(e/δ)) ,

with probability at least 1− 2δ over ε and with high probability over the realizations of the graph.
In particular, it yields

MSE(θ̂) .
σ2‖Dθ∗‖0

dnn
log(en/δ) ,

where ‖Dθ∗‖0 denotes the number of nonzero components of Dθ∗.

In the context of TV denoising, Erdős-Rényi random graphs with expected degree dn can be
considered a sparsification of the complete graph considered in Section 4.1. In the same model
considered in Subsection 4.1 of k islands with l nodes each, we would get a performance rate of
kl/n, the same as before. On the other hand, the underlying graph is much sparser, so we could
possibly get a computational benefit from choosing it instead of the complete graph. The behavior
of random graphs is compared to that of the complete graph in Section A in the appendix. They
indicate that the computational saving occur at a negligible statistical cost.

4.4. Power graph of the cycle

In practice, nearest neighbor graphs often arise in the context of spatial regularization. The grid
is one such example and as an extension, we consider the kth power of the cycle graph as a toy
example to study the effect of increasing the connectivity of the graph.

Define the cycle graph Cn to be the graph on n vertices with i ∼ j if and only if i − j ≡
±1 mod n and its kth power graph Ckn as the graph with the same vertex set but with i ∼ j if and
only if there is a path of length at most k from i to j in Cn.

Proposition 16 For G = Ckn where k ≤ n/2, ρ .
√
n/k3 + 1 and κ & 1/

√
k.

10
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We delay the proof to the Appendix, Subsection B.4.

Corollary 17 Fix δ ∈ (0, 1) and let D denote the incidence matrix of Ckn. Then there exist con-
stants C, c > 0 such that the TV denoiser θ̂ defined in (1.2) with λ = cσ

√
log(en/δ)/(

√
nk3 ∧ n)

satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈IRn

T⊆[m]

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(Dθ̄)T c‖1

}

+ Cσ2

(
1

k5
∨ k
n

)
(|T | log(en/δ) + log(e/δ)) ,

with probability at least 1− 2δ. In particular, it yields

MSE(θ̂) . σ2‖Dθ∗‖0
(

1

k5
∨ k
n

)
log(en/δ) ,

where ‖Dθ∗‖0 denotes the number of nonzero components of Dθ∗.

5. Applications to nonparametric regression

The rate for the grid obtained in Corollaries 5 and 7 can be used to derive rates for nonparamet-
ric function estimation in dimension d ≥ 2. This allows us to generalize the results of Dalalyan
et al. (2014, Proposition 6) for the adaptive estimation of Hölder functions and Chatterjee et al.
(2015); Bellec (2015) for the estimation of bi-isotonic matrices. Moreover, we can also generalize
to piecewise Hölder functions, called “cartoon images”.

In the first two subsections, we are interested in real valued functions on [0, 1]d. To relate
function estimation to our problem, consider the vectors θ to be a discretization of a continuous
signal f : [0, 1]d → IR on the regular grid X dN := {xi := i/N : i ∈ [N ]d}, so θi = f(xi) =
f(i1/N, . . . , id/N), i ∈ [N ]d. Furthermore, for any function, f : [0, 1]d → IR, define the pseudo-
norm ‖f‖n by

‖f‖2n =
1

n

∑
i∈[N ]d

f(xi)
2 .

5.1. Hölder functions

In Dalalyan et al. (2014, Proposition 7), the authors showed that the TV denoiser in one dimen-
sion achieves the minimax rate n−

2α
2α+1 for estimating Hölder continuous functions (with parameter

α ∈ (0, 1]) on a bounded interval, up to logarithmic factors. Here, we show that the TV denoiser
achieves a rate of n−

2α
dα+d , again up to logarithmic factors, which means it is near minimax for two-

dimensional observations as well. Unlike the one-dimensional result of Dalalyan et al. (2014), the
TV denoiser in two dimensions is adaptive to the unknown parameter α.

Definition 18 (Hölder function) For α ∈ (0, 1], L > 0, we say that a function f : [0, 1]d → IR is
(α,L)-Hölder continuous if it satisfies

|f(y)− f(x)| ≤ L‖x− y‖α∞ for all x, y ∈ [0, 1]d.

For such an f , we write f ∈ H(α,L).

11
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Note that we picked the `∞-norm for convenience here. By the equivalence of norms in finite
dimensions, the `2-norm would yield the same definition up to a dimension-dependent constant.
Moreover, for samples of a Hölder continuous function on a grid, Definition 18 implies

|θi − θj | ≤ LN−α‖i− j‖α∞, (5.5)

so we can directly work with the `∞-distance between the indices.

Proposition 19 Fix δ ∈ (0, 1), d ≥ 2, L > 0, N ≥ 1, n = Nd and α ∈ (0, 1] and let y be sampled
according to the Gaussian sequence model (1.1), where θ∗i = f∗(xi), i ∈ [N ]d for some unknown
function f∗ : [0, 1]d → IR. There exist positive constants c, C and C ′ = C ′(σ, L, d) such that the
following holds. Let θ̂ be the TV denoiser defined in (1.2) for the Nd grid with incidence matrix
Dd and tuning parameter λ = cσ

√
rd(n) log(en/δ)/n, c > 0 where r2(n) = log n and rd(n) = 1

for d ≥ 3. Moreover, let f̂ : [0, 1]d → IR be defined by f̂(xi) = θ̂i for i ∈ [N ]d and arbitrarily
elsewhere on the unit hypercube [0, 1]d.

Further, assume that N ≥ C ′(L, σ, d)
√
rd(n) log(en/δ). Then,

‖f̂ − f∗‖2n ≤ inf
f̄∈H(α,L)

{
‖f̄ − f∗‖2n

}
+ C

(
L2(σ

√
rd(n) log(en/δ))2α

) 1
α+1

n
2α
dα+d

+ C
σ2

n
log(e/δ) ,

with probability at least 1− 2δ . In particular, for d = 2, it yields the near optimal rate

‖f̂ − f∗‖2n ≤ inf
f̄∈H(α,L)

{
‖f̄ − f∗‖2n

}
+ C

(
L2(σ log(en/δ))2α

) 1
α+1n−

2α
2α+2 + C

σ2

n
log(e/δ) .

The proof of Proposition 19 is deferred to the Appendix, Subsection B.5.
Unlike Dalalyan et al. (2014, Proposition 7), this result does not require the knowledge of L or α

to compute the tuning parameter λ, but only the noise level σ. As a result, the estimator is therefore
adaptive to the smoothness of the underlying function. This effect comes from better estimates on
ρ than in the 1D case.

Mammen and van de Geer (1997) have shown that asymptotically, TV regularization together
with spline regression achieves the minimax rate for the estimation of k-times differentiable func-
tions in 2D. Our result however holds for finite sample size and fractional smoothness, albeit only
for α ∈ (0, 1].

It is not surprising that our results are suboptimal for d ≥ 3. Indeed, penalizing by the size of
jumps is not appropriate for Hölder functions. One should rather penalize by the number of blocks.
It is merely a coincidence that in two dimensions this method leads to optimal and adaptive rates for
Hölder functions.

5.2. Piecewise constant and piecewise Hölder functions

Recall that Corollary 5 allows us to get scale free results, i.e., bounds that do not scale with jump
height. It is therefore well suited to detect sharp boundaries, one of the features often associated
with total variation regularization. To formalize this point, we analyze two models that involve a
boundary, namely piecewise constant and piecewise smooth signals. The framework below largely
builds upon Willett et al. (2005).

First, let us define the box-counting dimension of a set, which we will use as the measure of the
complexity of the boundary.

12
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Definition 20 (Box-counting dimension) Let B ⊆ [0, 1]d be a set and denote by N(r) the mini-
mum number of (Euclidean) balls of radius r required to cover B. The box-counting dimension of
B is defined as

dimbox(B) := lim sup
r→0

logN(r)

log(1/r)
.

The box-counting dimension generalizes the notion of linear dimension. For instance, if B is a
smooth d0-dimensional manifold, then its box-counting dimension is equal to d0.

Definition 21 (Piecewise constant functions) For β > 0, we call a function f : IRd → IR piece-
wise constant and write f ∈ PC(d, β) if there is an associated boundary set B(f) such that:

1. The function f is locally constant on [0, 1]d \B(f), i.e., for all x ∈ [0, 1]d \B(f), there is an
ε > 0 such that for all y with ‖y − x‖ < ε, f(x) = f(y).

2. The boundary set B(f) has covering number N(r) ≤ βr−(d−1) for some β > 0. In particu-
lar, dimbox(B) ≤ d− 1.

Definition 22 (Piecewise Hölder functions) For α ∈ (0, 1] and β, L > 0, we call a function
f : IRd → IR piecewise Hölder, f ∈ PH(d, β, α, L), if there is an associated boundary set B(f)
such that:

1. f is locally L-Hölder on [0, 1]d \B(f), i.e., for all x ∈ [0, 1]d \B(f), there is an ε > 0 such
that for all y with ‖y − x‖ < ε, |f(x)− f(y)| ≤ L‖x− y‖α∞.

2. B(f) has box-counting dimension at most d − 1, and its covering number N(r) is bounded
by N(r) ≤ βr−(d−1).

One intuition behind these definitions is to consider the signal as a “cartoon image” containing
large patches that are constant or fairly smooth, split by sharp boundaries.

Using Corollary 5, we can now establish estimation rates for these classes of functions.

Proposition 23 Fix δ ∈ (0, 1), d ≥ 2, N ≥ 1, n = Nd and let y be sampled according to
the Gaussian sequence model (1.1), where θ∗i = f∗(xi), i ∈ [N ]d for some unknown function
f∗ ∈ PC(d, β). There exist positive constants c and C such that the following holds. Let θ̂ be
the TV denoiser defined in (1.2) for the d-dimensional grid with incidence matrix Dd and tuning
parameter λ = cσ

√
rd(n) log(en/δ)/n, where r2(n) = log n and rd(n) = 1 for d ≥ 3. Moreover,

let f̂ : [0, 1]d → IR be defined by f̂(xi) = θ̂i for i ∈ [N ]d and arbitrarily elsewhere on the unit
hypercube [0, 1]d. Then,

‖f̂ − f∗‖2n .
σ2β

n1/d
rd(n) log(en/δ) +

σ2

n
log(e/δ) ,

with probability at least 1− 2δ.

The proof of Proposition 23 is deferred to the Appendix, Subsection B.6.
Combining the results for piecewise constant and Hölder smooth functions, we can get the

following extension to piecewise smooth functions.

13
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Proposition 24 Fix δ ∈ (0, 1), d ≥ 2, N ≥ 1, n = Nd and let y be sampled according to the
Gaussian sequence model (1.1), where θ∗i = f∗(xi), i ∈ [N ]d for some unknown function f∗ ∈
PH(d, β, α, L), α ∈ (0, 1], L > 0, β > 0. There exist positive constants c, C and C ′ = C ′(σ, L, d)
such that the following holds. Let θ̂ be the TV denoiser defined in (1.2) for the d-dimensional grid
with incidence matrixDd and tuning parameter λ = cσ

√
rd(n) log(en/δ)/n, where r2(n) = logn

and rd(n) = 1 for d ≥ 3. Moreover, let f̂ : [0, 1]d → IR be defined by f̂(xi) = θ̂i for i ∈ [N ]d and
arbitrarily elsewhere on the unit hypercube [0, 1]d.

If N ≥ C ′(L, σ, d)
√
rd(n) log(en/δ), then

1

n
‖f̂ − f∗‖2 .

(
L2(σ

√
rd(n) log(en/δ))2α

) 1
α+1

n
2α
dα+d

+
σ2β

n1/d
rd(n) log(enδ) +

σ2

n
log(e/δ) ,

with probability at least 1− 2δ.

The proof of Proposition 24 is deferred to the Appendix, Subsection B.7.
For a Lipschitz boundary in two dimensions, this matches the minimax bound n−2α/(2α+2) ∨

n−1/2 for boundary fragments in Korostelev and Tsybakov (1993, Theorem 5.1.2) up to logarithmic
factors. However, unlike the framework of Korostelev and Tsybakov (1993), our techniques do
not allow an improvement of the bound for smoother boundaries parametrization because |T | will
always be of the order O(Nd−1). On the other hand, unlike the algorithms in Korostelev and
Tsybakov (1993) and Arias-Castro et al. (2012), our analysis allows for any jump sizes, so TV
regularization automatically adapts to both B(f) and α.

5.3. Bi-isotonic matrices

In our final example, we consider two-dimensional signals that increase in both directions, some-
times referred to bi-isotonic. The class of bi-isotonic matrices is defined as follows,

M :=
{
θ ∈ IRN×N : θj1,j2 ≥ θi1,i2 if j1 ≥ i1 and j2 ≥ i2

}
.

Recently, it was shown in Chatterjee et al. (2015); Bellec (2015) that the least squares estimator for
M yields the near minimax rate

√
D(θ∗)/n (log n)4, where D(θ∗) := (θ∗N,N − θ∗1,1)2 denotes the

square variation of the matrix.
In the following, we show that the 2D TV denoiser can match this rate and that it also improves

on the exponent of the log factors.

Proposition 25 Let y be a sample of the Gaussian sequence model (1.1), δ ∈ (0, 1) and denote by
θ↑ the projection of θ∗ ontoM. Fix δ ∈ (0, 1) and let θ̂ denote the TV denoiser on the 2D grid with
λ = cσ

√
(log n) log(en/δ)/n defined in (1.2). Then there exists a constant C > 0 such that

1

n
‖θ̂ − θ∗‖2 ≤ 1

n
‖θ↑ − θ∗‖2 + Cσ

√
(log n) log(n/δ)

n

√
D(θ↑) + C

σ2

n
log(e/δ),

with probability at least 1− 2δ.

Proof We use the slow rate version of (3.4) for θ̄ = θ↑,

1

n
‖θ̂ − θ∗‖2 ≤ 1

n
‖θ↑ − θ∗‖2 + 4λ‖Dθ↑‖1 +

Cσ2

n
log(e/δ). (5.6)

14
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Because θ↑ is bi-isotonic, summing along the rows yields

N∑
i=1

N−1∑
j=1

|θ↑i,j+1 − θ
↑
i,j | ≤

N∑
i=1

(θ↑i,N − θ
↑
i,1) ≤ N(θ↑N,N − θ

↑
1,1),

and similarly along columns, which combined gives us

‖Dθ↑‖1 ≤ 2N(θ↑N,N − θ
↑
1,1) = 2

√
nD(θ↑).

Plugging this into (5.6), together with inserting the value of λ, we have

1

n
‖θ̂ − θ∗‖2 ≤ 1

n
‖θ↑ − θ∗‖2 + Cσ

√
(log n) log(n/δ)

n

√
D(θ↑) + C

σ2

n
log(e/δ),

for some C > 0.

We recover the results of Chatterjee et al. (2015); Bellec (2015) with a smaller exponent in the
logarithmic factor. On the other hand, the TV-denoiser requires an estimate for σ (or at least an
upper bound), unlike the least squares estimator, which does not require any tuning.

Note further that our rate scales with σ rather than σ2 in Chatterjee et al. (2015); Bellec (2015).
This is because we use a “slow rate” bound.

Unlike Chatterjee et al. (2015); Bellec (2015) we do not show that our estimator adapts to the
number of rectangles on which the matrix is piecewise constant. In particular, they show that if the
number of such rectangles is a constant, then the least squares estimator achieves a fast rate of order
σ2(log n)8/n. This is not the case in the present paper. Indeed, the TV denoiser is not the correct
tool for that. Even in the case of two rectangles, the number of active edges on the 2D grid is already
linear in N leading to rates that are slower than σ2/N � σ2(log n)8/n. Nevertheless, it is not hard
to show that if θ∗ is an N ×N matrix with a triangular structure the form θ∗ij = 1I(i ≥ j), then this
matrix is well approximated by N rectangles. In this case, the results of Chatterjee et al. (2015);
Bellec (2015) yield a bound for the least squares estimator θ̂LS of the form

1

n
‖θ̂LS − θ∗‖2 ≤ Cσ2 (log n)8

√
n

and it is not hard to see that the TV denoiser yields

1

n
‖θ̂ − θ∗‖2 ≤ C(σ ∧ 1)2 (log n)2

√
n

where both results are stated with large but constant probability (say 99%). It is not excluded that
the least squares estimator still achieves faster rates in this case but the currently available results
do not lead to better rates.

Finally, note that unlike Dalalyan et al. (2014, Proposition 6), λ does not have to depend on
D(θ↑) here because of the better behavior of ρ for the 2D grid.
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Appendix A. Numerical experiments

In order to illustrate our findings in Subsections 4.1 and 4.3, we used the TV denoiser implementa-
tion from Xin et al. (2014).
The Island model. Consider a partition of [n] into k blocks B1, . . . , Bk of size |Bj | = l, l ∈ [k] and
a block B0 of size |B0| = n − kl. We focus on cases where n � kl and we call block B0, the
background component and the blocks Bj , j ∈ k are called islands. The unknown parameter θ∗ has
coordinates θ∗i = 50 + 10j, i ∈ Bj , j ∈ k, and θ∗l = 50, i ∈ B0.
Graphs. We consider three types of graphs to determine our penalty structure: the complete graph,
the Erdős-Rényi random graph with expected degree d and the random d-regular graph1 for different
values of d. Note that in the case of the random graphs, we refer to a realization from a given
distribution as “the” random graph.
Choice of λ. We consider two choices for the regularization parameter λ: the fixed choice, denote
by λth dictated by our theoretical results and an oracle choice λor on a geometric grid, obtained by
λor = 10λthβ

j∗ where j∗ is the smallest j ≥ 1 such that ‖θ̂(10λthβ
j∗+i)− θ∗‖2 ≥ ‖θ̂(10λthβ

j∗)−
θ∗‖2 for i = 1, 2, 3, and θ̂(λ) is the solution to (1.2) and β = 0.85.

Throughout the simulations, we choose σ = 0.5. The plotted results are averaged over 50
realizations of the noise and, in the case of a random graph, over realizations of said random graph.

In Figure 1, we consider the Island model with k = 3 islands, each of size l = 3. We plot (on
a log-log scale) the mean squared error of the TV denoiser as a function of n for both the oracle
choice and the theoretical choice of λ for different graph models: the complete graph, the Erdős-
Rényi random graphs with expected degree d for d = 2, 12, 16 and the random 12-regular graph.
The dotted line indicates the best fit of the form C log(n)/n that our theoretical analysis predicts in
the complete graph case. In all cases, we can see that the mean squared error essentially scales as
C(log n)/n as predicted by our theory. Moreover, all graphs show similar performance, though the
sparse ones lead to better computational performance.

The purpose of Figure 2 is to illustrate that the scaling kl/n for the model with islands obtained
in subsection 4.3 is indeed the correct one. In this set of simulations we use the Erdős-Rényi graph

1. To generate instances of the random regular graph, we employed the code from Pundak (2010), which implements
the pairing algorithm from Bollobás (1980).
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Figure 1: MSE for the Island model with k = l = 3 for different choices of the graph and different
choices of the regularization parameter λ. The dotted line the best fit of form C log(n)/n to the
complete graph case.
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Figure 2: MSE for the Island model for different choices of k · l (n = 100, λ = σρ
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log(n)).
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with expected degree d = 16 and plot the mean squared error for different values of the pair (k, l).
Specifically, we choose (k, l) ∈ [2 : 5] × [3 : 9] and indeed observe a linear dependence on the
product kl.

Appendix B. Proofs

B.1. Proof of the main theorem: a sharp oracle inequality for TV denoising

In this subsection, we prove Theorem 2 that we recall for convenience

Theorem [Sharp oracle inequality for TV denoising] Fix δ ∈ (0, 1), T ⊂ [m] and let D being the
incidence matrix of a connected graph G. Define the regularization parameter

λ :=
1

n
σρ

√
2 log

(em
δ

)
.

With this choice of λ, the TV denoiser θ̂ defined in (1.2) satisfies

1

n
‖θ̂ − θ∗‖2 ≤ inf

θ̄∈IRn

{
1

n
‖θ̄ − θ∗‖2 + 4λ‖(Dθ̄)T c‖1

}
+

8σ2

n

(
|T |ρ2

κ2
T

log
(em
δ

)
+ log

(e
δ

))
,

on the estimation error with probability at least 1− 2δ.

Our proof is based on the sharp oracle inequality for the Lasso in Giraud (2014, Theorem 4.1,
Corollary 4.3) and slightly stronger statements that appear in Dalalyan et al. (2014, Theorems 3
and 4).
Proof We start by considering the first order optimality conditions of the convex problem (1.2). By
the chain rule for the subdifferential (Rockafellar, 1970, Theorem 23.9) the subdifferential of the `1
term is

∂‖Dθ‖1 = D> sign(Dθ),

where

sign(x)i =


1 if xi > 0,

[−1, 1] if xi = 0,
−1 if xi < 0 .

Therefore, for any θ̄ ∈ IRn, z ∈ sign(Dθ̂) we get

1

n
θ̄>(y − θ̂) = λθ̄>D>z = λ(Dθ̄)>z.

It yields

1

n
θ̂>(y − θ̂) = λ‖Dθ̂‖1 and

1

n
θ̄>(y − θ̂) ≤ λ‖Dθ̄‖1.

In turn, subtracting the above two, we get

1

n
(θ̄ − θ̂)>(θ∗ − θ̂) ≤ 1

n
ε>(θ̂ − θ̄) + λ‖Dθ̄‖1 − λ‖Dθ̂‖1.
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Next, using polarization, we can rewrite the above display as

1

n
(‖θ̄ − θ̂‖2 + ‖θ∗ − θ̂‖2) ≤ 1

n
‖θ̄ − θ∗‖2 +

2

n
ε>(θ̂ − θ̄) + 2λ‖Dθ̄‖1 − 2λ‖Dθ̂‖1. (B.7)

We first control the error term ε>(θ̂ − θ̄) as follows. Let Π denote the projection matrix
onto ker(D) and remember that D†D = (I − Π), the projection on ker(D)⊥. Since ker(D) =
ker(D>D), the kernel of the graph Laplacian, and G is connected, we have ker(D) = span(1n)
(Chung, 1997); in particular, dim ker(D) = 1. It yields

ε>(θ̂ − θ̄) = (Πε)>(θ̂ − θ̄) + ((I −Π)ε)>(θ̂ − θ̄)
= (Πε)>(θ̂ − θ̄) + ε>D†D(θ̂ − θ̄)

≤ ‖Πε‖‖θ̂ − θ̄‖+ ‖(D†)>ε‖∞‖D(θ̂ − θ̄)‖1 , (B.8)

where in (B.8), we use Hölder’s inequality.
To bound the right-hand side in (B.8), we first use the maximal inequality for Gaussian random

variables (Boucheron et al., 2013, Corollary 2.6): It yields that the following two inequalities hold
simultaneously on an event of probability 1− 2δ,

‖(D†)>ε‖∞ ≤ σρ
√

2 log(em/δ) = λn , ‖Πε‖2 ≤ 2σ
√

2 log(e/δ) .

Next, note that by the triangle inequality we have

‖D(θ̂ − θ̄)‖1 + ‖Dθ̄‖1 − ‖Dθ̂‖1 ≤ 2‖(D(θ̂ − θ̄))T ‖1 + 2‖(Dθ̄)T c‖1. (B.9)

Moreover, ‖D(θ̂ − θ̄)T ‖1 ≤ κ−1
T

√
|T |‖θ̂ − θ̄‖. Together with (B.7)–(B.9), it yields

1

n
(‖θ̄ − θ̂‖2 + ‖θ∗ − θ̂‖2) ≤ 1

n
‖θ̄ − θ∗‖2 + 4λ‖(Dθ̄)T c‖1

+
4

n
‖θ̂ − θ̄‖

(
σ
√

2 log
(
e/δ
)

+ n
λ

κT

√
|T |
)
.

To conclude the proof, we apply Young’s inequality to produce 1
n‖θ̂ − θ̄‖

2 which cancels out.

B.2. Control of the inverse scaling factor for the 2D grid

In this subsection, we prove Proposition 4 that we recall here for convenience.

Proposition The incidence matrix D2 of the 2D grid on n vertices has inverse scaling factor
ρ .
√

log n.

Proof
Note first that S = D†2 = (D>2 D2)†D>2 . Moreover, the matrixD>2 D2 can be expressed in terms

of D>1 D1 as

D>2 D2 =
[
D>1 ⊗ I I ⊗D>1

] [D1 ⊗ I
I ⊗D1

]
= D>1 D1 ⊗ I + I ⊗D>1 D1.
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It follows from Strang (2007, Chapter 1.5) that the unnormalized LaplacianD>1 D1 of the path graph
admits the following spectral decomposition

D>1 D1 =



1 −1 0 0 . . . 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0
...

. . .
...

... −1 2 −1
0 . . . 0 −1 1


= V1Λ1V

>
1 (B.10)

where Λ1 = diag(λ0, . . . , λN−1), with

λk = 2− 2 cos
kπ

N
, k ∈ J0, NJ ,

and V1 = [v0, . . . , vN−1] is the discrete Fourier transform DCT-2 on IRN so that each eigenvector
vk ∈ IRN has coordinates

(v0)j =
1√
N
, j ∈ J0, NJ

(vk)j =

√
2

N
cos

(
(j + 1/2)kπ

N

)
, j ∈ J0, NJ, k ∈ J1, NJ .

Therefore, D>2 D2 = V2Λ2V
>

2 , where Λ2 = Λ1 ⊗ I + I ⊗ Λ1 and V2 = V1 ⊗ V1 .
As a result, S has 2N(N − 1) columns and can be written as

S = D†2 = V2Λ†2V
>

2

[
D>1 ⊗ I I ⊗D>1

]
= [(s

(1)
i,j )i∈[N−1]

j∈[N ]

, (s
(2)
i,j )i∈[N ]

j∈[N−1]

].

Write D>1 = [d1, . . . , dN−1] and note that the columns of S have norm given for � ∈ {1, 2} by

‖s(�)
i,j ‖

2
2 =

N−1∑
k,l=0

(k,l)6=(0,0)

1

(λk + λl)2
〈vk ⊗ vl, di ⊗ ej〉2

=

N−1∑
k,l=0

(k,l)6=(0,0)

1

(4− 2 cos kπN − 2 cos lπN )2
〈vk, di〉2〈vl, ej〉2 ,

where e0, . . . , eN−1 are the vectors of the canonical basis of IRN . Next, note that

〈vl, di〉2 =
2

N

(
cos

lπ(i+ 3/2)

N
− cos

lπ(i+ 1/2)

N

)2

≤ 2l2π2

N3
,

because x 7→ cosx is 1-Lipschitz. Moreover, we have that 〈vk, ej〉2 ≤ 2/N .
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It remains to bound the sum. To that end, observe that 2− 2 cosx ≥ x2/2 for any x ∈ [0, 1/2]
and 2− 2 cosx ≥ 0.1, for x ∈ [1/2, π]. Hence, we can split the sum into to parts to get

∥∥∥s(�)
i,j

∥∥∥2

2
≤ 4π2

N4

N−1∑
k,l=0

(k,l)6=(0,0)

l2

(4− 2 cos kπN − 2 cos lπN )2

≤ 4π2

N4

N−1∑
k,l=0

(k,l)6=(0,0)

l2

(4− 2 cos kπN − 2 cos lπN )2

[
1I{ 2π

N
(k∨l)≤1} + 1I( 2π

N
{k∨l)>1}

]

≤ 16

N−1∑
k,l=0

(k,l) 6=(0,0)

l2

(k2 + l2)2
+

400π2

N3

N−1∑
k=0

k2 .
N−1∑
k,l=1

l2

(k2 + l2)2
+ 1 .

Using a comparison between series and integral, noting that x → x2/(k2 + x2)2 is increasing on
[0, k2] and decreasing on [k2,∞), it is immediate that

N−1∑
k,l=1

l2

(k2 + l2)2
≤

N−1∑
k=1

1

k

∫ ∞
0

x2

(1 + x2)2
dx+

N−1∑
k=1

1

4k2
.

N∑
k=1

1

k
+ 1 . logN.

To conclude the proof, observe that n = N2.

B.3. Control of the inverse scaling factor for high-dimensional grids

In this subsection, we prove Proposition 6 that we recall here for convenience.

Proposition For the incidence matrix of the regular grid on Nd nodes in d dimensions, ρ ≤ C(d),
for some C(d) > 0.

Proof Similarly to the proof of Proposition 4, (D>d Dd)
† admits an eigendecomposition of the form

Λd = Λ1 ⊗ I ⊗ · · · ⊗ I + · · ·+ I ⊗ I ⊗ · · · ⊗ Λ1, Vd = V ⊗d1 . Keeping the same notation as in the
preceding proof,

S = D†d = [(s
(j)
i )ij∈[N−1], ik∈[N ], for k 6= j, j ∈ [d]],

we have

‖s(1)
i ‖

2
2 =

N−1∑
kl=0,k 6=0
l=1,...,d

 d∑
j=1

λkj

−2

〈vk1 , di1〉2
d∏
j=2

〈vkj , eij 〉
2

=

N−1∑
kl=0,k 6=0
l=1,...,d

 d∑
j=1

(
2− 2 cos

kjπ

N

)−2

〈vk1 , di1〉2
d∏
j=2

〈vkj , eij 〉
2
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and by symmetry, this case is enough to deduce the claim for an arbitrary si,j , j ∈ [d]. Observing
again that

‖vkj‖∞ ≤
√

2/N, 〈vkj , eij 〉
2 ≤ 2/N,

and

〈vk1 , di1〉2 ≤
2k2

1

N3
,

it remains to bound the sum above.
For this, use the same bounds on the cosine function to split it up into a part bounded by a

constant and one that behaves like a square:

‖s(1)
i ‖

2 ≤ 2d

Nd+2

N−1∑
kl=0,k 6=0
l=1,...,d

k2
1

2d− 2
d∑
j=1

cos
kjπ

N

−2

.
2d

Nd−2

N−1∑
kl=0
k 6=0

k2
1

 d∑
j=1

k2
j

−2

+ 1

We again want to exclude all indices having a zero element. This amounts to finding a bound of
the order o(Nd+2) for the same sum in one dimension less than we are considering here, times d
for each coordinate that can be zero. In order to achieve this, we argue by induction: in d = 3
dimensions, the corresponding summation runs over two indices and has been shown to be of order
O(log n) = o(N) in the proof of Proposition 4, so the base case is valid. The following analysis
will show that the whole sum is O(Nd+2) for d ≥ 3, which is the induction step. This means we
can assume

‖s(1)
i ‖

2 ≤ 2d

Nd−2

N−1∑
kl=1

l=1,...,d

k2
1

( d∑
j=1

k2
j

)−2
+ o(d) .

2d

Nd−2

N−1∑
kl=1

l=1,...,d

k2
1

( d∑
j=1

k2
j

)−2
+ 1.

Next, observe that
∫∞

0 x2(1 + x2)−2 dx . 1. It yields

N−1∑
kl=1

l=1,...,d

k2
1

( d∑
j=1

k2
j

)−2

≤ 2d

Nd−2

N−1∑
kl=1

l=2,...,d

∞∫
0

x2
(
x2 +

d∑
j=2

k2
j

)−2
dx+

2d

Nd−2

N−1∑
kj=1

j=2,...,d

( d∑
j=2

k2
j

)−1

=
2d

Nd−2

N−1∑
kj=1

j=2,...,d

( d∑
j=2

k2
j

)−1/2
∞∫

0

y2

(y2 + 1)2
dx+

2d

Nd−2

N−1∑
kj=1

j=2,...,d

( d∑
j=2

k2
j

)−1

.
2d

Nd−2

N−1∑
kl=1

l=2,...,d

( d∑
j=2

k2
j

)−1/2
.
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Next, bounded the series by an integral together with a change to polar coordinates, we get

2d

Nd−2

N−1∑
kl=1

l=2,...,d

( d∑
j=2

k2
j

)−1/2
≤ 2d

Nd−2

∫
{0≤xj≤N, j=1,...,d−1}

1

‖x‖2
dx

≤ 2d

N

∫ N

0

∫ N

0

1√
x2 + y2

dx dy

= 2d log(3 + 2
√

2) ≤ 2d.

B.4. Control of the inverse scaling factor for Ckn
In this subsection, we prove Proposition 16 that we recall here for convenience.

Proposition For G = Ckn where k ≤ n/2, ρ .
√
n/k3 + 1 and κ & 1/

√
k.

Proof The bound on κ follows from Lemma 3 and the fact that the degree of Ckn is bounded by 2k.
To bound ρ, write D† = [s1, . . . , sm] = (D>D)†D> and D> = [d1, . . . , dm] and use the same

technique and notation as in the proof of Proposition 4 in Subsection B.2. The Laplacian of Ckn has
the form of a circulant matrix whose first row is

a =
[
2k ︸ ︷︷ ︸

k times

− 1 . . . −1 0 . . . 0 ︸ ︷︷ ︸
k times

− 1 . . . −1
]
.

Hence, we can choose the discrete Fourier basis (vm)j = exp(2πimj/n), m, j ∈ J0, nJ as an
eigenbasis. The eigenvalues are given by

λm =
n−1∑
l=0

e2πiml/nal = 2
k∑
l=1

(
1− cos

(
2πlm

n

))
.

By the formula for the sums of squares,

k∑
l=1

l2 =
1

6
k(k + 1)(2k + 1) ≥ 1

3
k3 ,

and using the same estimates for the cosine as in Subsection B.2, 2−2 cosx ≥ x2/2 for x ∈ [0, 1/2],
and 2− 2 cosx ≥ 0.1 for x ∈ [1/2, π], we see that for 2πlm/n ≥ 1/2,

2

k∑
l=1

(
1− cos

(
2πlm

n

))
≥ 1

2

k∑
l=1

(
2πlm

n

)2

≥ k3

6

(
2πm

n

)2

.

Moreover, by the Lipschitz continuity of the exponential,

|〈vm, dj〉|2 =
1

n

∣∣∣e2πim(j+1)/n − e2πimj/n
∣∣∣2 ≤ 4m2π2

n3
.
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By expressing the norm of the columns of D† in terms of the eigendecomposition and combin-
ing pairs eigenvalues with the same value which have the same eigenvectors up to a sign in the
exponential, we finally get

‖sj‖22 =

n−1∑
m=1

1

λ2
m

〈vm, dj〉2

≤ 8
π2

n3

d(n−1)/2e∑
m=1

m2

(
2

k∑
l=1

(
1− cos

(
2πlm

n

)))−2

. n
dn−1/(8πk)e∑

m=1

1

m2k6
+

1

n3

n∑
m=1

m2 .
n

k3
+ 1 .

n

k6
+ 1 .

B.5. Estimation rate for Hölder functions

In this subsection, we prove Proposition 19 that we recall here for convenience.

Proposition Fix δ ∈ (0, 1), d ≥ 2, L > 0, N ≥ 1, n = Nd and α ∈ (0, 1] and let y be sampled
according to the Gaussian sequence model (1.1), where θ∗i = f∗(xi), i ∈ [N ]d for some unknown
function f∗ : [0, 1]d → IR. There exist positive constants c, C and C ′ = C ′(σ, L, d) such that the
following holds. Let θ̂ be the TV denoiser defined in (1.2) for the Nd grid with incidence matrix
Dd and tuning parameter λ = cσ

√
rd(n) log(en/δ)/n, c > 0 where r2(n) = log n and rd(n) = 1

for d ≥ 3. Moreover, let f̂ : [0, 1]d → IR be defined by f̂(xi) = θ̂i for i ∈ [N ]d and arbitrarily
elsewhere on the unit hypercube [0, 1]d.

Further, assume that N ≥ C ′(L, σ, d)
√
rd(n) log(en/δ). Then,

‖f̂ − f∗‖2n ≤ inf
f̄∈H(α,L)

{
‖f̄ − f∗‖2n

}
+ C

(
L2(σ

√
rd(n) log(en/δ))2α

) 1
α+1

n
2α
dα+d

+ C
σ2

n
log(e/δ) ,

with probability at least 1− 2δ .

Proof Throughout this proof, it will be convenient to identify a function g to the vector (g(xi), i ∈
[N ]d). We use (3.4) to get that for any vector f̄ ∈ IRNd

, it holds

1

n
‖f̂ − f∗‖2 ≤ 1

n
‖f̄ − f∗‖22 + 4λ‖Df̄‖1 + C

σ2

n
log(e/δ) . (B.11)

Denote by Θ(α,L) the set of vectors on the grid that satisfy (5.5) and observe that it is a closed
convex set so that fproj = argminθ∈Θ(α,L) ‖θ − f∗‖2 is uniquely defined. Moreover,

‖f̄ − f∗‖2 ≤ ‖fproj − f̄‖2 + ‖fproj − f∗‖2,
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which plugged back into (B.11) yields

1

n
‖f̂ − f∗‖2 ≤ 1

n
inf

f∈H(α,L)
‖f − f∗‖2 +

1

n
‖f̄ − fproj‖2 + 4λ‖Df̄‖1 + C

σ2

n
log(e/δ) .

The remainder of the proof consists in choosing f̄ to balance the approximation error and the
stochastic error.

Fix an integer k to be determined later and for any i ∈ [N ]d, define ai = kbi/kc. Next, define
a piecewise constant approximation f̄ to fproj by f̄i = (fproj)ai for i ∈ [N ]d.

We first control the approximation error for all i ∈ [N ]d as follows:

|fproj(i)− f̄(i)| = |fproj(i)− fproj(ai)| ≤ LN−α‖i− ai‖α∞ ≤ L(k/N)α .

It yields
1

n
‖f̄ − fproj‖22 ≤ L2(k/N)2α .

Next, we control the term ‖Df̄‖1. To that end, observe that if i and i′ are neighbors in the grid,
then

|f̄i − f̄i′ | ≤ LN−α1I(ai 6= ai′).

Therefore

‖Df̄‖1 ≤ L(k/N)α
∑
i∼i′

1I(ai 6= ai′) ≤ L(k/N)α2dkd−1
(N
k

)d
= 2dL

Nd−α

k1−α .

Hence
λ‖Df̄‖1 .

Lσ

k1−αNα

√
rd(n) log(en/δ).

Choosing now

M =

(
σNα

√
rd(n) log(en/δ)

L

) 1
α+1

, k = dMe ,

yields the desired result, taking into account that M ∈ [1, N ] if we assume

N ≥

(
L

σ
√
rd(n) log(en/δ)

)1/α

∨
σ
√
rd(n) log(en/δ)

L
.

B.6. Estimation rate for piecewise constant functions

In this subsection, we prove Proposition 23 that we recall here for convenience.

Proposition Fix δ ∈ (0, 1), d ≥ 2, N ≥ 1, n = Nd and let y be sampled according to the
Gaussian sequence model (1.1), where θ∗i = f∗(xi), i ∈ [N ]d for some unknown function f∗ ∈
PC(d, β). There exist positive constants c and C such that the following holds. Let θ̂ be the TV
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denoiser defined in (1.2) for the d-dimensional grid with incidence matrixDd and tuning parameter
λ = cσ

√
rd(n) log(en/δ)/n, where r2(n) = log n and rd(n) = 1 for d ≥ 3. Moreover, let

f̂ : [0, 1]d → IR be defined by f̂(xi) = θ̂i for i ∈ [N ]d and arbitrarily elsewhere on the unit
hypercube [0, 1]d. Then,

‖f̂ − f∗‖2n .
σ2β

n1/d
rd(n) log(en/δ) +

σ2

n
log(e/δ) ,

with probability at least 1− 2δ.

Proof For any x ∈ IRd, and any closed set B ⊂ IRd define the distance from x to B by d(x,B) =
minb∈B ‖x− b‖. Next define

T := {(i, j) : i ∼ j and min{d(xi, B(f)), d(xj , B(f))} ≤ 4/N}

to be the set of edges whose nodes are close to the boundary B(f). It can be readily checked that
the vector

(
f(xi), i ∈ V

)
is constant on the connected components of (V,E \ T ).

First, let us state a lemma that allows us to bound the number of grid points in a neighborhood
of a set by the volume of said set.

Lemma 26 (Arias-Castro et al., 2012, Lemma 8.3) Let B ⊆ [0, 1]d, A = [0, 1]d ∩
(
B + B(η)

)
,

4/N ≤ η ≤ 1. Then, the number of grid points on a regular d-dimensional grid X dN intersecting A
is bounded by

8−dNd vol(A) ≤ |A ∩ X dN | ≤ 4dNd vol(A).

By Lemma 26, Definition 20 and the triangle inequality, we get

|T | ≤
∣∣X dN ∩ (B(f) + B(4/N)

)∣∣ ≤ 4dNd vol(B(f) + B(4/N))

≤ 4dNdβ vol(B(1))(8/N)d(8/N)−(d−1) ≤ C(d)βNd−1 , (B.12)

where C(d) is a dimension-dependent constant.
Since f∗ is constant along all edges not included in T , ‖(Df∗)T c‖1 = 0. Taking into account

n = Nd, Corollaries 5 and 7 readily yield the desired result.

B.7. Estimation rate for cartoon functions

In this subsection, we prove Proposition 24 that we recall here for convenience.

Proposition Fix δ ∈ (0, 1), d ≥ 2, N ≥ 1, n = Nd and let y be sampled according to the
Gaussian sequence model (1.1), where θ∗i = f∗(xi), i ∈ [N ]d for some unknown function f∗ ∈
PH(d, β, α, L), α ∈ (0, 1], L > 0, β > 0. There exist positive constants c, C and C ′ = C ′(σ, L, d)
such that the following holds. Let θ̂ be the TV denoiser defined in (1.2) for the d-dimensional grid
with incidence matrixDd and tuning parameter λ = cσ

√
rd(n) log(en/δ)/n, where r2(n) = logn

and rd(n) = 1 for d ≥ 3. Moreover, let f̂ : [0, 1]d → IR be defined by f̂(xi) = θ̂i for i ∈ [N ]d and
arbitrarily elsewhere on the unit hypercube [0, 1]d.
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If N ≥ C ′(L, σ, d)
√
rd(n) log(en/δ), then

1

n
‖f̂ − f∗‖2 .

(
L2(σ

√
rd(n) log(en/δ))2α

) 1
α+1

n
2α
dα+d

+
σ2β

n1/d
rd(n) log(enδ) +

σ2

n
log(e/δ) ,

with probability at least 1− 2δ.

Proof As in the proof of Proposition 23 (Subsection B.6), in Corollaries 5 and 7, set

T := {(i, j) : i neighbor of j and d(xi, B(f)) ∧ d(xj , B(f)) ≤ 4/N},

and note that |T | ≤ C(d)βNd−1, using the same argument as in (B.12). Moreover, it can be
readily checked that the vector

(
f(xi), i ∈ V

)
satisfies the Hölder condition (5.5) on the connected

components of (V,E \ T ).
Next, we adopt the same discretization of as in Proposition 19, with a slight modification to

take into account that f∗ is only Hölder-continuous within connected components of the underlying
grid. To that end, fix an integer k to be determined later and for any i ∈ [N ]d, define indices ai and
corresponding boxes Ai by

(ai)j =

{
kbij/kc, ij ≤ N,

N, ij = N + 1,
Ai = Jai1 , ai1+1J× · · · × Jaid , aid+1J .

For each of the boxes A and every connected component C of (V,E \ T ) within, pick a fixed
representative b(C) and write C(i) for the connected component in Ai that i belongs to. Next,
define a piecewise constant approximation f̄ to f∗ by f̄i = f∗b(C(i)) for i ∈ [N ]d.

Using the same arguments as in the proof of Proposition 19 (Subsection B.5), we get first that
n−1‖f̄ − f∗‖22 ≤ L2(k/N)2α and second that

‖(Df̄)T c‖1 ≤ 2dL
Nd

k1−αNα
.

Choosing now

k =

⌈(σNα
√
rd(n) log(en/δ)

L

) 1
α+1

⌉
and applying Corollaries 5 and 7 yields the desired result.

Appendix C. Rates for Haar wavelet thresholding

Interestingly, despite inferior performance in practice Needell and Ward (2013a) Haar wavelet
thresholding in dimension d ≥ 2 yields similar rates to the ones we obtained in Corollaries 5
and 7, which we will show here in the 2D case. It is a consequence of Needell and Ward (2013a,
Proposition 7).

First, let us recall the notation from Needell and Ward (2013a) for the Haar basis. In one
dimension, the Haar wavelets are defined by considering the constant function H0 on [0, 1],

H0(t) =

{
1, 0 ≤ t < 1,

0, otherwise,
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and the mother wavelet H1,

H1(t) =

{
1, 0 ≤ t < 1/2,

−1, 1/2 ≤ t < 1,

which is dilated and translated to get

Hm,k(t) = 2m/2H1(2mt− k), m ∈ N, 0 ≤ k < 2m .

This collection of functions is an orthonormal basis of L2([0, 1)). The bivariate Haar basis is then
obtained by tensorization, setting

He(u, v) = He1(u)He2(v), e = (e1, e2) ∈ V := {{0, 1}, {1, 0}, {1, 1}} ,

and
He
j,k(x) = 2jHe(2jx− k), e ∈ V, j ≥ 0, k ∈ Z2 ∩ 2jQ ,

where Q = (0, 1]2, which again form an orthonormal basis of L2(Q). From there, by sampling on
the grid X 2

N , N = 2m we get discrete signals

(h0)i1,i2 = H0((i1 − 1)/N, (i2 − 1)/N),

(hej,k)i1,i2 = He
j,k((i1 − 1)/N, (i2 − 1)/N), (i1, i2) ∈ X 2

N .

such that
{h0} ∪ {hej,k}e∈V0≤j≤n−1, k∈Z2∩2jQ

is an orthonormal basis of IRN2
. Collecting the coefficients of these vectors into a matrix O, we

define the bivariate Haar wavelet transform byH(y) = O>y.
Second, we use the performance of signal thresholding from Donoho and Johnstone (1994) and

the weak `1 estimate for the Haar coefficients in terms of the TV norm from Needell and Ward
(2013a).

Lemma 27 (Donoho and Johnstone, 1994, Theorem 1) Let y be drawn from the Gaussian sequence
model (1.1) and denote by η(y) the soft thresholding estimator defined by

η(y)j = sgn(yj)((|yj | − σ
√

2 log n) ∨ 0) .

Then,
1

n
IE‖η(y)− θ∗‖22 ≤

2 log n+ 1

n

(
σ2 +

n∑
i=1

(θ∗i
2 ∧ σ2)

)
.

Lemma 28 (Needell and Ward, 2013a, Proposition 7) Write D2 for the incidence matrix of the 2D
grid, let θ have zero mean and let c(k) denote the kth largest entry of the bivariate Haar transform
H(θ). Then, there exists a constant C > 0 such that

|c(k)| ≤ C
‖D2θ‖1

k
.
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Proposition 29 Let y be a sample of the Gaussian sequence model (1.1) with n = N2, denote by
θ̂ = H−1◦η◦H(y) the soft thresholder in the bivariate Haar wavelet basis and byD2 the incidence
matrix of the N ×N grid. Then,

IEMSE(θ̂) .
log n

n
(σ2 + σ‖D2θ

∗‖1),

for n large enough.

Proof Since the Haar transform is orthogonal, we can apply Lemma 27 to the thresholding of the
Haar coefficient vector of y. Writing c∗k for the coefficients c∗ = H(θ∗), we have

1

n
IE‖θ̂ − θ∗‖22 =

1

n
IE‖η(H(y))−H(θ)‖22 .

log n

n

(
σ2 +

n−1∑
i=0

(c∗i
2 ∧ σ2)

)

≤ log n

n

(
2σ2 +

n−1∑
i=1

(c∗i
2 ∧ σ2)

)
.

Now, since c∗0 is to the mean of θ∗, the remaining Haar coefficients correspond to a mean zero vector,
so we can write them in descending order as c∗(i), apply Lemma 28 and introduce a cut-off at k to
obtain

1

n
IE‖θ̂ − θ∗‖22 .

log n

n

(
2σ2 +

n−1∑
i=1

(c∗(i)
2 ∧ σ2)

)

≤ log n

n

(
2σ2 +

n−1∑
i=1

(‖D2θ
∗‖21

1

i2
∧ σ2)

)

≤ log n

n

(
2σ2 +

(
kσ2 +

n−1∑
i=k+1

‖D2θ
∗‖21

i2

))

.
log n

n

(
2σ2 +

(
kσ2 + ‖D2θ

∗‖21
∫ ∞
k+1

x−2 dx

))
=

log n

n

(
2σ2 +

(
kσ2 +

‖D2θ
∗‖21

k + 1

))
.

Provided n is large enough, choosing k := b‖D2θ
∗‖1/σc then yields

1

n
IE‖θ̂ − θ∗‖22 .

log n

n
(σ2 + σ‖D2θ

∗‖1).

Note that for the sake of a simple presentation, we phrased this result in terms of the (expected)
mean squared error, but similar bounds hold with high probability and allowing misspecification, as
well as an `0-`1 trade-off.

Using Lemma 28, we can also show a version of Corollary 5 that has an additional log factor.
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Proposition 30 Let D2 denote the incidence matrix of the 2D grid. Then, there exist constants
C, c > 0 such that the TV denoiser θ̂ defined in (1.2) with λ = cσ log n

√
log(en/δ)/n satisfies

IEMSE(θ̂) .
σ‖D2θ

∗‖1 ∧ σ2‖D2θ
∗‖0 + 1

n
log3(en),

where ‖Dθ∗‖0 denotes the number of nonzero components of Dθ∗.

Proof We follow the proof of Corollary 5 given in Section B.1 and only indicate where we use
Lemma 28 instead of controlling ρ. Recall that H is an orthogonal operator whose first coordinate
corresponds to the mean of a vector. Starting from (B.7), we get

ε>(θ̂ − θ̄) = H(ε)>(H(θ̂ − θ̄))

=
n−1∑
i=0

(H(ε)i)(H(θ̂ − θ̄)i)

≤ |H(ε)0|‖θ̂ − θ̄‖2 + max
i=1,...,n−1

|H(ε)i|‖D2(θ̂ − θ̄)‖1
n−1∑
i=1

1

i

≤ |H(ε)0|‖θ̂ − θ̄‖2 + max
i=1,...,n−1

|H(ε)i|‖D2(θ̂ − θ̄)‖1 log n .

Now, use the same bounds for the 2-norm and the∞-norm of independent Gaussians as after (B.8),
noting that H(ε) is again an isotropic Gaussian variable, so H(ε)0 is a one-dimensional projection
of a Gaussian and supi=1,...,n−1 |H(ε)i| the maximum of n − 1 independent Gaussians. The proof
then continues as in Section B.1.
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