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Abstract
We give an algorithm for properly learning Poisson binomial distributions. A Poisson binomial
distribution (PBD) of order n ∈ Z+ is the discrete probability distribution of the sum of nmutually
independent Bernoulli random variables. Given Õ(1/ε2) samples from an unknown PBD P, our
algorithm runs in time (1/ε)O(log log(1/ε)), and outputs a hypothesis PBD that is ε-close to P in total
variation distance. The sample complexity of our algorithm is known to be nearly-optimal, up to
logarithmic factors, as established in previous work Daskalakis et al. (2012b). However, the previ-
ously best known running time for properly learning PBDs Daskalakis et al. (2012b); Diakonikolas
et al. (2015a) was (1/ε)O(log(1/ε)), and was essentially obtained by enumeration over an appropri-
ate ε-cover. We remark that the running time of this cover-based approach cannot be improved, as
any ε-cover for the space of PBDs has size (1/ε)Ω(log(1/ε)) Diakonikolas et al. (2015a).

As one of our main contributions, we provide a novel structural characterization of PBDs,
showing that any PBD P is ε-close to another PBD Q with O(log(1/ε)) distinct parameters. More
precisely, we prove that, for all ε > 0, there exists an explicit collectionM of (1/ε)O(log log(1/ε))

vectors of multiplicities, such that for any PBD P there exists a PBD Q with O(log(1/ε)) distinct
parameters whose multiplicities are given by some element ofM, such that Q is ε-close to P. Our
proof combines tools from Fourier analysis and algebraic geometry.

Our approach to the proper learning problem is as follows: Starting with an accurate non-proper
hypothesis, we fit a PBD to this hypothesis. This fitting problem can be formulated as a natural
polynomial optimization problem. Our aforementioned structural characterization allows us to re-
duce the corresponding fitting problem to a collection of (1/ε)O(log log(1/ε)) systems of low-degree
polynomial inequalities. We show that each such system can be solved in time (1/ε)O(log log(1/ε)),
which yields the overall running time of our algorithm.
Keywords: distribution learning, proper learning, Poisson binomial distribution, optimization over
polynomials with real roots

1. Introduction

The Poisson binomial distribution (PBD) is the discrete probability distribution of a sum of mutu-
ally independent Bernoulli random variables. PBDs comprise one of the most fundamental non-
parametric families of discrete distributions. They have been extensively studied in probability and
statistics Poisson (1837); Chernoff (1952); Hoeffding (1963); Dubhashi and Panconesi (2009), and
are ubiquitous in various applications (see, e.g., Chen and Liu (1997) and references therein). Re-
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cent years have witnessed a flurry of research activity on PBDs and generalizations from several
perspectives of theoretical computer science, including learning Daskalakis et al. (2012b, 2013);
Diakonikolas et al. (2015a); Daskalakis et al. (2015b); Diakonikolas et al. (2015b), pseudorandom-
ness and derandomization Gopalan et al. (2011); Bhaskara et al. (2012); De (2015); Gopalan et al.
(2015), property testing Acharya and Daskalakis (2015); Canonne et al. (2015), and computational
game theory Daskalakis and Papadimitriou (2007, 2009, 2014a,b); Goldberg and Turchetta (2014).

Despite their seeming simplicity, PBDs have surprisingly rich structure, and basic questions
about them can be unexpectedly challenging to answer. We cannot do justice to the probability
literature studying the following question: Under what conditions can we approximate PBDs by
simpler distributions? See Section 1.2 of Daskalakis et al. (2015a) for a summary. In recent years,
a number of works in theoretical computer science Daskalakis and Papadimitriou (2007, 2009);
Daskalakis et al. (2012b); Daskalakis and Papadimitriou (2014a); Diakonikolas et al. (2015a) have
studied, and essentially resolved, the following questions: Is there a small set of distributions that
approximately cover the set of all PBDs? What is the number of samples required to learn an
unknown PBD?

We study the following natural computational question: Given independent samples from an
unknown PBD P, can we efficiently find a hypothesis PBD Q that is close to P, in total variation
distance? That is, we are interested in properly learning PBDs, a problem that has resisted recent
efforts Daskalakis et al. (2012b); Diakonikolas et al. (2015a) at designing efficient algorithms. In
this work, we propose a new approach to this problem that leads to a significantly faster algorithm
than was previously known. At a high-level, we establish an interesting connection of this problem
to algebraic geometry and polynomial optimization. By building on this connection, we provide a
new structural characterization of the space of PBDs, on which our algorithm relies, that we believe
is of independent interest. In the following, we motivate and describe our results in detail, and
elaborate on our ideas and techniques.

Distribution Learning. We recall the standard definition of learning an unknown probability distri-
bution from samples Kearns et al. (1994); Devroye and Lugosi (2001): Given access to independent
samples drawn from an unknown distribution P in a given family C, and an error parameter ε > 0,
a learning algorithm for C must output a hypothesis H such that, with probability at least 9/10, the
total variation distance between H and P is at most ε. The performance of a learning algorithm is
measured by its sample complexity (the number of samples drawn from P) and its computational
complexity.

In non-proper learning (density estimation), the goal is to output an approximation to the target
distribution without any constraints on its representation. In proper learning, we require in addition
that the hypothesis H is a member of the family C. Note that these two notions of learning are
essentially equivalent in terms of sample complexity (given any accurate hypothesis, we can do a
brute-force search to find its closest distribution in C), but not necessarily equivalent in terms of
computational complexity. A typically more demanding notion of learning is that of parameter
estimation. The goal here is to identify the parameters of the unknown model, e.g., the means of the
individual Bernoulli components for the case of PBDs, up to a desired accuracy ε.

Discussion. In many learning situations, it is desirable to compute a proper hypothesis, i.e., one
that belongs to the underlying distribution family C. A proper hypothesis is typically preferable
due to its interpretability. In the context of distribution learning, a practitioner may not want to
use a density estimate, unless it is proper. For example, one may want the estimate to have the
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properties of the underlying family, either because this reflects some physical understanding of the
inference problem, or because one might only be using the density estimate as the first stage of
a more involved procedure. While parameter estimation may arguably provide a more desirable
guarantee than proper learning in some cases, its sample complexity is typically prohibitively large.

For the class of PBDs, we show (Proposition 15, Appendix A) that parameter estimation re-
quires 2Ω(1/ε) samples, for PBDs with n = Ω(1/ε) Bernoulli components, where ε > 0 is the
accuracy parameter. In contrast, the sample complexity of (non-)proper learning is known to be
Õ(1/ε2) Daskalakis et al. (2012b). Hence, proper learning serves as an attractive middle ground
between non-proper learning and parameter estimation. Ideally, one could obtain a proper learner
for a given family whose running time matches that of the best non-proper algorithm.

Recent work by the authors Diakonikolas et al. (2015a) has characterized the computational
complexity of non-properly learning PBDs, which was shown to be Õ(1/ε2), i.e., nearly-linear in
the sample complexity of the problem. Motivated by this progress, a natural research direction is
to obtain a computationally efficient proper learning algorithm, i.e., one that runs in time poly(1/ε)
and outputs a PBD as its hypothesis. Besides practical applications, we feel that this is an interesting
algorithmic problem, with intriguing connections to algebraic geometry and polynomial optimiza-
tion (as we point out in this work). We remark that several natural approaches fall short of yielding
a polynomial–time algorithm for this problem. More specifically, the proper learning of PBDs can
be phrased as a structured non-convex optimization problem, albeit it is unclear whether any such
formulation may lead to a polynomial–time algorithm. As part of our contribution, we formulate
this optimization problem in terms of univariate polynomials with real roots. We show that our
techniques yields an algorithm with a similar running time for this optimization problem.

This work is part of a broader agenda of systematically investigating the computational com-
plexity of proper distribution learning. We believe that this is a fundamental goal that warrants study
for its own sake. The complexity of proper learning has been extensively investigated in the super-
vised setting of PAC learning Boolean functions Kearns and Vazirani (1994); Feldman (2015), with
several algorithmic and computational intractability results obtained in the past couple of decades.
In sharp contrast, very little is known about the complexity of proper learning in the unsupervised
setting of learning probability distributions.

1.1. Preliminaries

For n,m ∈ Z+ with m ≤ n, we will denote [n]
def
= {0, 1, . . . , n} and [m,n]

def
= {m,m+ 1, . . . , n}.

For a distribution P supported on [m],m ∈ Z+, we write P(i) to denote the value PrX∼P[X = i] of
the probability mass function (pmf) at point i. The total variation distance between two distributions
P and Q supported on a finite domainA is dTV (P,Q)

def
= maxS⊆A |P(S)−Q(S)| = (1/2)·‖P−

Q‖1. If X and Y are random variables, their total variation distance dTV (X,Y ) is defined as the
total variation distance between their distributions.

Poisson Binomial Distribution. A Poisson binomial distribution of order n ∈ Z+ or n-PBD is the
discrete probability distribution of the sum

∑n
i=1Xi of n mutually independent Bernoulli random

variables X1, . . . , Xn. An n-PBD P can be represented uniquely as the vector of its n parameters
p1, . . . , pn, i.e., as (pi)

n
i=1, where we can assume that 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. To go from

P to its corresponding vector, we find a collection X1, . . . , Xn of mutually independent Bernoullis
such that

∑n
i=1Xi is distributed according to P with E[X1] ≤ . . . ≤ E[Xn], and we set pi = E[Xi]

for all i. An equivalent unique representation of an n-PBD with parameter vector (pi)
n
i=1 is via the
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vector of its distinct parameters p′1, . . . , p
′
k, where 1 ≤ k ≤ n, and p′i 6= p′j for i 6= j, together

with their corresponding integer multiplicities m1, . . . ,mk. Note that mi ≥ 1, 1 ≤ i ≤ k, and∑k
i=1mi = n. This representation will be crucial for the results and techniques of this paper.

Discrete Fourier Transform. For x ∈ R we will denote e(x)
def
= exp(2πix). The Discrete Fourier

Transform (DFT) modulo M of a function F : [n] → C is the function F̂ : [M − 1] → C defined
as F̂ (ξ) =

∑n
j=0 e(−ξj/M)F (j) , for integers ξ ∈ [M − 1]. The DFT modulo M , P̂, of a

distribution P is the DFT modulo M of its probability mass function. The inverse DFT modulo M
onto the range [m,m+M − 1] of F̂ : [M − 1]→ C, is the function F : [m,m+M − 1]∩Z→ C
defined by F (j) = 1

M

∑M−1
ξ=0 e(ξj/M)F̂ (ξ) , for j ∈ [m,m + M − 1] ∩ Z. The L2 norm of the

DFT is defined as ‖F̂‖2 =
√

1
M

∑M−1
ξ=0 |F̂ (ξ)|2 .

1.2. Our Results and Comparison to Prior Work

We are ready to formally describe the main contributions of this paper. As our main algorithmic
result, we obtain a near-sample optimal and almost polynomial-time algorithm for properly learning
PBDs:

Theorem 1 (Proper Learning of PBDs) For all n ∈ Z+ and ε > 0, there is a proper learning
algorithm for n-PBDs with the following performance guarantee: Let P be an unknown n-PBD. The
algorithm uses Õ(1/ε2) samples from P, runs in time (1/ε)O(log log(1/ε))1, and outputs (a succinct
description of) an n-PBD Q such that with probability at least 9/10 it holds that dTV (Q,P) ≤ ε.

Remark 2 We remark that our proper learning algorithm can easily be made agnostic (robust to
model misspecification). See Theorem 16 in Appendix D. More specifically, in Appendix D we
point out that the problem of agnostic proper learning of PBDs can be reduced to the following
optimization problem: Given a real univariate polynomial p, find a polynomial q with non-positive
real roots such that the sum of the absolute values of the coefficients of p−q is minimized. We believe
that this non-convex optimization problem may be of independent interest. In Appendix D.2, we
show (Theorem 21) that our proper learning algorithm can be easily adapted to solve this polynomial
optimization problem with a similar running time.

We now provide a comparison of Theorem 1 to previous work. The problem of learning PBDs
was first explicitly considered by Daskalakis et al. (2012b), who gave two main results: (i) a non-
proper learning algorithm with sample complexity and running time Õ(1/ε3), and (ii) a proper
learning algorithm with sample complexity Õ(1/ε2) and running time (1/ε)polylog(1/ε). In recent
work Diakonikolas et al. (2015a), the authors obtained a near-optimal sample and time algorithm
to non-properly learn a more general family of discrete distributions (containing PBDs). For the
special case of PBDs, the aforementioned work Diakonikolas et al. (2015a) yields the following
implications: (i) a non-proper learning algorithm with sample and time complexity Õ(1/ε2), and
(ii) a proper learning algorithm with sample complexity Õ(1/ε2) and running time (1/ε)Θ(log(1/ε)).
Prior to this paper, this was the fastest algorithm for properly learning PBDs. Hence, Theorem 1
represents a super-polynomial improvement in the running time, while still using a near-optimal
sample size.

1. We work in the standard “word RAM” model in which basic arithmetic operations on O(logn)-bit integers are
assumed to take constant time.
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In addition to obtaining a significantly more efficient algorithm, the proof of Theorem 1 offers
a novel approach to the problem of properly learning PBDs. The proper algorithms of Daskalakis
et al. (2012b); Diakonikolas et al. (2015a) exploit the cover structure of the space of PBDs, and
(essentially) proceed by running an appropriate tournament procedure over an ε-cover (see, e.g.,
Lemma 10 in Daskalakis et al. (2015a))2. This cover-based approach, when applied to an ε-
covering set of sizeN , clearly has runtime Ω(N), and can be easily implemented in timeO(N2/ε2).
Daskalakis et al. (2012b) applies the cover-based approach to the ε-cover construction of Daskalakis
and Papadimitriou (2014a), which has size (1/ε)O(log2(1/ε)), while Diakonikolas et al. (2015a)
proves and uses a new cover construction of size (1/ε)O(log(1/ε)). Observe that if there existed
an explicit ε-cover of size poly(1/ε), the aforementioned cover-based approach would immediately
yield a poly(1/ε) time proper learning algorithm. Perhaps surprisingly, it was shown in Diakoniko-
las et al. (2015a) that any ε-cover for n-PBDs with n = Ω(log(1/ε)) Bernoulli coordinates has size
(1/ε)Ω(log(1/ε)). In conclusion, the cover-based approach for properly learning PBDs inherently
leads to runtime of (1/ε)Ω(log(1/ε)).

In this work, we circumvent the (1/ε)Ω(log(1/ε)) cover size lower bound by establishing a new
structural characterization of the space of PBDs. Very roughly speaking, our structural result al-
lows us to reduce the proper learning problem to the case that the underlying PBD has O(log(1/ε))
distinct parameters. Indeed, as a simple corollary of our main structural result (Theorem 5 in Sec-
tion 2), we obtain the following:

Theorem 3 (A “Few” Distinct Parameters Suffice) For all n ∈ Z+ and ε > 0 the following
holds: For any n-PBD P, there exists an n-PBD Q with dTV (P,Q) ≤ ε such that Q hasO(log(1/ε))
distinct parameters.

We note that in subsequent work Diakonikolas et al. (2015b) the authors generalize the above
theorem to Poisson multinomial distributions.

Remark. We remark that Theorem 3 is quantitatively tight, i.e., O(log(1/ε)) distinct parameters
are in general necessary to ε-approximate PBDs. This follows directly from the explicit cover lower
bound construction of Diakonikolas et al. (2015a).

We view Theorem 3 as a natural structural result for PBDs. Alas, its statement does not quite
suffice for our algorithmic application. While Theorem 3 guarantees that O(log(1/ε)) distinct pa-
rameters are enough to consider for an ε-approximation, it gives no information on the multiplicities
these parameters may have. In particular, the upper bound on the number of different combinations
of multiplicities one can derive from it is (1/ε)O(log(1/ε)), which is not strong enough for our pur-
poses. The following stronger structural result (see Theorem 5 and Lemma 6 for detailed statements)
is critical for our improved proper algorithm:

Theorem 4 (A “Few” Multiplicities and Distinct Parameters Suffice) For all n ∈ Z+ and ε >
0 the following holds: For any σ̃ > 0, there exists an explicit collectionM of (1/ε)O(log log(1/ε))

vectors of multiplicities computable in poly(|M|) time, so that for any n-PBD P with variance
Θ(σ̃2) there exists a PBD Q with O(log(1/ε)) distinct parameters whose multiplicities are given
by some element ofM, such that dTV (P,Q) ≤ ε.

2. Note that any ε-cover for the space of n-PBDs has size Ω(n). However, for the task of properly learning PBDs, by
a simple (known) reduction, one can assume without loss of generality that n = poly(1/ε). Hence, the tournament-
based algorithm only needs to consider ε-covers over PBDs with poly(1/ε) Bernoulli components.
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Now suppose we would like to properly learn an unknown PBD with O(log(1/ε)) distinct pa-
rameters and known multiplicities for each parameter. Even for this very restricted subset of PBDs,
the construction of Diakonikolas et al. (2015a) implies a cover lower bound of (1/ε)Ω(log(1/ε)).
To handle such PBDs, we combine ingredients from Fourier analysis and algebraic geometry with
careful Taylor series approximations, to construct an appropriate system of low-degree polynomial
inequalities whose solution approximately recovers the unknown distinct parameters.

In the following subsection, we provide a detailed intuitive explanation of our techniques.

1.3. Techniques

The starting point of this work lies in the non-proper learning algorithm from our recent work Di-
akonikolas et al. (2015a). Roughly speaking, our new proper algorithm can be viewed as a two-step
process: We first compute an accurate non-proper hypothesis H using the algorithm in Diakoniko-
las et al. (2015a), and we then post-process H to find a PBD Q that is close to H. We note that
the non-proper hypothesis H output by Diakonikolas et al. (2015a) is represented succinctly via
its Discrete Fourier Transform; this property is crucial for the computational complexity of our
proper algorithm. (We note that the description of our proper algorithm and its analysis, presented
in Section 3, are entirely self-contained. The above description is for the sake of the intuition.)

We now proceed to explain the connection in detail. The crucial fact, established in Diakoniko-
las et al. (2015a) for a more general setting, is that the Fourier transform of a PBD has small effective
support (and in particular the effective support of the Fourier transform has size roughly inverse to
the effective support of the PBD itself). Hence, in order to learn an unknown PBD P, it suffices to
find another PBD, Q, with similar mean and standard deviation to P, so that the Fourier transform
of Q approximates the Fourier transform of P on this small region. (The non-proper algorithm of
Diakonikolas et al. (2015a) for PBDs essentially outputs the empirical DFT of P over its effective
support.)

Note that the Fourier transform of a PBD is the product of the Fourier transforms of its individual
component variables. By Taylor expanding the logarithm of the Fourier transform, we can write the
log Fourier transform of a PBD as a Taylor series whose coefficients are related to the moments
of the parameters of P (see Equation (11)). We show that for our purposes it suffices to find a
PBD Q so that the first O(log(1/ε)) moments of its parameters approximate the corresponding
moments for P. Unfortunately, we do not actually know the moments for P, but since we can easily
approximate the Fourier transform of P from samples, we can derive conditions that are sufficient
for the moments of Q to satisfy. This step essentially gives us a system of polynomial inequalities
in the moments of the parameters of Q that we need to satisfy.

A standard way to solve such a polynomial system is by appealing to Renegar’s algorithm Rene-
gar (1992b,a), which allows us to solve a system of degree-d polynomial inequalities in k real vari-
ables in time roughly dk. In our case, the degree d will be at most poly-logarithmic in 1/ε, but the
number of variables k corresponds to the number of parameters of Q, which is k = poly(1/ε).
Hence, this approach is insufficient to obtain a faster proper algorithm.

To circumvent this obstacle, we show that it actually suffices to consider only PBDs with
O(log(1/ε)) many distinct parameters (Theorem 3). To prove this statement, we use a recent re-
sult from algebraic geometry due to Riener Riener (2011) (Theorem 7), that can be used to relate
the number of distinct parameters of a solution of a polynomial system to the degree of the poly-
nomials involved. Note that the problem of matching O(log(1/ε)) moments can be expressed as
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a system of polynomial equations, where each polynomial has degree O(log(1/ε)). We can thus
find a PBD Q, which has the same first O(log(1/ε)) moments as P, with O(log(1/ε)) distinct
parameters such that dTV (Q,P) ≤ ε. For PBDs with O(log(1/ε)) distinct parameters and known
multiplicities for these parameters, we can reduce the runtime of solving the polynomial system to
O(log(1/ε))O(log(1/ε)) = (1/ε)O(log log(1/ε)).

Unfortunately, the above structural result is not strong enough, as in order to set up an appropri-
ate system of polynomial inequalities for the parameters of Q, we must first guess the multiplicities
to which the distinct parameters appear. A simple counting argument shows that there are roughly
klog(1/ε) ways to choose these multiplicities. To overcome this second obstacle, we need the follow-
ing refinement of our structural result on distinct parameters: We divide the parameters of Q into
categories based on how close they are to 0 or 1. We show that there is a tradeoff between the num-
ber of parameters in a given category and the number of distinct parameters in that category (see
Theorem 5). With this more refined result in hand, we show that there are only (1/ε)O(log log(1/ε))

many possible collections of multiplicities that need to be considered (see Lemma 6).
Given this stronger structural characterization, our proper learning algorithm is fairly simple.

We enumerate over the set of possible collections of multiplicities as described above. For each
such collection, we set up a system of polynomial equations in the distinct parameters of Q, so
that solutions to the system will correspond to PBDs whose distinct parameters have the specified
multiplicities which are also ε-close to P. For each system, we attempt to solve it using Renegar’s
algorithm. Since there exists at least one PBD Q close to P with such a set of multiplicities, we are
guaranteed to find a solution, which in turn must describe a PBD close to P.

One technical issue that arises in the above program occurs when Var[P] � log(1/ε). In this
case, the effective support of the Fourier transform of P cannot be restricted to a small subset. This
causes problems with the convergence of our Taylor expansion of the log Fourier transform for
parameters near 1/2. However, then only O(log(1/ε)) parameters are not close to 0 and 1, and we
can deal with such parameters separately.

1.4. Related Work

Distribution learning is a classical problem in statistics with a rich history and extensive literature
(see e.g., Barlow et al. (1972); Devroye and Györfi (1985); Silverman (1986); Scott (1992); Devroye
and Lugosi (2001)). During the past couple of decades, a body of work in theoretical computer
science has been studying these questions from a computational complexity perspective; see e.g.,
Kearns et al. (1994); Freund and Mansour (1999); Arora and Kannan (2001); Cryan et al. (2002);
Vempala and Wang (2002); Feldman et al. (2005); Belkin and Sinha (2010); Kalai et al. (2010);
Daskalakis et al. (2012a,b, 2013); Chan et al. (2013, 2014a,b); Acharya et al. (2015b).

We remark that the majority of the literature has focused either on non-proper learning (den-
sity estimation) or on parameter estimation. Regarding proper learning, a number of recent works
in the statistics community have given proper learners for structured distribution families, by us-
ing a maximum likelihood approach. See e.g., D umbgen and Rufibach (2009); Gao and Wellner
(2009); Walther (2009); Doss and Wellner (2013); Chen and Samworth (2013); Kim and Samworth
(2014); Balabdaoui and Doss (2014) for the case of continuous log-concave densities. Alas, the
computational complexity of these approaches has not been analyzed. Two recent works Acharya
et al. (2015a); Canonne et al. (2015) yield computationally efficient proper learners for discrete log-
concave distributions, by using an appropriate convex formulation. Proper learning has also been
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recently studied in the context of mixture models Feldman et al. (2005); Daskalakis and Kamath
(2014); Suresh et al. (2014); Li and Schmidt (2015). Here, the underlying optimization problems
are non-convex, and efficient algorithms are known only when the number of components is small.

1.5. Organization

In Section 2, we prove our main structural result, and in Section 3, we describe our algorithm and
prove its correctness. In Section 4, we conclude with some directions for future research. Most of
the proofs have been deferred to an Appendix.

2. Main Structural Result

In this section, we prove our main structural results thereby establishing Theorems 3 and 4. Our
proofs rely on an analysis of the Fourier transform of PBDs combined with recent results from
algebraic geometry on the solution structure of systems of symmetric polynomial equations. We
show the following:

Theorem 5 Given any n-PBD P with Var[P] = poly(1/ε), there is an n-PBD Q with dTV (P,Q) ≤
ε such that E[Q] = E[P] and Var[P]− ε3 ≤ Var[Q] ≤ Var[P], satisfying the following properties:

Let R def
= min{1/4,

√
ln(1/ε)/Var[P]}. Let Bi

def
= R2i , for the integers 0 ≤ i ≤ `, where

` = O(log log(1/ε)) is selected such that B` = poly(ε). Consider the partition I = {Ii, Ji}`+1
i=0 of

[0, 1] into the following set of intervals: I0 = [B0, 1/2], Ii+1 = [Bi+1, Bi), 0 ≤ i ≤ `− 1, I`+1 =
(0, B`); and J0 = (1/2, 1 − B0], Ji+1 = (1 − Bi, 1 − Bi+1], 0 ≤ i ≤ `− 1, J`+1 = (1 − B`, 1].
Then we have the following:

(i) For each 0 ≤ i ≤ `, each of the intervals Ii and Ji contains at most O(log(1/ε)/ log(1/Bi))
distinct parameters of Q.

(ii) Q has at most one parameter in each of the intervals I`+1 and J`+1 \ {1}.

(iii) The number of parameters of Q equal to 1 is within an additive poly(1/ε) of E[P].

(iv) For each 0 ≤ i ≤ `, each of the intervals Ii and Ji contains at most 2Var[P]/Bi parameters
of Q.

Theorem 5 implies that one needs to only consider (1/ε)O(log log(1/ε)) different combinations of
multiplicities:

Lemma 6 For every P as in Theorem 5, there exists an explicit set M of multisets of triples
(mi, ai, bi)1≤i≤k so that

(i) For each element ofM and each i, [ai, bi] is either one of the intervals Ii or Ji as in Theorem
5 or [0, 0] or [1, 1].

(ii) For each element ofM, k = O(log(1/ε)).

(iii) There exist an element ofM and a PBD Q as in the statement of Theorem 5 with dTV (P,Q) <
ε2 so that Q has a parameter of multiplicity mi between ai and bi for each 1 ≤ i ≤ k and no
other parameters.
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(iv) M has size
(

1
ε

)O(log log(1/ε)) and can be enumerated in poly(|M|) time.

This is proved in Appendix B.1 by a simple counting argument. We multiply the number of
multiplicities for each interval, which is at most the maximum number of parameters to the power of
the maximum number of distinct parameters in that interval, giving (1/ε)O(log log(1/ε)) possibilities.
We now proceed to prove Theorem 5. We will require the following result from algebraic geometry:

Theorem 7 (Part of Theorem 4.2 from Riener (2011)) Given m+ 1 symmetric polynomials in n
variables Fj(x), 0 ≤ j ≤ m, x ∈ Rn, let K = {x ∈ Rn | Fj(x) ≥ 0, for all 1 ≤ j ≤ m}. Let
k = max{2, ddeg(F0)/2e, deg(F1),deg(F2), . . . ,deg(Fm)}. Then, the minimum value of F0 on
K is achieved by a point with at most k distinct co-ordinates.

As an immediate corollary, we obtain the following:

Corollary 8 If a set of multivariate polynomial equations Fi(x) = 0, x ∈ Rn, 1 ≤ i ≤ m, with
the degree of each Fi(x) being at most d has a solution x ∈ [a, b]n, then it has a solution y ∈ [a, b]n

with at most d distinct values of the variables in y.

The following lemma will be crucial:

Lemma 9 Let ε > 0. Let P and Q be n-PBDs with P having parameters p1, . . . , pk ≤ 1/2 and
p′1, . . . , p

′
m > 1/2 and Q having parameters q1, . . . , qk ≤ 1/2 and q′1, . . . , q

′
m > 1/2. Suppose

furthermore that Var[P] = Var[Q] = V and let C > 0 be a sufficiently large constant. Suppose
furthermore that for A = min(3, C

√
log(1/ε)/V ) and for all positive integers ` it holds

A`

(∣∣∣∣∣
k∑
i=1

p`i −
k∑
i=1

q`i

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

(1− p′i)` −
m∑
i=1

(1− q′i)`
∣∣∣∣∣
)
< ε/C log(1/ε). (1)

Then dTV (P,Q) < ε.

In practice, we shall only need to deal with a finite number of `’s, since we will be considering
the case where all pi, qi or 1− p′i, 1− q′i that do not appear in pairs will have size less than 1/(2A).
Therefore, the size of the sum in question will be sufficiently small automatically for ` larger than
Ω(log((k +m)/ε)).

The basic idea of the proof will be to show that the Fourier transforms of P and Q are close to
each other. In particular, we will need to make use of the following intermediate lemma:

Lemma 10 Let P, Q be PBDs with |E[P]−E[Q]| = O(Var[P]1/2) and Var[P]+1 = Θ(Var[Q]+
1). Let M = Θ(log(1/ε) +

√
Var[P] log(1/ε)) and ` = Θ(log(1/ε)) be positive integers with the

implied constants sufficiently large. If
∑
−`≤ξ≤` |P̂(ξ)− Q̂(ξ)|2 ≤ ε2/16, then dTV (P,Q) ≤ ε.

The proof of Lemma 10, which is given in Appendix B.2, is similar to (part of) the correctness
analysis of the non-proper learning algorithm in Diakonikolas et al. (2015a). The proof of Lemma
9 requires Lemma 10 and is given in Appendix B.3. Finally, the proof of Theorem 5 is deferred to
Appendix B.4.
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3. Proper Learning Algorithm

Given samples from an unknown PBD P, and given a collection of intervals and multiplicities as
described in Theorem 5, we wish to find a PBD Q with those multiplicities that approximates P. By
Lemma 9, it is sufficient to find such a Q so that Q̂(ξ) is close to P̂(ξ) for all small ξ. On the other
hand, by Equation (11) the logarithm of the Taylor series of Q̂ is given by an appropriate expansion
in the parameters. Note that if |ξ| is small, due to the (e(ξ/M)−1)` term, the terms of our sum with
` � log(1/ε) will automatically be small. By truncating the Taylor series, we get a polynomial in
the parameters that gives us an approximation to log(Q̂(ξ)). By applying a truncated Taylor series
for the exponential function, we obtain a polynomial in the parameters of Q which approximates its
Fourier coefficients. This procedure yields a system of polynomial equations whose solution gives
the parameters of a PBD that approximates P. Our main technique will be to solve this system of
equations to obtain our output distribution using the following result:

Theorem 11 (Renegar (1992b,a)) Let Pi : Rn → R, i = 1, . . . ,m, be m polynomials over the
reals each of maximum degree at most d. Let K = {x ∈ Rn : Pi(x) ≥ 0, for all i = 1, . . . ,m}. If
the coefficients of the Pi’s are rational numbers with bit complexity at most L, there is an algorithm
that runs in time poly(L, (d ·m)n) and decides if K is empty or not. Further, if K is non-empty, the
algorithm runs in time poly(L, (d ·m)n, log(1/δ)) and outputs a point in K up to an L2 error δ.

In order to set up the necessary system of polynomial equations, we have the following theorem:

Theorem 12 Consider a PBD P with Var[P] < poly(1/ε), and real numbers σ̃ ∈ [
√

Var[P]/2, 2
√

Var[P]+
1] and µ̃with |E[P]−µ̃| ≤ σ̃. LetM be as above and let ` be a sufficiently large multiple of log(1/ε).
Let hξ be complex numbers for each integer ξ with |ξ| ≤ ` so that

∑
|ξ|≤` |hξ − P̂(ξ)|2 < ε2/16.

Consider another PBD with parameters qi of multiplicitymi contained in intervals [ai, bi] as de-
scribed in Theorem 5. There exists an explicit system P ofO(log(1/ε)) real polynomial inequalities
each of degree O(log(1/ε)) in the qi so that:

(i) If there exists such a PBD of the form of Q with dTV (P,Q) < ε/`, E[Q] = E[P], and
Var[P] ≥ Var[Q] ≥ Var[P]/2, then its parameters qi yield a solution to P .

(ii) Any solution {qi} to P corresponds to a PBD Q with dTV (P,Q) < ε/2.

Furthermore, such a system can be found with rational coefficients of encoding size O(log2(1/ε))
bits.

Proof For technical reasons, we begin by considering the case that Var[P] is larger than a suffi-
ciently large multiple of log(1/ε), as we will need to make use of slightly different techniques in the
other case. In this case, we construct our system P in the following manner. We begin by putting
appropriate constraints on the mean and variance of Q and requiring that the qi’s lie in appropriate
intervals.

µ̃− 2σ̃ ≤
k∑
j=1

mjpj ≤ µ̃+ 2σ̃ (2)

σ̃2/2− 1 ≤
k∑
j=1

mjpj(1− pj) ≤ 2σ̃2 (3)

aj ≤ pj ≤ bj , (4)

10
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Next, we need a low-degree polynomial to express the condition that Fourier coefficients of Q are
approximately correct. To do this, we let S denote the set of indices i so that [ai, bi] ⊂ [0, 1/2] and
T the set so that [ai, bi] ⊂ [1/2, 1] and let m =

∑
i∈T mi. We let

gξ = 2πiξm/M +
∑̀
k=1

(−1)k+1

k

(
(e(ξ/M)− 1)k

∑
i∈S

miq
k
i + (e(−ξ/M)− 1)k

∑
i∈T

mi(1− qi)k
)

(5)
be an approximation to the logarithm of Q̂(ξ). We next define exp′ to be a Taylor approximation to
the exponential function

exp′(z) :=
∑̀
k=0

zk

k!
.

By Taylor’s theorem, we have that | exp′(z) − exp(z)| ≤ z`+1 exp(z)
(`+1)! , and in particular that if |z| <

`/3 that | exp′(z)− exp(z)| = exp(−Ω(`)).
We would ideally like to use exp′(gξ) as an approximation to Q̂(ξ). Unfortunately, gξ may have

a large imaginary part. To overcome this issue, we let oξ, defined as the nearest integer to µ̃ξ/M ,
be an approximation to the imaginary part, and we set

qξ = exp′(gξ + 2πioξ) . (6)

We complete our system P with the final inequality:∑
−`≤ξ≤`

|qξ − hξ|2 ≤ ε2/8. (7)

In order for our analysis to work, we will need for qξ to approximate Q̂(ξ). Thus, we make the
following claim:

Claim 13 If Equations (2), (3), (4), (5), and (6) hold, then |qξ − Q̂(ξ)| < ε3 for all |ξ| ≤ `.

This is proved in Appendix C by showing that gξ is close to a branch of the logarithm of Q̂(ξ) and
that |gξ + 2πioξ| ≤ O(log(1/ε)), so exp′ is a good enough approximation to the exponential.

Hence, our system P is defined as follows:
Variables:

• qi for each distinct parameter i of Q.

• gξ for each |ξ| ≤ `.

• qξ for each |ξ| ≤ `.

Equations: Equations (2), (3), (4), (5), (6), and (7).

To prove (i), we note that such a Q will satisfy (2) and (3), because of the bounds on its mean and
variance, and will satisfy Equation (4) by assumption. Therefore, by Claim 13, qξ is approximately
Q̂(ξ) for all ξ. On the other hand, since dTV (P,Q) < ε/`, we have that |P̂(ξ) − Q̂(ξ)| < ε/` for
all ξ. Therefore, setting gξ and qξ as specified, Equation (7) follows. To prove (ii), we note that a
Q whose parameters satisfy P will by Claim 13 satisfy the hypotheses of Lemma 10. Therefore,
dTV (P,Q) ≤ ε/2.

11
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As we have defined it so far, the system P does not have rational coefficients. Equation (5)
makes use of e(±ξ/M) and π, as does Equation (6). To fix this issue, we note that if we approxi-
mate the appropriate powers of (±1 ± e(±ξ/M)) and qπi each to accuracy (ε/

∑
i∈Smi))

10, this
produces an error of size at most ε4 in the value gξ, and therefore an error of size at most ε3 for qξ,
and this leaves the above argument unchanged.

Also, as defined above, the system P has complex constants and variables and many of the
equations equate complex quantities. The system can be expressed as a set of real inequalities by
doubling the number of equations and variables to deal with the real and imaginary parts sepa-
rately. Doing so introduces binomial coefficients into the coefficients, which are no bigger than
2O(log(1/ε)) = poly(1/ε) in magnitude. To express exp′, we need denominators with a factor of
`! = log(1/ε)Θ(log(1/ε)). All other constants can be expressed as rationals with numerator and de-
nominator bounded by poly(1/ε). So, the encoding size of any of the rationals that appear in the
system is log(log(1/ε)O(log(1/ε))) = O(log2(1/ε)).

One slightly more difficult problem is that the proof of Claim 13 depended upon the fact that
Var[P] � log(1/ε). If this is not the case, we will in fact need to slightly modify our system
of equations. In particular, we redefine S to be the set of indices, i, so that bi ≤ 1/4 (rather
than ≤ 1/2), and let T be the set of indices i so that ai ≥ 3/4. Finally, we let R be the set of
indices for which [ai, bi] ⊂ [1/4, 3/4]. We note that, since each i ∈ R contributes at least mi/8 to∑

imiqi(1−qi), if Equations (4) and (3) both hold, we must have |R| = O(Var[P]) = O(log(1/ε)).
We then slightly modify Equation (6), replacing it by

qξ = exp′(gξ)
∏
i∈R

(qie(ξ/M) + (1− qi))mi . (8)

Note that by our bound on
∑

i∈Rmi, this is of degree O(log(1/ε)).
We now need only prove the analogue of Claim 13 in order for the rest of our analysis to follow.

Claim 14 If Equations (2), (3), (4), (5), and (8) hold, then |qξ − Q̂(ξ)| < ε3 for all |ξ| ≤ `.

We prove this in Appendix C, by proving similar bounds to those needed for Claim 13. This com-
pletes the proof of our theorem in the second case.

Our algorithm for properly learning PBDs is given in pseudocode below:

12
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Algorithm Proper-Learn-PBD
Input: sample access to a PBD P and ε > 0.
Output: A hypothesis PBD that is ε-close to P with probability at least 9/10.

Let C be a sufficiently large universal constant.

1. Draw O(1) samples from P and with confidence probability 19/20 compute: (a) σ̃2, a factor 2
approximation to VarX∼P[X]+1, and (b) µ̃, an approximation to EX∼P[X] to within one standard

deviation. Set M def
= dC(log(1/ε) + σ̃

√
log(1/ε))e. Let ` def

= dC2 log(1/ε)e.

2. If σ̃ > Ω(1/ε3), then we draw O(1/ε2) samples and use them to learn a shifted binomial dis-
tribution, using algorithms Learn-Poisson and Locate-Binomial from Daskalakis et al.
(2015a). Otherwise, we proceed as follows:

3. Draw N = C3(1/ε2) ln2(1/ε) samples s1, . . . , sN from P. For integers ξ with |ξ| ≤ `, set hξ to
be the empirical DFT modulo M . Namely, hξ := 1

N

∑N
i=1 e(−ξsi/M).

4. LetM be the set of multisets of multiplicities described in Lemma 6. For each element m ∈ M,
let Pm be the corresponding system of polynomial equations as described in Theorem 12.

5. For each such system, use the algorithm from Theorem 11 to find a solution to precision ε/(2k),
where k is the sum of the multiplicities not corresponding to 0 or 1, if such a solution exists. Once
such a solution is found, return the PBD Q with parameters qi to multiplicity mi, where mi are
the terms from m and qi in the approximate solution to Pm.

The proof of Theorem 1 is given in Appendix C.2.

4. Conclusions and Open Problems

In this work, we gave a nearly-sample optimal algorithm for properly learning PBDs that runs in
almost polynomial time. We also provided a structural characterization for PBDs that may be of
independent interest. The obvious open problem is to obtain a polynomial-time proper learning
algorithm. We conjecture that such an algorithm is possible, and our mildly super-polynomial
runtime may be viewed as an indication of the plausibility of this conjecture. Currently, we do not
know of a poly(1/ε) time algorithm even for the special case of an n-PBD with n = O(log(1/ε)).

A related open question concerns obtaining faster proper algorithms for learning more general
families of discrete distributions that are amenable to similar techniques, e.g., sums of independent
integer-valued random variables Daskalakis et al. (2013); Diakonikolas et al. (2015a), and Poisson
multinomial distributions Daskalakis et al. (2015b); Diakonikolas et al. (2015b). Here, we believe
that progress is attainable via a generalization of our techniques.

The recently obtained cover size lower bound for PBDs Diakonikolas et al. (2015a) is a bot-
tleneck for other non-convex optimization problems as well, e.g., the problem of computing ap-
proximate Nash equilibria in anonymous games Daskalakis and Papadimitriou (2014b). The fastest
known algorithms for these problems proceed by enumerating over an ε-cover. Can we obtain faster
algorithms in such settings, by avoiding enumeration over a cover?
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Bachelier, Paris, 1837.

J. Renegar. On the computational complexity and geometry of the first-order theory of the reals. J.
Symb. Comput., 13(3):255–352, 1992a.

16



PROPER LEARNING OF PBDS

J. Renegar. On the computational complexity of approximating solutions for real algebraic formulae.
SIAM J. Comput., 21(6):1008–1025, 1992b.

C. Riener. Symmetries in Semidefinite and Polynomial Optimization. PhD thesis, Johann Wolfgang
Goethe-Universitat, 2011.

D.W. Scott. Multivariate Density Estimation: Theory, Practice and Visualization. Wiley, New York,
1992.

B. W. Silverman. Density Estimation. Chapman and Hall, London, 1986.

A. T. Suresh, A. Orlitsky, J. Acharya, and A. Jafarpour. Near-optimal-sample estimators for spher-
ical gaussian mixtures. In Advances in Neural Information Processing Systems (NIPS), pages
1395–1403, 2014.

S. Vempala and G. Wang. A spectral algorithm for learning mixtures of distributions. In Proceedings
of the 43rd Annual Symposium on Foundations of Computer Science, pages 113–122, 2002.

G. Walther. Inference and modeling with log-concave distributions. Statistical Science, 24(3):
319–327, 2009.

Appendix

Appendix A. Sample Complexity Lower Bound for Parameter Estimation

Proposition 15 Suppose that n ≥ 1/ε. Any learning algorithm that takes N samples from an n-
PBD and returns estimates of these parameters to additive error at most ε with probability at least
2/3 must have N ≥ 2Ω(1/ε).

Proof We may assume that n = Θ(1/ε) (as we could always make the remaining parameters all 0)
and demonstrate a pair of PBDs whose parameters differ by Ω(ε), and yet have variation distance
2−Ω(1/ε). Therefore, if such an algorithm is given one of these two PBDs, it will be unable to
distinguish which one it is given, and therefore unable to learn the parameters to ε accuracy with at
least 2Ω(1/ε) samples.

In order to make this construction work, we take P to have parameters pj := (1+cos
(

2πj
n

)
)/8,

and let Q have parameters qj := (1 + cos
(

2πj+π
n

)
)/8. Suppose that j = n/4 + O(1). We claim

that none of the qi are closer to pj that Ω(1/n). This is because for all i we have that
(

2πi+π
n

)
is at

least Ω(1/n) from
(

2πj
n

)
and

(
2π(n−j)

n

)
.

On the other hand, it is easy to see that the pj are roots of the polynomial (Tn(8x−1)−1), and qj
are the roots of (Tn(8x−1)+1), where Tn is the nth Chebyshev polynomial. Since these polynomi-
als have the same leading term and identical coefficients other than their constant terms, it follows
that the elementary symmetric polynomials in pj of degree less than n equal the corresponding
polynomials in the qj . From this, by the Newton-Girard formulae, we have that

∑n
i=1 p

l
i =

∑n
i=1 q

l
i

for 1 ≤ l ≤ n− 1. For any l ≥ n, we have that 3l(
∑n

i=1(pli− qli)) ≤ n(3/4)n, and so by Lemma 9,
we have that dTV (P,Q) = 2−Ω(n). This completes our proof.
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Appendix B. Omitted Proofs from Section 2

B.1. Proof of Lemma 6

For completeness, we restate the lemma below.

Lemma 6. For every P as in Theorem 5, there exists an explicit set M of multisets of triples
(mi, ai, bi)1≤i≤k so that

(i) For each element ofM and each i, [ai, bi] is either one of the intervals Ii or Ji as in Theorem
5 or [0, 0] or [1, 1].

(ii) For each element ofM, k = O(log(1/ε)).

(iii) There exist an element ofM and a PBD Q as in the statement of Theorem 5 with dTV (P,Q) <
ε2 so that Q has a parameter of multiplicity mi between ai and bi for each 1 ≤ i ≤ k and no
other parameters.

(iv) M has size
(

1
ε

)O(log log(1/ε)) and can be enumerated in poly(|M|) time.

Proof [Proof of Lemma 6 assuming Theorem 5] Replacing ε in Theorem 5 by ε2, we take M to
be the set of all possible ways to have at most O(log(1/ε)/ log(1/Bi)) terms with [ai, bi] equal to
Ii or Ji and having the sum of the corresponding m’s at most 4Var[P]/Bi, having one term with
ai = bi = 1 and mi = E[P] + poly(1/ε), and one term with ai = bi = 0 and mi such that the sum
of all of the mi’s equals n.

For this choice ofM, (i) is automatically satisfied, and (iii) follows immediately from Theorem
5. To see (ii), we note that the total number of term in an element ofM is at most

O(1) +
∑̀
i=1

O(log(1/ε)/ log(1/Bi)) = O(1) +
∑̀
i=1

O(log(1/ε)2−i) = O(log(1/ε)).

To see (iv), we need a slightly more complicated counting argument. To enumerate M, we
merely need to enumerate each integer of size E[P] + poly(1/ε) for the number of 1’s, and enu-
merate for each 0 ≤ i ≤ ` all possible multi-sets of mi of size at most O(log(1/ε)/ log(1/Bi))
with sum at most 2Var[P]/Bi to correspond to the terms with [ai, bi] = Ii, and again for the terms
with [ai, bi] = Ji. This is clearly enumerable in poly(|M|) time, and the total number of possible
multi-sets is at most

poly(1/ε)
∏̀
i=0

(2Var[P]/Bi)
O(log(1/ε)/ log(1/Bi)).
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Therefore, we have that

|M| ≤ poly(1/ε)
∏̀
i=0

(2Var[P]/Bi)
O(log(1/ε)/ log(1/Bi))

= poly(1/ε)
∏̀
i=0

B
−O(log1/Bi

(1/ε))

i

∏̀
i=0

O(Var[P])O(log(1/ε)/(2i log(1/B0)))

= poly(1/ε)
∏̀
i=0

poly(1/ε)O(Var[P])O(log(1/ε)/ log(1/B0))

= (1/ε)O(log log(1/ε))O(Var[P])O(log(1/ε)/ log(1/B0))

= (1/ε)O(log log(1/ε)).

The last equality above requires some explanation. If Var[P] < log2(1/ε), then

O(Var[P])O(log(1/ε)/ log(1/B0)) ≤ log(1/ε)O(log(1/ε)) = (1/ε)O(log log(1/ε)).

Otherwise, if Var[P] ≥ log2(1/ε), log(1/B0)� log(Var[P]), and thus

O(Var[P])O(log(1/ε)/ log(1/B0)) ≤ poly(1/ε).

This completes our proof.

B.2. Proof of Lemma 10

For completeness, we restate the lemma below.

Lemma 10. Let P, Q be PBDs with |E[P]−E[Q]| = O(Var[P]1/2) and Var[P] = Θ(Var[Q]). Let
M = Θ(log(1/ε) +

√
Var[P] log(1/ε)) and ` = Θ(log(1/ε)) be positive integers with the implied

constants sufficiently large. If
∑
−`≤ξ≤` |P̂(ξ)− Q̂(ξ)|2 ≤ ε2/16, then dTV (P,Q) ≤ ε.

Proof The proof of this lemma is similar to the analysis of correctness of the non-proper learning
algorithm in Diakonikolas et al. (2015a).

The basic idea of the proof is as follows. By Bernstein’s inequality, P and Q both have nearly
all of their probability mass supported in the same interval of length M . This means that is suffices
to show that the distributions P (mod M) and Q (mod M) are close. By Plancherel’s Theorem, it
suffices to show that the DFTs P̂ and Q̂ are close. However, it follows by Lemma 6 of Diakonikolas
et al. (2015a) that these DFTs are small in magnitude outside of −` ≤ ξ ≤ `.

Letm be the nearest integer to the expected value of P. By Bernstein’s inequality, it follows that
both P and Q have 1−ε/10 of their probability mass in the interval I = [m−M/2,m+M/2). We
note that any given probability distribution X over Z/MZ has a unique lift to a distribution taking
values in I . We claim that dTV (P,Q) ≤ ε/5 + dTV (P (mod M),Q (mod M)). This is because
after throwing away the at most ε/5 probability mass where P or Q take values outside of I , there
is a one-to-one mapping between values in I taken by P or Q and the values taken by P (mod M)
or Q (mod M). Thus, it suffices to show that dTV (P (mod M),Q (mod M)) ≤ 4ε/5.
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By Cauchy-Schwarz, we have that

dTV (P (mod M),Q (mod M)) ≤
√
M‖P (mod M)−Q (mod M)‖2 .

By Plancherel’s Theorem, the RHS above is√ ∑
ξ (mod M)

|P̂(ξ)− Q̂(ξ)|2. (9)

By assumption, the sum of the above over all |ξ| ≤ ` is at most ε2/16. However, applying Lemma 6
of Diakonikolas et al. (2015a) with k = 2, we find that for any |ξ| ≤M/2 that each of |P̂(ξ)|, |Q̂(ξ)|
is exp(−Ω(ξ2Var[P]/M2)) = exp(−Ω(ξ2/ log(1/ε))). Therefore, the sum above over ξ not within
` of some multiple of M is at most∑

n>`

exp(−Ω(n2/ log(1/ε))) ≤
∑
n>`

exp(−Ω((`2 + (n− `)`)/ log(1/ε)))

≤
∑
n>`

exp(−(n− `)) exp(−Ω(`2/ log(1/ε))) ≤ ε2/16

assuming that the constant defining ` is large enough. Therefore, the sum in (9) is at most ε2/8.
This completes the proof.

B.3. Proof of Lemma 9

For completeness, we restate the lemma below.

Lemma 9. Let ε > 0. Let P and Q be n-PBDs with P having parameters p1, . . . , pk ≤ 1/2 and
p′1, . . . , p

′
m > 1/2 and Q having parameters q1, . . . , qk ≤ 1/2 and q′1, . . . , q

′
m > 1/2. Suppose

furthermore that Var[P] = Var[Q] = V and let C > 0 be a sufficiently large constant. Suppose
furthermore that for A = min(3, C

√
log(1/ε)/V ) and for all positive integers ` it holds

A`

(∣∣∣∣∣
k∑
i=1

p`i −
k∑
i=1

q`i

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

(1− p′i)` −
m∑
i=1

(1− q′i)`
∣∣∣∣∣
)
< ε/C log(1/ε). (10)

Then dTV (P,Q) < ε.

Proof We proceed by means of Lemma 10. We need only show that for all ξ with |ξ| = O(log(1/ε))
that |P̂(ξ)− Q̂(ξ)| � ε/

√
log(1/ε). For this we note that

P̂(ξ) =

k∏
i=1

((1− pi) + pie(ξ/M))

m∏
i=1

((1− p′i) + p′ie(ξ/M))

= e(mξ/M)
k∏
i=1

(1 + pi(e(ξ/M)− 1))
m∏
i=1

(1 + (1− p′i)(e(−ξ/M)− 1)).
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Taking a logarithm and Taylor expanding, we find that

log(P̂(ξ)) = 2πimξ/M+

∞∑
`=1

(−1)1+`

`

(
(e(ξ/M)− 1)`

k∑
i=1

p`i + (e(−ξ/M)− 1)`
m∑
i=1

(1− p′i)`
)
.

(11)
A similar formula holds for log(Q̂(ξ)). Therefore, we have that

|P̂(ξ)− Q̂(ξ)| ≤ | log(P̂(ξ))− log(Q̂(ξ))| ,

which is at most

∞∑
`=1

|e(ξ/M)− 1|`
(∣∣∣∣∣

k∑
i=1

p`i −
k∑
i=1

q`i

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

(1− p′i)` −
m∑
i=1

(1− q′i)`
∣∣∣∣∣
)

≤
∞∑
`=1

(2A/3)`

(∣∣∣∣∣
k∑
i=1

p`i −
k∑
i=1

q`i

∣∣∣∣∣+

∣∣∣∣∣
m∑
i=1

(1− p′i)` −
m∑
i=1

(1− q′i)`
∣∣∣∣∣
)

≤
∞∑
`=1

(2/3)`ε/C log(1/ε)

�ε/C log(1/ε).

An application of Lemma 10 completes the proof.

B.4. Proof of Theorem 5

The basic idea of the proof is as follows. First, we will show that it is possible to modify P in order
to satisfy (ii) without changing its mean, increasing its variance (or decreasing it by too much),
or changing it substantially in total variation distance. Next, for each of the other intervals Ii or
Ji, we will show that it is possible to modify the parameters that P has in this interval to have
the appropriate number of distinct parameters, without substantially changing the distribution in
variation distance. Once this holds for each i, conditions (iii) and (iv) will follow automatically.

To begin with, we modify P to have at most one parameter in I`+1 in the following way. We
repeat the following procedure. So long as P has two parameters, p and p′ in I`+1, we replace those
parameters by 0 and p+ p′. We note that this operation has the following properties:

• The expectation of P remains unchanged.

• The total variation distance between the old and new distributions is O(pp′), as is the change
in variances between the distributions.

• The variance of P is decreased.

• The number of parameters in I`+1 is decreased by 1.

All of these properties are straightforward to verify by considering the effect of just the sum of
the two changed variables. By repeating this procedure, we eventually obtain a new PBD, P′ with
the same mean as P, smaller variance, and at most one parameter in I`+1. We also claim that
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dTV (P,P′) is small. To show this, we note that in each replacement, the error in variation distance
is at most a constant times the increase in the sum of the squares of the parameters of the relevant
PBD. Therefore, letting pi be the parameters of P and letting p′i be the parameters of P′, we have
that dTV (P,P′) = O(

∑
(p′i)

2 − p2
i ). We note that this difference is entirely due to the parameters

that were modified by this procedure. Therefore, it is at most (2B`)
2 times the number of non-

zero parameters created. Note that all but one of these parameters contributes at least B`/2 to the
variance of P′. Therefore, this number is at most 2Var[P]/B` + 1. Hence, the total variation
distance between P and P′ is at most O(B2

` )(Var[P]/B` + 1) ≤ ε3. Similarly, the variance of our
distribution is decreased by at most this much. This implies that it suffices to consider P that have
at most one parameter in I`+1. Symmetrically, we can also remove all but one of the parameters in
J`+1, and thus it suffices to consider P that satisfy condition (ii).

Next, we show that for any such P that it is possible to modify the parameters that P has in Ii
or Ji, for any i, so that we leave the expectation and variance unchanged, introduce at most ε2 error
in variation distance, and leave only O(log(1/ε)/ log(1/Bi)) distinct parameters in this range. The
basic idea of this is as follows. By Lemma 9, it suffices to keep

∑
p`i or

∑
(1 − pi)` constant for

parameters pi in that range for some range of values of `. On the other hand, Theorem 7 implies
that this can be done while producing only a small number of distinct parameters.

Without loss of generality assume that we are dealing with the interval Ii. Note that if i = 0
and Var[P] � log(1/ε), then B0 = 1/4, and there can be at most O(log(1/ε)) parameters in I0

to begin with. Hence, in this case there is nothing to show. Thus, assume that either i ≥ 0 or that
Var[P]� log(1/ε) with a sufficiently large constant. Let p1, . . . , pm be the parameters of p that lie
in Ii. Consider replacing them with parameters q1, . . . , qm also in Ii to obtain Q. By Lemma 9, we
have that dTV (P,Q) < ε2 so long as the first two moments of P and Q agree and

min(3, C
√

log(1/ε)/Var[P])`

∣∣∣∣∣∣
m∑
j=1

p`j −
m∑
j=1

q`j

∣∣∣∣∣∣ < ε3 , (12)

for all ` (the terms in the sum in Equation (10) coming from the parameters not being changed cancel
out). Note that min(3, C

√
log(1/ε)/Var[P]) max(pj , qj) ≤ BO(1)

i . This is because by assumption
either i > 0 and max(pj , qj) ≤

√
Bi ≤ 1/4 or i = 0 and Bi =

√
log(1/ε)/Var[P] � 1.

Furthermore, note that Var[P] ≥ mBi+1. Therefore, m ≤ poly(1/ε). Combining the above,
we find that Equation (12) is automatically satisfied for any qj ∈ Ii so long as ` is larger than a
sufficiently large multiple of log(1/ε)/ log(1/Bi). On the other hand, Theorem 7 implies that there
is some choice of qj ∈ Ii taking on only O(log(1/ε)/ log(1/Bi)) distinct values, so that

∑m
j=1 q

`
j is

exactly
∑m

j=1 p
`
j for all ` in this range. Thus, replacing the pj’s in this range by these qj’s, we only

change the total variation distance by ε2, leave the expectation and variance the same (as we have
fixed the first two moments), and have changed our distribution in variation distance by at most ε2.

Repeating the above procedure for each interval Ii or Ji in turn, we replace P by a new PBD, Q
with the same expectation and smaller variance and dTV (P,Q) < ε, so that Q satisfies conditions
(i) and (ii). We claim that (iii) and (iv) are necessarily satisfied. Condition (iii) follows from noting
that the number of parameters not 0 or 1 is at most 2+2Var[P]/B`, which is poly(1/ε). Therefore,
the expectation of Q is the number of parameters equal to 1 + poly(1/ε). Condition (iv) follows
upon noting that Var[Q] ≤ Var[P] is at least the number of parameters in Ii or Ji times Bi/2 (as
each contributes at least Bi/2 to the variance). This completes the proof of Theorem 5.

22



PROPER LEARNING OF PBDS

Appendix C. Omitted Proofs from Section 3

C.1. Proofs of Claims 13 and 14

In this section, we prove Claims 13 and 14 which we restate here.

Claim 13. If Equations (2), (3), (4), (5), and (6) hold, then |qξ − Q̂(ξ)| < ε3 for all |ξ| ≤ `.

Proof First we begin by showing that gξ approximates log(Q̂(ξ)). By Equation (11), we would
have equality if the sum over k were extended to all positive integers. Therefore, the error between
gξ and log(Q̂(ξ)) is equal to the sum over all k > `. Since σ̃ � log(1/ε), we have that M � `
and therefore, |1 − e(ξ/m)| and |e(−ξ/M) − 1| are both less than 1/2. Therefore, the term for
a particular value of k is at most 2−k

(∑
i∈Smiqi +

∑
i∈T mi(1− qi)

)
� 2−kσ̃. Summing over

k > `, we find that
|gξ − log(Q̂(ξ))| < ε4.

We have left to prove that exp′(gξ − 2πioξ) is approximately exp(gξ) = exp(gξ − 2πioξ). By
the above, it suffices to prove that |gξ − 2πioξ| < `/3. We note that

gξ = 2πiξm/M +
∑̀
k=1

(−1)k+1

k

(
(e(ξ/M)− 1)k

∑
i∈S

miq
k
i + (e(−ξ/M)− 1)k

∑
i∈T

mi(1− qi)k
)

= 2πiξm/M + (e(ξ/M)− 1)
∑
i∈S

miqi + (e(−ξ/M)− 1)
∑
i∈T

mi(1− qi)+

+O

(∑̀
k=2

|ξ|2/M22−k

(∑
i

miqi(1− qi)

))

= 2πiξm/M + 2πiξ/M

(∑
i∈S

miqi −
∑
i∈T

mi(1− qi)

)
+O(|ξ|2/M2σ̃2)

= 2πiξ/M
∑
i

miqi +O(|ξ|2/M2σ̃2)

= 2πiξ/Mµ̃+O(|ξ|/Mσ̃) +O(|ξ|2/M2σ̃2)

= 2πioξ +O(log(1/ε)).

This completes the proof.

Claim 14. If Equations (2), (3), (4), (5), and (8) hold, then |qξ − Q̂(ξ)| < ε3 for all |ξ| ≤ `.

Proof Let Q′ be the PBD obtained from Q upon removing all parameters corresponding to elements
of R. We note that

Q̂(ξ) = Q̂′(ξ)
∏
i∈R

(qie(ξ/M) + (1− qi))mi .

Therefore, it suffices to prove our claim when R = ∅.
Once again it suffices to show that gξ is within ε4 of log(Q̂(ξ)) and that |gξ| < `/3. For the

former claim, we again note that, by Equation (11), we would have equality if the sum over k were
extended to all integers, and therefore only need to bound the sum over all k > `. On the other
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hand, we note that qi ≤ 1/4 for i ∈ S and (1− qi) ≤ 1/4 for i ∈ T . Therefore, the kth term in the
sum would have absolute value at most

O

(
2−k

(∑
i∈S

miqi +
∑
i∈T

mi(1− qi)

))
= O(2−kσ̃i).

Summing over k > `, proves the appropriate bound on the error. Furthermore, summing this bound
over 1 ≤ k ≤ ` proves that |gξ| < `/3, as required. Combining these results with the bounds on the
Taylor error for exp′ completes the proof.

C.2. Proof of Theorem 1

We first note that the algorithm succeeds in the case that VarX∼P[X] = Ω(1/ε6): Daskalakis et al.
(2015a) describes procedures Learn-Poisson and Locate-Binomial that draw O(1/ε2)
samples, and return a shifted binomial ε-close to a PBD P, provided P is not close to a PBD in
“sparse form” in their terminology. This holds for any PBD with effective support Ω(1/ε3), since
by definition a PBD in “sparse form” has support of size O(1/ε3).

It is clear that the sample complexity of our algorithm is O(ε−2 log2(1/ε)). The runtime of the
algorithm is dominated by Step 5. We note that by Lemma 6, |M| = (1/ε)O(log log(1/ε)). Further-
more, by Theorems 11 and 12, the runtime for solving the system Pm is O(log(1/ε))O(log(1/ε)) =
(1/ε)O(log log(1/ε)). Therefore, the total runtime is (1/ε)O(log log(1/ε)).

It remains to show correctness. We first note that each hξ is an average of independent random
variables e(−ξpi/M), with expectation P̂(ξ). Therefore, by standard Chernoff bounds, with high
probability we have that |hξ − P̂(ξ)| = O(

√
log(`)/

√
N)� ε/

√
` for all ξ, and therefore we have

that ∑
|ξ|≤`
|hξ − P̂(ξ)|2 < ε2/8.

Now, by Lemma 6, for some m ∈ M there will exist a PBD Q whose distinct parameters come in
multiplicities given by m and lie in the corresponding intervals so that dTV (P,Q) ≤ ε2. Therefore,
by Theorem 12, the system Pm will have a solution. Therefore, at least one Pm will have a solution
and our algorithm will necessarily return some PBD Q.

On the other hand, any Q returned by our algorithm will correspond to an approximation of
some solution of Pm, for some m ∈ M. By Theorem 12, any solution to any Pm will give a
PBD Q with dTV (P,Q) ≤ ε/2. Therefore, the actual output of our algorithm is a PBD Q′, whose
parameters approximate those of such a Q to within ε/(2k). On the other hand, from this it is clear
that dTV (Q,Q′) ≤ ε/2, and therefore, dTV (P,Q′) ≤ ε. In conclusion, our algorithm will always
return a PBD that is within ε total variation distance of P.

Appendix D. Agnostic Proper Learning of PBDs and Optimization for Real-Rooted
Polynomials

D.1. Agnostic Proper Learning

In this section, we establish the following:
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Theorem 16 Given ε > 0 and sample access to a distribution Q over [n] there is an algorithm
that draws Õ(1/ε2) samples from Q, runs in time (1/ε)O(log log(1/ε)), and outputs an explicit PBD
P such that dTV (P,Q) ≤ O(opt · log2(1/opt)) + ε, where opt is the minimum total variation
distance between Q and the set of PBDs.

The algorithm in the above theorem does not a priori know the value of opt. By a standard
doubling trick followed by a hypothesis selection procedure (see, e.g.,Theorem 6 in Chan et al.
(2014b)), the agnostic learning problem can be reduced to the case that opt = O(ε). The latter case
is handled in the following proposition:

Proposition 17 Given ε > 0 and sample access to a distribution Q over [n] there is an algorithm
that draws Õ(1/ε2) samples from Q, runs in time (1/ε)O(log log(1/ε)), and has the following per-
formance guarantee: If there exists a PBD P such that dTV (P,Q) ≤ ε, the algorithm outputs an
explicit PBD P′ such that dTV (P′,P) ≤ O(ε log2(1/ε)).

The algorithm is a small modification of our algorithm Proper-Learn-PBD. The main dif-
ference is that we start by obtaining robust estimates of the mean and variance of P. The modified
algorithm is given in pseudocode below.

Algorithm Agnostic-proper-Learn-PBD
Input: sample access to a distribution Q and ε > 0 such that there is a PBD P with dTV (P,Q) ≤ ε.
Output: A hypothesis PBD that is O(ε log2(1/ε))-close to P with probability at least 9/10.

1. Draw O(1/ε2) samples from Q and find the greatest a ∈ [n] and least b ∈ [n] such that at most a
2ε fraction of the samples are less than a and at most a 2ε fraction of the samples are greater than
b.

2. Draw O(1/ε2) samples from Q that lie in [a, b] (discarding samples not in [a, b]) and compute the
sample mean µ̃, and σ̃2, defined as 1/2 plus the sample variance.

3. If σ̃ ≥ Ω(1/ε3), return a shifted binomial distribution using Locate Binomial(µ̃, σ̃2, n) from
Daskalakis et al. (2015a).

/* The last three steps are identical to those of Proper-Learn-PBD except that instead of
ε we substitute ε′ := C ′ε log(1/ε) for some sufficiently large constant C ′. We then set M def

=

dC(log(1/ε′) + σ̃
√

log(1/ε′))e, and ` def
= dC2 log(1/ε′)e. */

4. Draw N = C3(1/ε′2) log2(1/ε′) samples s1, . . . , sN from P. For integers ξ with |ξ| ≤ `, set hξ
to be the empirical DFT modulo M . Namely, hξ := 1

N

∑N
i=1 e(−ξsi/M).

5. LetM be the set of multisets of multiplicities described in Lemma 6 (with ε set to ε′). For each
element m ∈ M, let Pm be the corresponding system of polynomial equations as described in
Theorem 12.

6. For each such system, use the algorithm from Theorem 11 to find a solution to precision ε′/(2k),
where k is the sum of the multiplicities not corresponding to 0 or 1, if such a solution exists. Once
such a solution is found, return the PBD P′ with parameters qi to multiplicity mi, where mi are
the terms from m and qi in the approximate solution to Pm.
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First we show that our estimates of the mean and variance suffice.

Lemma 18 With high constant probability over the samples, we have that |µ − µ̃| ≤ O((1 +
σ)ε log(1/ε)) and |σ̃2 − 1/2− σ2| ≤ O((1 + σ)2ε log2(1/ε)). Thus, we have that |µ− µ̃| ≤ σ̃ and
σ̃2 + 1 ∈ [(σ2 + 1)/2, 2(σ2 + 1)].

Proof First, we note that with high constant probability over our choice of samples in Step 1 it
holds Pr(P < a),Pr(P > b) = Θ(ε). Using standard bounds on the tails of PBDs, we note that
this implies that |a− µ|, |b− µ| = O(log(1/ε)(1 + σ)). We condition on this event throughout the
rest of the proof.

Informally, standard PBD tail bounds will imply that the contribution to the mean and standard
deviation of P coming from points outside of [a, b] will be small. Furthermore, the contribution to
these coming from the discrepancy between P and Q will also be small because we have restricted
ourselves to a small interval.

Note that the first conditions, that |µ−µ̃| ≤ O((1+σ)ε log(1/ε)) and |σ̃2−1/2−σ2| ≤ O((1+
σ)2ε log2(1/ε)), imply the second conditions that |µ− µ̃| ≤ σ̃ and σ̃2 +1 ∈ [(σ2 +1)/2, 2(σ2 +1)].

Let P1 be P conditioned on lying in the interval [a, b] and Q1 be Q conditioned on Q lying in
[a, b]. Notice that

|µ− EX∼p1 [X]| = O((1 + σ)ε log(1/ε)),

and ∣∣σ2 − EX∼P1 [(X − µ)2]
∣∣ = O((1 + σ)2ε log2(1/ε)).

This is because P has at most O(ε) mass outside of the interval [a, b], and because standard bounds
on the tails of PBDs imply that PrX∼P(|X − µ| > t(1 + σ))� exp(−t).

We also have that

|EY∼Q1 [Y ]− EX∼P1 [X]| = O((1 + σ)ε log(1/ε)),

and ∣∣EY∼Q1 [(Y − µ)2]− EX∼P1 [(X − µ)2]
∣∣ = O((1 + σ)2ε log2(1/ε)).

This is because dTV (P1,Q1) = O(ε) and because both are bounded in the range [a, b].
Therefore, we have that

EY∼Q1 [Y ] = µ+O((1 + σ)ε log(1/ε)),EY∼Q1 [(Y − µ)2] = σ2 +O((1 + σ)2ε log2(1/ε)).

It remains to prove that the sample means of Q1 and (Y −µ)2 agree with their expectations to within
an appropriate error. However, this follows with 90% probability based on Chebyshev bounds after
noting that Q1 and (Y − µ)2 have standard deviations of at most b− a = O((1 + σ) log(1/ε)) and
(b− a)2 = O((1 + σ)2 log2(1/ε)), respectively. This completes the proof.

Proof [Proof of Proposition 17] Note that we takeN = C3(1/ε′2) log2(1/ε′) = O((1/ε2) log4(1/ε))
samples in Step 4 of Proper-Learn-PBD. This dominates the sample complexity. The running
time of the overall algorithm is easily seen to be (1/ε′)O(log log 1/ε′) = (1/ε)O(log log 1/ε).

Most of the proof of this Proposition is identical to that of Theorem 1. To show correctness,
it is enough to show that µ̃, σ̃ and hξ satisfy the same guarantees as those required in the proof of
Theorem 1, as these are the only quantities we calculate from the samples and use in Steps 4 and 5
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of Proper-Learn-PBD. Lemma 18 gives that µ̃ and σ̃ satisfy the same bounds as the estimates
obtained in Step 1 of Proper-Learn-PBD.

Note that the expected value of each hξ is Q̂(ξ). Because each Fourier coefficient is an expecta-
tion of a function whose absolute value is at most 1, we have |P̂− Q̂| ≤ 2dTVP,Q ≤ 2ε. By Cher-
noff bounds, with high probability for all ξ, we have that |hξ−Q̂(ξ)| = O(

√
log(`)/

√
N)� ε′/

√
`,

and therefore |hξ − P̂(ξ)| = O(ε′/
√
`) + 2ε = O(ε′/

√
`). Thus, we have∑

|ξ|≤`

|hξ − P̂(ξ)|2 < ε′2/8.

In the case when σ̃ ≥ Ω(1/ε3), Lemma 18 gives that |σ̃2 − σ2| ≤ O(ε log2(1/ε)σ2) and
|µ− µ̃| ≤ O(ε log2(1/ε)σ2). These conditions and σ2 = Ω(1/ε3) ≥ C ′′(1/ε2 log4(1/ε)2) for some
sufficiently large universal constant C ′′ are enough to show that the output of Locate-Binomial
is within O(ε log2(1/ε)) of P as required. This follows from the analysis in Daskalakis et al.
(2015a). In particular, Claim 7 of that paper shows that under these conditions there is a translated
Poisson distribution TP (µ̃, σ̃2) with dTV (P, TP (µ̃, σ̃2)) ≤ O(ε log2(1/ε)). Then, the analysis of
Locate-Binomial (pages 17-20) shows that the output shifted binomial is similarly close to the
translated Poisson distribution.

The above suffices to show that when there is a PBD P with dTV (P,Q) ≤ ε, the algorithm
satisfies the stated performance guarantee. Note that when Q is an arbitrary distribution, we still
obtain the same time and sample complexity. This completes the proof.

D.2. Projection onto Polynomials with Non-Positive Real Roots

In this section, we point out that (using our non-proper learning algorithm) proper learning of PBDs
can be reduced to an interesting non-convex optimization problem over real-rooted univariate poly-
nomials. In particular, we abstract out our proper learning algorithm to obtain an algorithm with
similar running time for this polynomial optimization problem.

We start with the following simple fact:

Lemma 19 For a distribution P on [n], the probability generating function p(x)
def
= EX∼P[xX ] is

a polynomial with non-positive roots if and only if P is a PBD.

Proof If P is a PBD whose distinct parameters are pi with multiplicities mi, then

p(x) =
∏
i

((1− pi) + pix)mi .

Note that this polynomial has roots αi = −(1− pi)/pi with multiplicities mi.
Conversely, if p(x) is a polynomial with nonnegative coefficients such that p(1) = 1, and with

only nonpositive real roots αi with multiplicities mi, then

p(x) = (
∏
i

(x− αi)mi)/
∏
i

(1− αi)mi =
∏
i

(x/(1− αi)− αi/(1− αi))m1 .

Note that this is exactly the probability generating function of a PBD P whose distinct parameters
are pi = 1/(1 − αi) and the corresponding multiplicities. Finally, note that all distributions on [n]
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have probability generating functions which are polynomials with non-negative coefficients. This
completes the proof.

Roughly speaking, using the above lemma, we can translate results about PBDs to results about
polynomials with nonpositive real roots. To formally define our optimization problem, we will need
the following definition:

Definition 20 (L1-length of a polynomial) Let p be a univariate real polynomial. We define ‖p‖1,
the L1-length of p, to be the sum of the absolute values of p’s coefficients.

We define the following polynomial optimization problem:

Given a real univariate polynomial q (via its coefficients), compute a polynomial p with
non-positive real roots that minimizes ‖q − p‖1, the L1-length of the difference p− q.

Our proper learning algorithm for PBDs can be easily adapted to yield the following theorem 3:

Theorem 21 Given ε > 0 and a degree n polynomial q(x) (via its coefficients), there is an algo-
rithm with the following guarantee: Let opt = minp ‖q − p‖1 be the smallest L1-norm between
q and any polynomial p with non-positive real roots. There is a deterministic algorithm that runs
in time (1/ε)O(log log 1/ε) + npolylog(n, log 1/ε) and outputs the roots of a polynomial r(x) with
nonpositive real roots such that ‖r − q‖1 ≤ O(opt · log(2 + ‖q‖1/opt)) + ε · ‖q‖1.

Proof First, note that we can round any negative coefficients of q(x) to 0. This does not affect
the closest polynomial with non-positive roots, since each such polynomial has nonnegative coeffi-
cients. We assume from now on that q(x) has only non-negative coefficients.

Second, we note that the optimization problem is scale invariant. Therefore, it suffices to con-
sider the problem when ‖q‖1 = 1. The problem can then be solved for general q(x) by letting p(x)
be the solution corresponding to q(x)/‖q‖1 and return p(x)‖q‖1.

Our main observation is that our optimization problem is exactly that of given an explicit dis-
tribution Q (whose density function is given by the coefficients of q(x)) that is O(opt)-close to a
a PBD, to find an explicit PBD that is O(opt log(1/ε) + ε)-close to Q. We note that this problem
is effectively already solved in the previous subsection. In particular, if we knew the value of opt,
we could simply set ε′ = max(ε, opt), and use the algorithm from Proposition 17 with this ε′ in
place of ε. Without knowing opt, one can instead run this algorithm using the values 2iε in place of
ε, for i = 0, 1, . . . , O(log(1/ε)), and noting that for some value of i, 2iε will be Θ(opt), and this
run of the algorithm will return an appropriately close P′. By running this algorithm for all i up to
log2(1/ε), we return the P′ found that is closest to Q.

This method gives an obvious randomized algorithm for our problem. In particular, in order to
get the samples required by the algorithm from Proposition 17, we will need to simulate samples
from Q.

This algorithm is very easy to derandomize. In particular, we note that the analysis in Propo-
sition 17 only requires a few things from its choice of random variables. First, it requires that

3. Note the the theorem implies the existence of a similar algorithm for finding close polynomials with nonnegative real
roots.

28



PROPER LEARNING OF PBDS

Pr(Q < a),Pr(Q > b) = Θ(ε). It is trivial to find a and b satisfying these bounds given explicit
access to the distribution of Q. Second, it requires that the sample mean and standard deviation of
the samples taken in Step 2, that lie in [a, b], are close to the actual mean and standard deviations
of Q restricted to this interval. Instead, we can merely let µ̃ be the mean of Q conditioned on
lying in [a, b] and σ̃ be 1/2 plus the standard deviation. Both of these can be computed efficiently
given Q. Thirdly, we require that the hξ are within ε of Q̂(ξ). This can be fixed by setting hξ to
be Q̂(ξ) rather than a sample average. Finally, we need that the samples taken in Step 7 choose a
sufficiently close P′ from our list. This can be derandomized by choosing the P′ with smallest L1

error (explicitly computed) from Q. This completes the derandomization, and proves the theorem.
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