JMLR: Workshop and Conference Proceedings vol 49:1-11, 2016

Online Sparse Linear Regression

Dean Foster
Amazon
DEAN @FOSTER.NET

Satyen Kale
Yahoo Research
SATYEN @ YAHOO-INC.COM

Howard Karloff
HOWARD @ CC.GATECH.EDU

Abstract

We consider the online sparse linear regression problem, which is the problem of sequentially
making predictions observing only a limited number of features in each round, to minimize regret
with respect to the best sparse linear regressor, where prediction accuracy is measured by square
loss. We give an inefficient algorithm that obtains regret bounded by O(\/T) after T" prediction
rounds. We complement this result by showing that no algorithm running in polynomial time per
iteration can achieve regret bounded by O(7"*~%) for any constant § > 0 unless NP C BPP. This
computational hardness result resolves an open problem presented in COLT 2014 (Kale, 2014) and
also posed by Zolghadr et al. (2013). This hardness result holds even if the algorithm is allowed to
access more features than the best sparse linear regressor up to a logarithmic factor in the dimension.

1. Introduction

In various real-world scenarios, features for examples are constructed by running some computa-
tionally expensive algorithms. With resource constraints, it is essential to be able to make predic-
tions with only a limited number of features computed per example. One example of this scenario,
from (Cesa-Bianchi et al., 2011), is medical diagnosis of a disease, in which each feature corre-
sponds to a medical test that the patient in question can undergo. Evidently, it is undesirable to
subject a patient to a battery of medical tests, for medical as well as cost reasons. Another example
from the same paper is a search engine, where a ranking of web pages must be generated for each
incoming user query and the limited amount of time allowed to answer a query imposes restrictions
on the number of attributes that can be evaluated in the process. In both of these problems, predic-
tions need to be made sequentially as patients or search queries arrive online, learning a good model
in the process.

In this paper, we model the problem of prediction with limited access to features in the most
natural and basic manner as an online sparse linear regression problem. In this problem, an online
learner makes real-valued predictions for the labels of examples arriving sequentially over a number
of rounds. Each example has d features that can be potentially accessed by the learner. However, in
each round, the learner is restricted to choosing an arbitrary subset of features of size at most k, a
budget parameter. The learner then acquires the values of the subset of features, and then makes its
prediction, at which point the true label of the example is revealed to the learner. The learner suffers

(© 2016 D. Foster, S. Kale & H. Karloff.

FOSTER KALE KARLOFF

a loss for making an incorrect prediction (for simplicity, we use square loss in this paper). The goal
of the learner is to make predictions with total loss comparable to the loss of the best sparse linear
regressor with a bounded norm, where the term sparse refers to the fact that the linear regressor has
nonzero weights on at most k features. To measure the performance of the online learner, we use
the standard notion of regret, which is the difference between the total loss of the online learner and
the total loss of the best sparse linear regressor.

While regret is the primary performance metric, we are also interested in efficiency of the online
learner. Ideally, we desire an online learning algorithm that minimizes regret while making predic-
tions efficiently, i.e., in polynomial time (as a function of d and 7T'). In this paper, we prove that this
goal is impossible unless there is a randomized polynomial-time algorithm for deciding satisfiability
of 3CNF formulas, the canonical NP-hard problem. This computational hardness result resolves
open problems from (Kale, 2014) and (Zolghadr et al., 2013). In fact, the computational hardness
persists even if the online learner is given the additional flexibility of choosing &' = D log(d)k
features for any constant D > 0. In light of this result, in this paper we also give an inefficient
algorithm for the problem which queries k¥’ > k + 2 features in each round, that runs in O((g) K"

d2

time per round, and that obtains regret bounded by O(m klog(d)T).

2. Related Work and Known Results

A related setting is attribute-efficient learning (Cesa-Bianchi et al., 2011; Hazan and Koren, 2012;
Kukliansky and Shamir, 2015). This is a batch learning problem in which the examples are gener-
ated i.i.d., and the goal is to simply output a linear regressor using only a limited number of features
per example with bounded excess risk compared to the optimal linear regressor, when given full
access to the features at test time. While the aforementioned papers give efficient, near-optimal
algorithms for this problem, these algorithms do not work in the online sparse regression setting
in which we are interested because here we are required to make predictions using only a limited
number of features.

In (Kale, 2014), a simple algorithm has been suggested, which is based on running a bandit
algorithm in which the actions correspond to selecting one of (Z) subsets of coordinates of size
k at regular intervals, and within each interval, running an online regression algorithm (such as
the Online Newton-Step algorithm of Hazan et al. (2007)) over the k£ coordinates chosen by the
bandit algorithm. This algorithm, with the right choice of interval lengths, has a regret bound of
O(k2d*/3T?/310g(T/d)). The algorithm has exponential dependence on k both in running time and
the regret. Also, Kale (2014) sketches a different algorithm with performance guarantees similar
to the algorithm presented in this paper; our work builds upon that sketch and gives tighter regret
bounds.

Zolghadr et al. (2013) consider a very closely related setting (called online probing) in which
features and labels may be obtained by the learner at some cost (which may be different for different
features), and this cost is factored into the loss of the learner. In the special case of their setting
corresponding to the problem considered here, they given an algorithm, LQDEXP3, which relies
on discretizing all k-sparse weight vectors and running an exponential-weights experts algorithm
on the resulting set with stochastic loss estimators, obtaining a O(\/ﬁ) regret bound. However
the running time of their algorithm is prohibitive: O((dT)°®)) time per iteration. In the same
paper, they pose the open problem of finding a computationally efficient no-regret algorithm for the
problem. The hardness result in this paper resolves this open problem.

ONLINE SPARSE LINEAR REGRESSION

In the batch, binary-classification setting, a related model of learning called Restricted Focus-
of-Attention has also been studied (Ben-David and Dichterman, 1993; Birkendorf et al., 1998).

On the computational hardness side, it is known that it is NP-hard to compute the optimal sparse
linear regressor (Foster et al., 2015; Natarajan, 1995). The hardness result in this paper is in fact
inspired by the work of Foster et al. (2015), who proved that it is computationally hard to find even
an approximately optimal sparse linear regressor for an ordinary least squares regression problem
given a batch of labeled data. While these results imply that it is hard to properly' solve the offline
problem, in the online setting we allow improper learning, and hence these prior results don’t yield
hardness results for the online problem considered in this paper.

3. Notation and Setup

We use the notation [d] = {1,2,...,d} to refer to the coordinates. All vectors in this paper are in
R9, and all matrices in R¥?. For a subset S of [d], and a vector x, we use the notation x(S) to
denote the projection of x on the coordinates indexed by .S. We also use the notation Ig to denote
the diagonal matrix which has ones in the coordinates indexed by .S and zeros elsewhere: this is
the identity matrix on the subspace of R¢ induced by the coordinates in S, as well as the projection
matrix for this subspace. We use the notation || - || to denote the £5 norm in R? and || - || to denote
the zero “norm,” i.e., the number of nonzero coordinates.

We consider a prediction problem in which the examples are vectors in R¢ with #5 norm bounded
by 1, and labels are in the range [—1, 1]. We use square loss to measure the accuracy of a prediction:
i.e., for a labeled example (x,y) € R? x [—1, 1], the loss of a prediction § is (7 — y)2. The learner’s
task is to make predictions online as examples arrive one by one based on observing only k out of d
features of the learner’s choosing on any example (the learner is allowed to choose different subsets
of features to observe in each round). The learner’s goal is to minimize regret relative to the best
k-sparse linear regressor whose ¢5 norm is bounded by 1.

Formally, fort =1,2,...,T, the learner:

1. selects a subset S; C [d] of size at most k,

2. observes x;(.S¢), i.e., the values of the features of x; restricted to the subset Sy,
3. makes a prediction g; € [—1, 1],

4. observes the true label g, and suffers loss (7; — y¢)>.

Define regret of the learner as

T T

Regret := (9t — ye)* — min (W x¢ — yp)2.
tz:; w: [wllo<k, [wl|<1 ;

In case g is chosen using randomization, we consider expected regret instead.

Given the NP-hardness of computing the optimal k-sparse linear regressor (Foster et al., 2015;
Natarajan, 1995), we also consider a variant of the problem which gives the learner more flexibility
than the comparator: the learner is allowed to choose &’ > k coordinates to query in each round.

1. Proper learning means finding the optimal sparse linear regressor, whereas improper learning means finding an
arbitrary predictor with performance comparable to that of the optimal sparse linear regressor.

FOSTER KALE KARLOFF

The definition of the regret remains the same. We call this the (k, K/, d)-online sparse regression
problem.
We are interested in the following two goals®:

1. (No Regret) Make predictions g so that regret is bounded by poly(d, k)T 1=9 for some § > 0.
2. (Efficiency) Make these predictions efficiently, i.e., in poly(d, k, T') time per iteration.

In this paper, we show it is possible to get an inefficient no-regret algorithm for the online sparse
regression problem. Complementing this result, we also show that an efficient no-regret algorithm
cannot exist, assuming the standard hardness assumption that NP Z BPP.

4. Upper bound

In this section we give an inefficient algorithm for the (k, k', d)-online sparse regression problem
which obtains an expected regret of O(ﬁ /klog(d)T). The algorithm needs £’ to be at least
k + 2. Tt is inefficient because it maintains statistics for every subset of [d] of size k, of which there
are ().

At a high level, the algorithm runs an experts algorithm (specifically, Hedge) treating all such
subsets as experts. Each expert internally runs stochastic gradient descent only on the coordinates
specified by the corresponding subset, ensuring low regret to any bounded-norm parameter vector
that is nonzero only on those coordinates. The Hedge algorithm ensures low regret to the best
subset of coordinates, and thus the overall algorithm achieves low regret with respect to any k-
sparse parameter vector. The necessity of using &’ > k + 2 features in the algorithm is that the
algorithm uses the additional k' — k features to generate unbiased estimators for x;x; and y;x; in
each round, which are needed to generate stochastic gradients for all the experts. These estimators
have large variance unless k' — k is large.

The pseudocode is given in Algorithm 1. In the algorithm, in round ¢, the algorithm generates a
distribution D; over the subsets of [d] of size k; for any such subset .S, we use the notation D;(S) to
denote the probability of choosing the set S in this distribution. We also define the function IT on R?
to be the projection onto the unit ball, i.e., for w € R%, II(w) = w if |lw| <1,and II(w) = MW
otherwise.

Theorem 1 There is an algorithm for the online sparse regression problem with any given
parameters (k,k',d) such that k' > k + 2 running in O((Z) - k') time per iteration with

O(ﬁ klog(d)T) expected regret.

Proof The algorithm is given in Algorithm 1. Since the algorithm maintains a parameter vector in
R” for each subset of [d] of size k, the running time is dominated by the time to sample from D; and
update it, and the time to update the parameter vectors. The updates can be implemented in O (k')
time, so overall each round can be implemented in O((i) - k') time.

We now analyze the regret of the algorithm. Let [E,[-] denote the expectation conditioned on all
the randomness prior to round ¢. Then, it is easy to check, using the fact that ¥’ — k > 2, that the
construction of X; and z; in Step 8 of the algorithm has the following property:

Et [Xt] = XtX;r and Et[Zt] = YXt. (1)

2. In this paper, we use the poly(-) notation to denote a polynomially-bounded function of its arguments.

ONLINE SPARSE LINEAR REGRESSION

Algorithm 1 ALGORITHM FOR ONLINE SPARSE REGRESSION

= k'—k)(K'—k—1 In(d
1: Define the parameters p = k a Eg= (d)(fl,l)), "HepGE = G4/ n%), and nsgp = Q\/;-

2: Let D1 be the uniform distribution over all subsets of [d] of size k.

3: For every subset .S of [d] of size k, let wg; = 0, the all-zero vector in RA.

4: fort=1,2,...,7T do

5 Sample a subset S, of [d] of size k from Dy, and a subset R; of [d] of size ¥ — k drawn
uniformly at random, independently of S,
Acquire Xt(St) for St = S’t U Rt.
Make the prediction ¢ = w Gt Xt and obtain the true label ;.

8: Compute the matrix X; € R¥*4 and the vector z; € R? defined as follows:

ifi=jandi€ R
X4(i,5) = { XWXt if; £ jandi,j € R, and zt(i)—{

0 otherwise,

wild if e R,
0 otherwise,
9: Update the distribution over the subsets: for all subsets .S of [d] of size £, let

Diy1(S) = Di(S) exp(—nugpar (W, Xiws: — 22 wsi + 47))/ Zt,

where Z; is the normalization factor to make D, a distribution.
10: For each subset S of [d] of size k, let

Wst+1 = H(Ws,t - 2USGDIS(XtWS,t - Zt))-

11: end for

Next, notice that in Step 9, the algorithm runs the standard Hedge-algorithm update (see, for
example, Section 2.1 in (Arora et al., 2012)) on (Z) experts, one for each subset of [d] of size k,
where, in round ¢, the cost of the expert corresponding to subset S is defined to be*

we, Xiws, — 22 Wy + U7)

It is easy to check, using the facts that ||x;|| < 1,

ws| < 1land p > g, that the cost (2) is bounded
deterministically in absolute value by O(%) = O(ﬁ). Let Ep,[-] denote the expectation over
the random choice of .S; from the distribution D; conditioned on all other randomness up to and
including round ¢. Since there are (g) < d* experts in the Hedge algorithm here, the standard regret
bound for Hedge (Arora et al., 2012, Theorem 2.3) with the specified value of nygpge implies that
for any subset S of [d] of size k, using In ({) < kInd, we have

T T

2
Z Ep, [WS},tthgt,t_2Z:WSt,t+yt2} < Z(Wg’tths,t—2z;rWS¢—|—yt2)—|—O((k,‘iik)g\/ kln(d)T).
t=1 t=1
(3)

3. Recall that the costs in Hedge may be chosen adaptively.

FOSTER KALE KARLOFF

Next, we note, using (1) and the fact that conditioned on the randomness prior to round ¢, wg; is
completely determined, that (for any S)

T T 2 T ooT T 2 2
Ei[wg Xiwst — 22, Wst + Y] = WgXeXy Wsr — 20X, Wi +y; = (WerXe —yt)” (4)

Taking expectations on both sides of (3) over all the randomness in the algorithm, and using (4), we
get that for any subset S of [d] of size k, we have
T T
Y El(wg,, - xi—)’ < Y El(wsr - xi — 3)*) + Oz vk log(d)T). Q)
= t=1
The left-hand side of (5) equals Zthl E[(9: — y:)?]. We now analyze the right-hand side.

For any given subset S of [d] of size k, we claim that in Step 10 of the algorithm, the parameter
vector wg; is updated using stochastic gradient descent with the loss function £(w) := (x/ Isw —
yi)? over the set {w | ||w]||2 < 1}, only on the coordinates in .S, while the coordinates not in .S
are fixed to 0. To prove this claim, first, we note that the premultiplication by I in the update in
Step 10 ensures that in the parameter vector w1, all coordinates that are not in S are set to 0,
assuming that coordinates of wg; not in S were 0.

Next, at time ¢, consider the loss function /;(w) = (x/ Isw — v;)2. The gradient of this loss
function at wg ¢ is

Vft(WS,t) = Q(X:ISWS,t - yt)Ith = QIS(XtX;rWS,t - tht)7
where we use the fact that Iswg; = wg since wg; has zeros in coordinates not in .S. Now, by (1),
we have
Et[2IS(XtWS,t - Zt)] = QIS(XtXtTWS,t - ytxt>7

and thus, Step 10 of the algorithm is a stochastic gradient descent update as claimed. Furthermore,
a calculation similar to the one for bounding the loss of the experts in the Hedge algorithm shows
that the norm of the stochastic gradient is bounded deterministically by O(), which is O (7%= (k/ Pk 7).

Using a standard regret bound for stochastic gradient descent (see, for example, Lemma 3.1 in

(Flaxman et al., 2005)) with the specified value of nsgp, we conclude that for any fixed vector w of
{5 norm at most 1, we have,

T
2
ZE x; Tsws; —y1)?] < Z x; Isw — ;) +O((k'li7k)2ﬁ)
t=1 t=1
Since Iswg; = wg, the left hand side of the above inequality equals Zthl E[(wsz - %t — yt)?].

Finally, let w be an arbitrary k-sparse vector of /5 norm at most 1. Let S = {i | w; # 0}. Note
that |S| < k, and Is(w) = w. Applying the above bound for this set .S, we get

T

T
ZE[(Ws,t -xt —yr)?] < Z(W xt =)’ + O(ﬁﬁ) (6)

t=1 t=1
Combining the inequality (6) with inequality (5), we conclude that

T
ZE[@t—th < ZW X — yi)? +O((k/ 2 V klog(d)T).

t=1
This gives us the required regret bound. |

ONLINE SPARSE LINEAR REGRESSION

5. Computational lower bound

In this section we show that there cannot exist an efficient no-regret algorithm for the online sparse
regression problem unless NP C BPP. This hardness result follows from the hardness of approxi-
mating the Set Cover problem. We give a reduction showing that if there were an efficient no-regret
algorithm Algggg for the online sparse regression problem, then given an instance of the Set Cover
problem, we could distinguish, in randomized polynomial time, between two cases: either there is
a small set cover for the instance, or any set cover of the instance is large. This task is known to be
NP-hard for specific parameter values. Specifically, our reduction has the following properties:

1. If the instance has a small set cover, then in the induced online sparse regression problem there
is a k-sparse parameter vector (of f2 norm at most 1) giving 0 loss, and thus the algorithm
Algogr must have small total loss (equal to the regret) as well.

2. If there is no small set cover for the instance, then the prediction made by Algogg in any
round has at least a constant loss in expectation, which implies that its total (expected) loss
must be large, in fact, linear in 7'.

By measuring the total loss of the algorithm, we can distinguish between the two instances of the
Set Cover problem mentioned above with probability at least 3/4, thus yielding a BPP algorithm
for an NP-hard problem.

The starting point for our reduction is the work of Dinur and Steurer (2014), who give a
polynomial-time reduction of deciding satisfiability of 3CNF formulas to distinguishing instances

of Set Cover with certain useful combinatorial properties. We denote the satisfiability problem of
3CNF formulas by 3SAT.

Reduction 1 For any given constant D > 0, there is a constant cp € (0, 1) and a poly(nP)-time
algorithm that takes a 3CNF formula ¢ of size n as input and constructs a Set Cover instance over
a ground set of size m = poly(n®) with d = poly(n) sets, with the following properties:

1. if ¢ € 3SAT, then there is a collection of k = O(d°P) sets, which covers each element exactly
once, and

2. if ¢ ¢ 3SAT, then no collection of k' = | D In(d)k| sets covers all elements, i.e., at least one
element is left uncovered.

The Set Cover instance generated from ¢ can be encoded as a binary matrix My € {0, 1}mxd
with the rows corresponding to the elements of the ground set, and the columns correspond to the
sets, such that each column is the indicator vector of the corresponding set.

Using this reduction, we now show how an efficient, no-regret algorithm for online sparse re-
gression can be used to give a BPP algorithm for 3SAT.

Theorem 2 Let D > 0 be any given constant. Suppose there is an algorithm, Algpogg. for the
(k, k', d)-online sparse regression problem with k = O(d°P), where cp is the constant from Re-
duction 1, and k' = | D1n(d)k |, that runs in poly(d, T) time per iteration and has expected regret
bounded by poly(d)T"'~? for some constant § > 0. Then NP C BPP.

FOSTER KALE KARLOFF

Algorithm 2 ALGORITHM ALG3gaT FOR DECIDING SATISFIABILITY OF 3CNF FORMULAS
Require: A constant D > 0, and an algorithm Algngg for the (k, &/, d)-online sparse regression
problem with & = O(d“P), where cp is the constant from Reduction 1, and ¥’ = | D In(d)k]|,
that runs in poly(d, T) time per iteration with regret bounded by p(d) - T*~° with probability
at least 3/4.
Require: Online algorithm Algogg and a 3CNF formula ¢.
1: Compute the matrix My and the associated parameters k, &, d, m from Reduction 1.
Start running Algogg with the parameters k, &/, d.
fort =1,2,...,T := [max{(2p(d)mdk)'/?, 256m>d?k?}] do
Sample a row of M, uniformly at random; call it X;.
Sample o, € {—1, 1} uniformly at random independently of X;.
Setx; = %fct and y; = jﬁ.

A U

Obtain a set of coordinates S; of size at most k' by invoking Algngg, and provide it the
coordinates x;(S).

Obtain the prediction g; from Algogr, and provide it the true label y;.

9: end for

10: 8 S0 (g — 01)? < 5L then

11: Output “satisfiable”.

12: else

13: Output “unsatisfiable”.

14: end if

o

Proof Since the expected regret of Algggg is bounded by p(d)T' % (where p(d) is a polynomial
function of d), by Markov’s inequality we conclude that with probability at least 3/4, the regret of
Algogg is bounded by p(d) - T*~9. Figure 2 gives a randomized algorithm, Algsgar, for deciding
satisfiability of a given 3CNF formula ¢ using the algorithm Algogg. Note that the feature vectors
(i.e., the x; vectors) generated by Algsgar are bounded in ¢; norm by 1, as required. It is clear that
Algsgat is a polynomial-time algorithm since 7" is a polynomial function of n (since m, k, d, p(d)
are polynomial functions of n), and Algggg runs in poly(d, T") time per iteration.

We now claim that this algorithm correctly decides satisfiability of ¢ with probability at least
3/4, and is hence a BPP algorithm for 3SAT.

To prove this, suppose ¢ € 3SAT. Then, there are k sets in the Set Cover which cover all
elements with each element being covered exactly once. Consider the k-sparse parameter vector w
which has ﬁ in the positions corresponding to these & sets and 0 elsewhere. Note that ||w| < 1,
as required. Note that since this collection of k sets covers each element exactly once, we have

Myw = ﬁl, where 1 is the all-1’s vector. In particular, since X; is a row of My, we have

W Xy = W <Ut§()—at =
t \/;it \/% Yt.

Thus, (w - x; — y)? = 0 for all rounds ¢. Since algorithm Algggg has regret at most p(d) - T' 9
with probability at least 3/4, its total loss ZtT:l(g)t — ;)% is bounded by p(d) - T' % < ﬁ (since
T > (2p(d)mdk)*/?), with probability at least 3/4. Thus, in this case algorithm Algagar correctly
outputs “satisfiable” with probability at least 3/4.

ONLINE SPARSE LINEAR REGRESSION

Next, suppose ¢ ¢ 3SAT. Fix any round ¢ and let S; be the set of coordinates of size at most &’
selected by algorithm Algngg to query. This set S; corresponds to &’ sets in the Set Cover instance.
Since ¢ ¢ 3SAT, there is at least one element in the ground set that is not covered by any set among
these k' sets. This implies that there is at least one row of M that is 0 in all the coordinates in S;.
Since X; is a uniformly random row of M chosen independently of S;, we have

. 1
Pr[x;(S;) = 0] = Pr[%;(S;) =0] > g
Here, 0 denotes the all-zero vector of size k.

Now, we claim that E[y, 9 | x;(S;) = 0] = 0. This is because the condition that x;(S;) = 0

is equivalent to the condition that X;(S;) = 0. Since y; is chosen from {—ﬁ, \/%} uniformly at

random independently of X; and ¢, the claim follows. The expected loss of the online algorithm in
round ¢ can now be bounded as follows:

. . 1 .
LG~ 0? | %:(50 = 0] = B |32 + 5 — 2w | xe(5) = 0]
1 1
= 024 >
E [yt + dk x¢(S¢) 0] a5’
and hence
1 1 1

E(y: — 9:)*] > El(ye — 5)* | x¢(S¢) = 0] - Pr[x:(Sy) = 0] > T = mdi
Let E;[-] denote expectation of a random variable conditioned on all randomness prior to round
t. Since the choices of x; and y; are independent of previous choices in each round, the same
argument also implies that E[(y; — 9¢)%] > ﬁ. Applying Azuma’s inequality (see Theorem
7.2.1 in (Alon and Spencer, 1992)) to the martingale difference sequence E¢[(y; — 9:)%] — (y¢ — 9¢)*
fort =1,2,...,T, since each term is bounded in absolute value by 4, we get

W=

T
Pr ZEt[(yt - ?Jt)z] — (Y — ?Qt)Q >8VT| < exp (—fng) <
t=1

Thus, with probability at least 3/4, the total loss Zthl(y]t — ;)% is greater than
S By — 902 — 8VT > T — 8YT > Lo (since T > 256m2d?k?). Thus in
this case the algorithm correctly outputs “unsatisfiable” with probability at least 3/4. |

5.1. Parameter settings for hard instances

Theorem 2 implies that for any given constant D > 0, there is a constant cp such that the parameter
settings kK = O(d°P), and k' = | D1In(d)k]| yield hard instances for the online sparse regression
problem. The reduction of Dinur and Steurer (2014) can be “tweaked”* so that the cp is arbitrarily
close to 1 for any constant D.

4. This is accomplished by simply replacing the Label Cover instance they construct with polynomially many disjoint
copies of the same instance.

FOSTER KALE KARLOFF

We can now extend the hardness results to the parameter settings k£ = O(d¢) for any € € (0, 1)
and ¥/ = |DIn(d)k] either by tweaking the reduction of Dinur and Steurer (2014) so it yields
cp = e if e is close enough to 1, or if € is small, by adding O(dl/ €) all-zero columns to the matrix
M. The two combinatorial properties of M in Reduction 1 are clearly still satisfied, and the proof
of Theorem 2 goes through.

5.2. Allowing flexibility in choosing features to observe

While the hardness result described above applies in the setting where the online learner is restricted
to choose k' features to observe in each round, our hardness proof easily extends to more flexible
situations such as that in which the online learner is only required to keep the average number of
features observed over the rounds bounded by &’.

To see this, suppose that &’ is such that it is NP-hard to distinguish between cases where either
the instance has a set cover of size k or no collection of 2k’ sets covers all the elements. Then
consider an algorithm for the online sparse regression problem which chooses at most & features
on average over the rounds. By Markov’s inequality, on at least half the rounds, the algorithm
chooses at most 2k’ features, and in these rounds, the arguments in the proof of Theorem 2 imply
that the algorithm incurs at least constant loss in expectation, leading to linear (in T') total loss in
expectation. This suffices to show hardness, since any sublinear regret algorithm for the problem
can then be used to distinguish between the two cases, exactly as in the proof of Theorem 2.

6. Conclusions

In this paper, we prove that minimizing regret in the online sparse regression problem is compu-
tationally hard even if the learner is allowed access to many more features than the comparator, a
sparse linear regressor. We complement this result by giving an inefficient no-regret algorithm.

The main open question remaining from this work is what extra assumptions can one make
on the examples arriving online to make the problem tractable. Note that the sequence of examples
constructed in the lower bound proof is i.i.d., so clearly stronger assumptions than that are necessary
to obtain any efficient algorithms.

References

Noga Alon and Joel Spencer. The Probabilistic Method. John Wiley, 1992. ISBN 0-471-53588-5.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-
algorithm and applications. Theory of Computing, 8(1):121-164, 2012.

Shai Ben-David and Eli Dichterman. Learning with restricted focus of attention. In COLT, pages
287-296, 1993.

Andreas Birkendorf, Eli Dichterman, Jeffrey C. Jackson, Norbert Klasner, and Hans-Ulrich Simon.

On restricted-focus-of-attention learnability of boolean functions. Machine Learning, 30(1):89—
123, 1998.

Nicolo Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. Efficient learning with partially
observed attributes. Journal of Machine Learning Research, 12:2857-2878, 2011.

10

ONLINE SPARSE LINEAR REGRESSION

Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages 624-633,
2014.

Abraham Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradient. In SODA, pages 385-394, 2005.

Dean Foster, Howard Karloff, and Justin Thaler. Variable selection is hard. In COLT, pages 696—
709, 2015.

Elad Hazan and Tomer Koren. Linear regression with limited observation. In ICML, 2012.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169-192, 2007.

Satyen Kale. Open problem: Efficient online sparse regression. In COLT, pages 1299-1301, 2014.

Doron Kukliansky and Ohad Shamir. Attribute efficient linear regression with distribution-
dependent sampling. In /ICML, pages 153—-161, 2015.

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Computing, 25(2):227—
234, 1995.

Navid Zolghadr, Gabor Bartok, Russell Greiner, Andras Gyorgy, and Csaba Szepesvari. Online
learning with costly features and labels. In NIPS, pages 1241-1249, 2013.

11

	Introduction
	Related Work and Known Results
	Notation and Setup
	Upper bound
	Computational lower bound
	Parameter settings for hard instances
	Allowing flexibility in choosing features to observe

	Conclusions

