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Abstract
We study the minimization of a convex function f(X) over the set of n× n positive semi-definite
matrices, but when the problem is recast as minU g(U) := f(UU>), with U ∈ Rn×r and r ≤
n. We study the performance of gradient descent on g—which we refer to as Factored Gradient
Descent (FGD)—under standard assumptions on the original function f .

We provide a rule for selecting the step size and, with this choice, show that the local conver-
gence rate of FGD mirrors that of standard gradient descent on the original f : i.e., after k steps, the
error is O(1/k) for smooth f , and exponentially small in k when f is (restricted) strongly convex.
In addition, we provide a procedure to initialize FGD for (restricted) strongly convex objectives and
when one only has access to f via a first-order oracle; for several problem instances, such proper
initialization leads to global convergence guarantees.

FGD and similar procedures are widely used in practice for problems that can be posed as ma-
trix factorization. To the best of our knowledge, this is the first paper to provide precise convergence
rate guarantees for general convex functions under standard convex assumptions.
Keywords: Non-convex analysis and optimization, semi-definite matrix, rank minimization

1. Introduction

Consider the following standard convex semi-definite optimization problem:

minimize
X∈Rn×n

f(X) subject to X � 0, (1)

where f : Rn×n → R is a convex and differentiable function, andX � 0 denotes the convex set over
positive semi-definite matrices in Rn×n. Let X? be an optimum of (1) with rank(X?) = r? ≤ n.
This problem can be remodeled as a non-convex problem, by writingX = UU> whereU is an n×r
matrix. Specifically, define g(U) := f(UU>) and1 consider direct optimization of the transformed
problem, i.e.,

minimize
U∈Rn×r

g(U) where r ≤ n. (2)

Problems (1) and (2) will have the same optimum when r = r?. However, the recast problem
is unconstrained and leads to computational gains in practice: e.g., iterative update schemes, like
gradient descent, do not need to do eigen-decompositions to satisfy semi-definite constraints at
every iteration.

1. While g is a non-convex function, we note that it is a very specific kind of non-convexity, arising “only” due to the
recasting of an originally convex function.
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In this paper, we also consider the case of r < r?, which often occurs in applications. The rea-
sons of such a choice chould be three-fold: (i) it might model better an underlying task (e.g., f may
have arisen from a relaxation of a rank constraint in the first place), (ii) it leads to computational
gains, since smaller r means fewer variables to maintain and optimize, (iii) it leads to statistical
“gains”, as it might prevent over-fitting in machine learning or inference problems.

Such recasting of matrix optimization problems is empirically widely popular, especially as
the size of problem instances increases. Some applications in modern machine learning includes
matrix completion Candès and Recht (2009); Jain et al. (2013); Kyrillidis and Cevher (2014); Chen
et al. (2014), affine rank minimization Recht et al. (2010); Jain et al. (2010); Becker et al. (2013),
covariance / inverse covariance selection Hsieh et al. (2011); Kyrillidis et al. (2014), phase retrieval
Netrapalli et al. (2013); Candes et al. (2015a); White et al. (2015); Sun et al. (2016), Euclidean
distance matrix completion Mishra et al. (2011), finding the square root of a PSD matrix Jain et al.
(2015), and sparse PCA d’Aspremont et al. (2007), just to name a few. Typically, one can solve
(2) via simple, first-order methods on U like gradient descent. Unfortunately, such procedures have
no guarantees on convergence to the optima of the original f , or on the rate thereof. Our goal in
this paper is to provide such analytical guarantees, by using—simply and transparently—standard
convexity properties of the original f .

Overview of our results. In this paper, we prove that updating U via gradient descent in (2)
converges (fast) to optimal (or near-optimal) solutions. While there are some recent and very in-
teresting works that consider using such non-convex parametrization Jain et al. (2013); Netrapalli
et al. (2013); Tu et al. (2015); Zheng and Lafferty (2015); Sun and Luo (2014); Zhao et al. (2015),
their results only apply to specific examples. To the best of our knowledge, this is the first paper that
solves the re-parametrized problem with attractive convergence rate guarantees for general convex
functions f and under common convex assumptions. Moreover, we achieve the above by assuming
the first order oracle model: for any matrix X , we can only obtain the value f(X) and the gradient
∇f(X).

To achieve the desiderata, we study how gradient descent over U performs in solving (2). This
leads to the factored gradient descent (FGD) algorithm, which applies the simple update rule

U+ = U − η∇f(UUT ) · U. (3)

We provide a set of sufficient conditions to guarantee convergence. We show that given a suitable
initialization point, FGD converges to a solution close to the optimal point in sublinear or linear rate,
depending on the nature of f .

Our contributions in this work can be summarized as follows:

(i) New step size rule and FGD. Our main algorithmic contribution is a special choice of the step
size η. Our analysis showcase that η needs to depend not only on the convexity parameters of f
(as is the case in standard convex optimization) but also on the top singular value of the unknown
optimum. Section 3 describes the precise step size rule, and also the intuition behind it. Of
course, the optimum is not known a priori. As a solution in practice, we show that choosing η
based on a point that is constant relative distance from the optimum also provably works.

(ii) Convergence of FGD under common convex assumptions. We consider two cases: (i) when f is
just aM -smooth convex function, and (ii) when f satisfies also restricted strong convexity (RSC),
i.e., f satisfies strong-convexity-like conditions, but only over low rank matrices; see next section
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for definitions. Both cases are based on now-standard notions, common for the analysis of convex
optimization algorithms. Given a good initial point, we show that, when f is M -smooth, FGD

converges sublinearly to an optimal point X?. For the case where f has RSC, FGD converges
linearly to the unique X?, matching analogous result for classic gradient descent schemes, under
smoothness and strong convexity assumptions.

Furthermore, for the case of smooth and strongly convex f , our analysis extends to the case
r < r?, where FGD converges to a point close to the best rank-r approximation of X?.2

Both results hold when FGD is initialized at a point with constant relative distance from optimum.
Interestingly, the linear convergence rate factor depends not only on the convexity parameters
of f , but also on the spectral characteristics of the optimum; a phenomenon borne out in our
experiments. Section 4 formally states these results.

(iii) Initialization: For specific problem settings, various initialization schemes are possible (see Jain
et al. (2013); Netrapalli et al. (2013); Chen and Wainwright (2015)). In this paper, we extend
such results to the case where we only have access to f via the first-order oracle: specifically, we
initialize based on the gradient at zero, i.e., ∇f(0). We show that, for certain condition numbers
of f , this yields a constant relative error initialization (Section 5). Moreover, Section 5 lists
alternative procedures that lead to good initialization points and comply with our theory.

Roadmap. The rest of the paper is organized as follows. Section 2 contains basic notation and
standard convex definitions. Section 3 presents the FGD algorithm and the step size η used, along
with some intuition for its selection. Section 4 contains the convergence guarantees of FGD; the
main supporting lemmas and proofs of the main theorems are provided in Section 6. In Section 5,
we discuss some initialization procedures that guarantee a “decent” starting point for FGD. This
paper concludes with discussion on related work (Section 7).

2. Preliminaries

Notation. For matrices X,Y ∈ Rn×n, their inner product is 〈X,Y 〉 = Tr
(
X>Y

)
. Also, X � 0

denotesX is a positive semi-definite (PSD) matrix, while the convex set of PSD matrices is denoted
Sn+. We use ‖X‖F and ‖X‖2 for the Frobenius and spectral norms of a matrix, respectively. Given
a matrix X , we use σmin (X) and σmax (X) to denote the smallest and largest strictly positive
singular values of X and define τ(X) = σmax(X)

σmin(X) ; with a slight abuse of notation, we also use
σ1 (X) ≡ σmax (X) ≡ ‖X‖2. Xr denotes the rank-r approximation of X via its truncated singular
value decomposition. Let τ(X?

r ) = σ1(X?)
σr(X?) denote the condition number of X?

r ; again, observe
σr (Xr) ≡ σmin (Xr). QA denotes the basis of the column space of matrix A. srank (X) :=
‖X‖2F/‖X‖22 represents the stable rank of matrix X . We use ei ∈ Rn to denote the standard basis
vector with 1 at the i-th position and zeros elsewhere.

Without loss of generality, f is a symmetric convex function, i.e., f(X) = f(X>). Let∇f(X)

denote the gradient matrix, i.e., its (i, j)th element is [∇f(X)]ij = ∂f(X)
∂xij

. For X = UU>, the

2. In this case, we require ‖X?−X?
r ‖F to be small enough, such that the rank-constrained optimum be close to the best

rank-r approximation of X?. This assumption naturally applies in applications, where e.g., X? is a superposition of
a low rank latent matrix, plus a small perturbation term Javanmard and Montanari (2013); Yu et al. (2014). In Section
H, we show how this assumption can be dropped by using a different step size η, where spectral norm computation
of two n× r matrices is required per iteration.
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gradient of f with respect to U is
(
∇f(UU>) +∇f(UU>)>

)
U = 2∇f(X) ·U , due to symmetry

of f . Finally, let X? be the optimum of f(X) over Sn+ with factorization X? = U?(U?)T .
For any general symmetric matrix X , let the matrix P+(X) be its projection onto the set of

PSD matrices. This can be done by finding all the strictly positive eigenvalues and corresponding
eigenvectors (λi, vi : λi > 0) and then forming P+(X) =

∑
i:λi>0 λiviv

>
i .

In algorithmic descriptions, U and U+ denote the putative solution of current and next iteration,
respectively. An important issue in optimizing f over the U space is the existence of non-unique
possible factorizations UU> for any feasible point X . To see this, given factorization X = UU>

where U ∈ Rn×r, one can define an class of equivalent factorizations UR>RU> = UU>, whereR
belongs to the set {R ∈ Rr×r : R>R = I} of orthonormal matrices. So we use a distance metric
that is invariant toR in the factored space that is equivalent to distance in the matrixX space, which
is defined below.

Definition 1 Let matrices U, V ∈ Rn×r. Define:

DIST (U, V ) := min
R:R∈O

‖U − V R‖F .

O is the set of r× r orthonormal matrices R, such that R>R = Ir×r. The optimal R satisfies PQ>

where PΣQ> is the singular value decomposition of V >U .

Assumptions. We will investigate the performance of non-convex gradient descent for functions f
that satisfy standard smoothness conditions only, as well as the case where f further is (restricted)
strongly convex. We state these standard definitions below.

Definition 2 Let f : Sn+ → R be convex and differentiable. Then, f is m-strongly convex if:

f(Y ) ≥ f(X) + 〈∇f (X) , Y −X〉+ m
2 ‖Y −X‖

2
F , ∀X,Y ∈ Sn+. (4)

Definition 3 Let f : Sn+ → R be a convex differentiable function. Then, f is M -smooth if:

‖∇f (X)−∇f (Y )‖F ≤M · ‖X − Y ‖F , X, Y ∈ Sn+. (5)

This further implies the following upper bound:

f(Y ) ≤ f(X) + 〈∇f (X) , Y −X〉+ M
2 ‖Y −X‖

2
F . (6)

Given the above definitions, we define κ = M
m as the condition number of function f .

Finally, in high dimensional settings, often loss function f does not satisfy strong convexity
globally, but only on a restricted set of directions; see Negahban and Wainwright (2012); Agarwal
et al. (2010) and Section F for a more detailed discussion.

Definition 4 A convex function f is (m, r)-restricted strongly convex if:

f(Y ) ≥ f(X) + 〈∇f (X) , Y −X〉+ m
2 ‖Y −X‖

2
F , for any rank-r matrices X,Y ∈ Sn+. (7)
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3. Factored gradient descent

We solve the non-convex problem (2) via Factored Gradient Descent (FGD) with update rule3:

U+ = U − η∇f(UU>) · U.

FGD does this, but with two key innovations: a careful initialization and a special step size η. The
discussion on the initialization is deferred until Section 5.

Step size η. Even though f is a convex function over X � 0, the fact that we operate with the
non-convex UU> parametrization means that we need to be careful about the step size η; e.g., our
constant η selection should be such that, when we are close to X?, we do not “overshoot” the
optimum X?.

In this work, we pick the step size parameter, according to the following closed-form4:

Algorithm 1 Factored gradient descent (FGD)
input Function f , target rank r, # iterations K.

1: Compute X0 as in (12).
2: Set U ∈ Rn×r such that X0 = UU>.
3: Set step size η as in (8).
4: for k = 0 to K − 1 do
5: U+ = U − η∇f(UUT ) · U .
6: U = U+.
7: end for

output X = UU>.

η =
1

16(M ‖X0‖2 + ‖∇f(X0)‖2)
. (8)

Recall that, if we were just doing standard gra-
dient descent on f , we would choose a step size
of 1/M , where M is a uniform upper bound on
the largest eigenvalue of the Hessian∇2f(·).

To motivate our step size selection, let us
consider a simple setting where U ∈ Rn×r with
r = 1; i.e., U is a vector. For clarity, denote it as
u. Let f be a separable function with f(X) =∑

ij fij(Xij). Furthermore, define the function
g : Rn → R such that f(uu>) ≡ g(u). It is easy to compute (see Lemma 27):

∇g(u) = ∇f(uu>) · u ∈ Rn and ∇2g(u) = mat
(
diag(∇2f(uu>)) · vec

(
uu>

))
+∇f(uu>) ∈ Rn×n,

where mat : Rn2 → Rn×n, vec : Rn×n → Rn2
and, diag : Rn2×n2 → Rn2×n2

are the
matricization, vectorization and diagonalization operations, respectively; for the last case, diag
generates a diagonal matrix from the input, discarding its off-diagonal elements. We remind that
∇f(uu>) ∈ Rn×n and ∇2f(uu>) ∈ Rn2×n2

. Note also that∇2f(X) is diagonal for separable f .
Standard convex optimization suggests that η should be chosen such that η < 1/‖∇2g(·)‖2. The

above suggest the following step size selection rule for M -smooth f :

η < 1
‖∇2g(·)‖2 ∝

1
M‖X‖2+‖∇f(X)‖2 .

In stark contrast with classic convex optimization where η ∝ 1
M , the step size selection fur-

ther depends on the spectral information of the current iterate and the gradient. Since computing
‖X‖2 , ‖∇f(X)‖2 per iteration could be computational inefficient, we use the spectral norm of X0

and its gradient∇f(X0) as surrogate, where X0 is the initialization point5.

3. The true gradient of f with respect to U is 2∇f(UU>) ·U . However, for simplicity and clarity of exposition, in our
algorithm and its theoretical guarantees, we absorb the 2-factor in the step size η.

4. Constant 16 in the expression (8) appears due to our analysis, where we do not optimize over the constants. One can
use another constant in order to be more aggressive; nevertheless, we observed that our setting works well in practice.

5. However, as we show in Section H, one could compute ‖X‖2 and ‖∇f(X)‖2 per iteration in order to relax some of
the requirements of our approach.
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To clarify η selection further, we next describe a toy example, in order to illustrate the necessity
of such a scaling of the step size. Consider the following minimization problem.

minimize
u∈Rn×1

f(uu>) := ||uu> − Y ||2F ,

where u ≡ U ∈ Rn×1—and thus, X = uu>, i.e., we are interested in rank-1 solutions—and Y is
a given rank-2 matrix such that Y = α2v1v

>
1 − β2v2v

>
2 , for α > β ∈ R and v1, v2 orthonormal

vectors. Observe that f is a strongly convex function with rank-1 minimizer X? = α2v1v
>
1 ; let

u? = αv1. It is easy to verify that (i) ‖X?‖2 = α2, (ii) ‖∇f(X?)||2 = ‖2 · (X? − Y ) ‖2 = 2β2,
and (iii) ‖∇f(X1)−∇f(X2)‖F ≤M · ‖X1 −X2‖F , where M = 2.

Consider the case where u = α
2 v1 + β

10v2 is the current estimate. Then, the gradient of f at u is
evaluated as:

∇f(uu>) · u = 2
(
−3α2

8 v1v
>
1 + 101β2

103
v2v
>
2

)
·
(
α
2 v1 + β

10v2

)
= −3α3

4 v1 + 101β3

500 v2.

Hence, according to the update rule u+ = u− 2η∇f(uu>) · u, the next iterate satisfies:

u+ = u− 2η
(
−3α3

4 v1 + 101β3

500 v2

)
=
(
α
2 + η 3α3

2

)
v1 +

(
β
10 + η 202β3

500

)
v2.

Observe that coefficients of both v1, v2 in u+ include O(α3) and O(β3) quantities.
The quality of u+ clearly depends on how η is chosen. In the case η = 1

M = 1
2 , such step

size can result in divergence/“overshooting”, as ‖X?‖2 = O(α2) and ‖∇f(X?)‖2 = O(β2)
can be arbitrarily large (independent of M ). Therefore, it could be the case that DIST(u+, u?) >
DIST(u, u?).

In contrast, consider the step size6 η = 1
16(M‖X?‖2+‖∇f(X?)‖2) ∝ 1

C(α2+β2)
. Then, with ap-

propriate scaling C, we observe that η lessens the effect of O(α3) and O(β3) terms in v1 and v2

terms, that lead to overshooting for the case η = 1
2 . This most possibly result in DIST(u+, u?) ≤

DIST(u, u?).

Computational complexity. The per iteration complexity of FGD is dominated by the gradient
computation. This computation is required in any first order algorithm and the complexity of this
operation depends on the function f . Apart from ∇f(X), the additional computation required
in FGD is matrix-matrix additions and multiplications, with time complexity upper bounded by
nnz(∇f(·)) · r, where nnz(∇f(·)) denotes the number of non zeros in the gradient at the current
point.7 Hence, the per iteration complexity of FGD is much lower than traditional convex meth-
ods like projected gradient descent Nesterov (2004) or classic interior point methods Nesterov and
Nemirovski (1988, 1989), as they often require a full eigenvalue decomposition per step.

Note that, for r = O(n), FGD and projected gradient descent have same per iteration complexity
of O(n3). However, FGD performs only a single matrix-matrix multiplication operation, which is
much “cheaper” than a SVD calculation. Moreover, matrix multiplication is an easier-to-parallelize
operation, as opposed to eigen decomposition operation which is inherently sequential. We notice
this behavior in practice; see Sections F and G for applications in matrix sensing.

6. For illustration purposes, we consider a step size that depends on the unknownX?; in practice, our step size selection
is a surrogate of this choice and our results automatically carry over, with appropriate scaling.

7. It could also occur that gradient ∇f(X) is low-rank, or low-rank + sparse, depending on the problem at hand; it
could also happen that the structure of∇f(X) leads to “cheap” matrix-vector calculations, when applied to vectors.
Here, we state a more generic –and maybe pessimistic– scenario where∇f(X) is unstructured.
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4. Local convergence of FGD

In this section, we present our main theoretical results on the performance of FGD. We present
convergence rates for the settings where (i) f is a M -smooth convex function, and (ii) f is a M -
smooth and (m, r)-restricted strongly convex function. These assumptions are now standard in
convex optimization. Note that, since the UU> factorization makes the problem non-convex, it
is hard to guarantee convergence of gradient descent schemes in general, without any additional
assumptions.

We now state the main assumptions required by FGD for convergence:

FGD ASSUMPTIONS

• Initialization: We assume that FGD is initialized with a “good” starting point X0 = U0(U0)>

that has constant relative error to X?
r = U?r (U?r )>.8 In particular, we assume

(A1) DIST(U0, U?r ) ≤ ρσr(U?r ) for ρ := 1
100

σr(X?)
σ1(X?) (Smooth f )

(A2) DIST(U0, U?r ) ≤ ρ′σr(U?r ) for ρ′ := 1
100κ

σr(X?)
σ1(X?) (Strongly convex f ),

for the smooth and restricted strongly convex setting, respectively. This assumption helps in
avoiding saddle points, introduced by the U parametrization9.

In many applications, an initial point U0 with this type of guarantees is easy to obtain, often
with just one eigenvalue decomposition; we refer the reader to the works Jain et al. (2013);
Netrapalli et al. (2013); Chen and Wainwright (2015); Zheng and Lafferty (2015); Tu et al.
(2015) for specific initialization procedures for different problem settings. See also Section 5
for a more detailed discussion. Note that the problem is still non-trivial after the initialization,
as this only gives a constant error approximation.

• Approximate rank-r optimum: In many learning applications, such as localization Javanmard
and Montanari (2013) and multilabel learning Yu et al. (2014), the true X? emerges as the
superposition of a low rank latent matrix plus a small perturbation term, such that ‖X?−X?

r ‖F
is small. While, in practice, it might be the case rank(X?) = n—due to the presence of noise—
often we are more interested in revealing the latent low-rank part. As already mentioned, we
might as well set r < rank(X?) for computational or statistical reasons. In all these cases,
further assumptions w.r.t. the quality of approximation have to be made. In particular, let X?

be the optimum of (1) and f is M -smooth and (m, r)-strongly convex. In our analysis, we
assume:

(A3) ‖X? −X?
r ‖F ≤ 1

200κ1.5
σr(X?)
σ1(X?)σr(X

?) (Strongly convex f ),

8. If r = r?, then one can drop the subscript. For completeness and in order to accommodate the approximate rank-r
case, described below, we will keep the subscript in our discussion.

9. To illustrate this consider the following example,

minimize
U∈Rn×r

f(UU>) := ||UU> − U?r (U?r )>||2F .

Now it is easy to see that DIST(U?r−1, U
?
r ) = σr(U

?
r ) and U?r−1 is a stationary point of the function considered(

∇f(U?r−1(U
?
r−1)

>) · U?r−1 = 0
)
. We need the initial error to be further smaller than σr(U?) by a factor of condi-

tion number of X?
r .

7
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This assumption intuitively requires the noise magnitude to be smaller than the optimum and
constrains the rank constrained optimum to be closer to X?

r .10

We note that, in the results presented below, we have not attempted to optimize over the con-
stants appearing in the assumptions and any intermediate steps of our analysis. Finding such tight
constants could strengthen our arguments for fast convergence; however, it does not change our
claims for sublinear or linear convergence rates. Moreover, we consider the case r ≤ rank(X?); we
believe the analysis can be extended to the setting r > rank(X?) and leave it for future work.11

4.1. 1/k convergence rate for smooth f

Next, we state our first main result under smoothness condition, as in Definition 3. In particular,
we prove that FGD makes progress per iteration with sublinear rate. Here, we assume only the case
where r = r?; for consistency reasons, we denote X? = X?

r . Key lemmas and their proofs for this
case are provided in Section C.

Theorem 5 (Convergence performance for smooth f ) Let X?
r = U?rU

?>
r denote an optimum of

M -smooth f over the PSD cone. Let f(X0) > f(X?
r ). Then, under assumption (A1), after k

iterations, the FGD algorithm finds solution Xk such that

f(Xk)− f(X?
r ) ≤

5
η · DIST(U0, U?r )2

k + 5
η ·

DIST(U0,U?r )2

f(X0)−f(X?
r )

. (9)

The theorem states that provided (i) we choose the step size η, based on a starting point that
has constant relative distance to U?r , and (ii) we start from such a point, gradient descent on U will
converge sublinearly to a pointX?

r . In other words, Theorem 5 shows that FGD computes a sequence
of estimates in the U -factor space such that the function values decrease with O

(
1
k

)
rate, towards

a global minimum of f function. Recall that, even in the standard convex setting, classic gradient
descent schemes over X achieve the same O

(
1
k

)
convergence rate for smooth convex functions

Nesterov (2004). Hence, FGD matches the rate of convex gradient descent, under the assumptions
of Theorem 5.

4.2. Linear convergence rate under strong convexity assumption

Here, we show that, with the additional assumption that f satisfies the (m, r)-restricted strong
convexity over Sn+, FGD achieves linear convergence rate. The proof is provided in Section B.

Theorem 6 (Convergence rate for restricted strongly convex f ) Let the current iterate beU and
X = UU>. Assume DIST(U,U?r ) ≤ ρ′σr(U?r ) and let the step size be η = 1

16 (M‖X0‖2+‖∇f(X0)‖2)
.

Then under assumptions (A2), (A3), the new estimate U+ = U − η∇f(X) · U satisfies

DIST(U+, U?r )2 ≤ α · DIST(U,U?r )2 + β · ‖X? −X?
r ‖2F , (10)

where α = 1− mσr(X?)
64(M‖X?‖2+‖∇f(X?)‖2) and β = M

28(M‖X?‖2+‖∇f(X?)‖2) . Furthermore, U+ satisfies
DIST(U+, U?r ) ≤ ρ′σr(U?r ).

10. Note that the assumption (A3) can be dropped by using a different step size η (see Theorem 32 in Section H).
However, this requires two additional spectral norm computations per iteration.

11. Experimental results on synthetic matrix sensing settings have shown that, if we overshoot r, i.e., r > rank(X?),
FGD still performs well, finding an ε-accurate solution with linear rate.
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The theorem states that provided (i) we choose the step size based on a point that has constant
relative distance to U?r , and (ii) we start from such a point, gradient descent on U will converge
linearly to a neighborhood of U?r . The above theorem immediately implies linear convergence rate
for the setting where f is standard strongly convex, with parameter m. This follows by observing
that standard strong convexity implies restricted strong convexity for all values of rank r.

Last, we present results for the special case where r = r?; in this case, FGD finds an optimal
point U?r with linear rate, within the equivalent class of orthonormal matrices in O.

Corollary 7 (Exact recovery of X?) Let X? be the optimal point of f , over the set of PSD matri-
ces, such that rank(X?) = r. ConsiderX as in Theorem 6. Then, under the same assumptions and
with the same convergence factor α as in Theorem 6, we have

DIST(U+, U?)2 ≤ α · DIST(U,U?)2.

Further, for r = n we recover the exact case of semi-definite optimization. In plain words,
the above corollary suggests that, given an accuracy parameter ε, FGD requires K = O (log (1/ε))
iterations in order to achieve DIST(UK , U?)2 ≤ ε; recall the analogous result for classic gradient
schemes for M -smooth and strongly convex functions f , where similar rates can be achieved in X
space Nesterov (2004). The above are abstractly illustrated in Figure 1.

������
��-���������������

������
��-���������������

	 ����������-�����-	��
�����

r < rank(X?)

r = rank(X?)

f

X?
�������-������

Rank-r X0

Rank-r X0

Xk
Xk

· ·
·

����������-���-�����
�

X?

X?
r�����������-������-�

kX? � X?
r kF

X?
r

· · ·

Figure 1: Abstract illustration of Theorem 6 and Corollary 7. The two curves denote the two cases:
(i) r = rank(X?) and, (ii) r < rank(X?). (i) In the first case, the triangle marker
denotes the unique optimum X? and the dashed red circle denotes the optimization tol-
erance/error. (ii) In the case where r < rank(X?), let the cyan circle with radius
c‖X? − X?

r ‖F (set c = 1 for simplicity) denote a neighborhood around X?. In this
case, FGD converges to a rank-r approximation in the vicinity of X? in sublinear rate,
according to Theorem 6.
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Remark 8 By the results above, one can easily observe that the convergence rate factor α, in
contrast to standard convex gradient descent results, depends both on the condition number of X?

r

and ‖∇f(X?)‖2, in addition to κ. This dependence is a result of the step size selection, which is
different from standard step sizes, i.e., 1/M for standard gradient descent schemes. We also refer the
reader to Section E for some discussion.

As a ramification of the above, notice that α depends only on the condition number of X?
r and

not that of X?. This suggests that, in settings where the optimum X? has bad condition number
(and thus leads to slower convergence), it is indeed beneficial to restrict U to be a n× r matrix and
only search for a rank-r approximation of the optimal solution, which leads to faster convergence
rate in practice; see Figure 7 in our experimental findings at the end of Section F.3.

Remark 9 In the setting where the optimum X? is 0, directly applying the above theorems requires
an initialization that is exactly at the optimum 0. On the contrary, this is actually an easy setting
and the FGD converges from any initial point to the optimum.

5. Initialization

In the previous section, we show that gradient descent over U achieves sublinear/linear conver-
gence, once the iterates are closer to U?r . Since the overall problem is non-convex, intuition suggests
that we need to start from a “decent” initial point, in order to get provable convergence to U?r . In
the discussion that follows, we focus only on the case of M -smooth and (m, r)-restricted strongly
convex case; a procedure that returns an initial point with non-trivial guarantees, for the case of just
M -smooth objectives f , remains an open problem.

One way to satisfy this condition for general convex f is to use one of the standard convex
algorithms and obtain U within constant error to U? (or U?r ); then, switch to FGD to get the high
precision solution. See Tu et al. (2015) for a specific implementation of this idea on matrix sensing.
Such initialization procedure comes with the following guarantees; the proof can be found in Section
D:

Lemma 10 Let f be aM -smooth and (m, r)-restricted strongly convex function over PSD matrices
and let X? be the minimum of f with rank(X?) = r. Let X+ = P+(X − 1

M∇f(X)) be the
projected gradient descent update. Then, ‖X+ −X‖F ≤ c

κ
√
rτ(Xr)

σr(X) implies,

DIST(Ur, U
?
r ) ≤ c′

τ(X?
r )σr(U

?
r ), for constants c, c′ > 0.

Next, we present a generic initialization scheme for general smooth and strongly convex f .
We use only the first-order oracle: we only have access to—at most—gradient information of f .
Our initialization comes with theoretical guarantees w.r.t. distance from optimum. Nevertheless, in
order to show small relative distance in the form of DIST(U0, U?r ) ≤ ρσr(U?r ), one requires certain
condition numbers of f and further assumptions on the spectrum of optimal solution X? and rank
r. However, empirical findings in Section F.3 show that our initialization performs well in practice.

Let ∇f(0) ∈ Rn×n. Since the initial point should be in the PSD cone, we further consider the
projection P+(−∇f(0)). By strong convexity and smoothness of f , one can observe that the point
1/M · P+ (−∇f(0)) is a good initialization point, within some radius from the vicinity of X?; i.e.,∥∥ 1

MP+(−∇f(0))−X?
∥∥
F
≤ 2

(
1− m

M

)
‖X?‖F ; (11)

10
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Figure 2: Abstract illustration of initialization effect on a toy example. In this experiment, we
design X? = U?U?> where U? = [1 1]> (or U? = −[1 1]>—these are equivalent).
We observe X? via y = vec (A ·X?) where A ∈ R3×2 is randomly generated. We
consider the loss function f(UU>) = 1

2‖y − vec
(
A · UU>

)
‖22. Left panel: f values in

logarithimic scale for various values of variable U ∈ R2×1. Center panel: Contour lines
of f and the bahavior of FGD using our initialization scheme. Right panel: zoom-in plot
of center plot.

see also Theorem 11. Thus, a scaling of P+(−∇f(0)) by M could serve as a decent initialization.
In many recent works Jain et al. (2013); Netrapalli et al. (2013); Candes et al. (2015b); Zheng and
Lafferty (2015); Chen and Wainwright (2015) this initialization has been used for specific appli-
cations.12 Here, we note that the point 1/M · P+ (−∇f(0)) can be used as initialization point for
generic smooth and strongly convex f .

The smoothness parameter M is not always easy to compute exactly; in such cases, one can use
the surrogate m ≤ ‖∇f(0)−∇f(e1e

>
1 )‖F ≤ M . Finally, our initial point U0 ∈ Rn×r is a rank-r

matrix such that X0
r = U0U0>.

We now present guarantees for the initialization discussed. The proof is provided in Section D.2.

Theorem 11 (Initialization) Let f be aM -smooth andm-strongly convex function, with condition
number κ = M

m , and let X? be its minimum over PSD matrices. Let X0 be defined as:

X0 := 1
‖∇f(0)−∇f(e1e1>)‖F P+ (−∇f(0)) , (12)

andX0
r is its rank-r approximation. Let ‖X? −X?

r ‖F ≤ ρ̃ ‖X?
r ‖2 for some ρ̃. Then, DIST(U0, U?r ) ≤

γσr(U
?
r ), where γ = 4τ(X?

r )
√

2r·
(√

κ2 − 2/κ + 1
(
srank1/2 (X?

r ) + ρ̃
)

+ ρ̃
)

and srank (X?
r ) =

||X?
r ||2F

||X?
r ||22

.

12. To see this, consider the case of least-squares objective f(X) := 1
2
‖A(X) − y‖22, where y denote the set of ob-

servations and, A is a properly designed sensing mechanism, depending on the problem at hand. For example, in
the affine rank minimization case Zheng and Lafferty (2015); Chen and Wainwright (2015), (A(X))i represents the
linear system mechanism where Tr(Ai ·X) = bi. Under this setting, computing the gradient∇f(·) at zero point, we
have: −∇f(0) = A∗(y), whereA∗ is the adjoint operator ofA. Then, it is obvious that the operationP+ (−∇f(0))
is very similar to the spectral methods, proposed for initialization in the references above.

11
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While the above result guarantees a good initialization for only small values of κ, in many
applications Jain et al. (2013); Netrapalli et al. (2013); Chen and Wainwright (2015), this is indeed
the case and X0 has constant relative error to the optimum.

To understand this result, notice that in the extreme case, when f is the `2 loss function ‖X −
X?‖2F , which has condition number κ = 1 and rank(X?) = r, X0 indeed is the optimum. More
generally as the condition number κ increases, the optimum moves away from X0 and the above
theorem characterizes this error as a function of condition number of the function. See also Figure
2.

Now for the setting when the optimum is exactly rank-r we get the following result.

Corollary 12 (Initialization, exact) LetX? be rank-r for some r ≤ n. Then, under the conditions
of Theorem 11, we get

DIST(U0, U?r ) ≤ 4
√

2rτ(X?
r ) ·

√
κ2 − 2/κ + 1 · σr(U?r ).

Finally, for the setting when the function satisfies (m, r)-restricted strong convexity, the above
corollary still holds as the optimum is a rank-r matrix.

Remark 13 The above initialization strategies only attain Theorem’s 6 and Corollary’s 7 initial-
ization requirements within some factor. In order to achieve such requirements, one requires further
assumptions regarding the nature of the problem at hand, i.e., further restrictions on the condition
number of X? and f , as well as potential dependence on the rank parameter r. Proving global
convergence, from random starting points and for a wide range of objective criteria f , remains an
open problem.

6. Convergence proofs for the FGD algorithm

In this section, we first present the key techniques required for analyzing the convergence of FGD.
Later, we present proofs for both Theorems 5 and 6. Throughout the proofs we use the following
notation. X? is the optimum of problem (1) and X?

r = U?rR
?
U (U?rR

?
U )> is the rank-r approxima-

tion; for the just smooth case, X? = X?
r , as we consider only the rank-r? case and r = r?. Let

R?U := argminR:R∈O ‖U − U?rR‖F and ∆ = U − U?rR?U .
A key property that assists classic gradient descent to converge to the optimum X? is the fact

that 〈X+ −X, X? −X〉 ≥ 0 for a smooth convex function f ; in the case of strongly convex f , the
inner product is further lower bounded by m

2 ‖X −X?‖2F (see Theorem 2.2.7 of Nesterov (2004)).
Classical proofs mainly use such lower bounds to show convergence (see Theorems 2.1.13 and 2.2.8
of Nesterov (2004)).

We follow broadly similar steps in order to show convergence of FGD. In particular,

• In section 6.1, we show a lower bound for the inner product 〈U − U+, U − U?rR?U 〉 (Lemma 14),
even though the function is not convex in U . The initialization and rank-r approximate opti-
mum assumptions play a crucial role in proving this, along with the fact that f is convex in
X .

• In sections 6.2 and 6.3, we use the above lower bound to show convergence for (i) smooth
and strongly f , and (ii) just smooth f , respectively, similar to the convex setting.

12
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6.1. Rudiments of our analysis

Next, we present the main descent lemma that is used for both sublinear and linear convergence rate
guarantees of FGD.

Lemma 14 (Descent lemma) For f being a M -smooth and (m, r)-strongly convex function and,
under assumptions (A2) and (A3), the following inequality holds true:

1
η 〈U − U+, U − U?rR?U 〉 ≥ 2

3η‖∇f(X)U‖2F + 3m
20 · σr(X?)DIST(U,U?r )2 − M

4 ‖X? −X?
r ‖2F .

Further, when f is just M -smooth convex function and, under the assumptions f(X+) ≥ f(X?
r )

and (A1), we have:

1
η 〈U − U+, U − U?rR?U 〉 ≥ 1

2η‖∇f(X)U‖2F .

Proof First, we rewrite the inner product as shown below.

〈∇f(X)U,U − U?rR?U 〉 =
〈
∇f(X), X − U?rR?UU>

〉
=

1

2
〈∇f(X), X −X?

r 〉+

〈
∇f(X),

1

2
(X +X?

r )− U?rR?UU>
〉

=
1

2
〈∇f(X), X −X?

r 〉+
1

2

〈
∇f(X),∆∆>

〉
, (13)

which follows by adding and subtracting 1
2X

?
r .

• STRONGLY CONVEX f SETTING. For this case, the next 3 steps apply.

Step I: Bounding 〈∇f(X), X −X?
r 〉. The first term in the above expression can be lower bounded

using smoothness and strong convexity of f and, involves a construction of a feasible point X . We
construct such a feasible point by modifying the current update to one with bigger step size η̂.

Lemma 15 Let f be a M -smooth and (m, r)-restricted strongly convex function with optimum
point X?. Moreover, let X?

r be the best rank-r approximation of X?. Let X = UU>. Then,

〈∇f(X), X −X?
r 〉 ≥ 18η̂

10 ‖∇f(X)U‖2F + m
2 ‖X −X?

r ‖2F − M
2 ‖X? −X?

r ‖2F ,

where η̂ = 1
16(M‖X‖2+‖∇f(X)QUQ

>
U‖2)

≥ 5η
6 , by Lemma 21.

Proof of this lemma is provided in Section B.1.

Step II: Bounding
〈
∇f(X),∆∆>

〉
. The second term in equation (13) can actually be negative.

Hence, we lower bound it using our initialization assumptions. Intuitively, the second term is smaller
than the first one as it scales as DIST(U,U?r )2, while the first term scales as DIST(U,U?r ).

Lemma 16 Let f be M -smooth and (m, r)-restricted strongly convex. Then, under assumptions
(A2) and (A4), the following bound holds true:〈

∇f(X),∆∆>
〉
≥ −2η̂

25‖∇f(X)U‖2F −
(
mσr(X?)

20 +M‖X? −X?
r ‖F

)
· DIST(U,U?r )2.

13
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Proof of this lemma can be found in Section B.2.

Step III: Combining the bounds in equation (13). For a detailed description, see Section B.3.

• SMOOTH f SETTING.

Similar to the strongly convex case, we can obtain a lower bound on 〈∇f(X), X −X?
r 〉 (Lemma 24)

and upper bound on
〈
∇f(X),∆∆>

〉
(Lemma 23). Combining the bounds into equation (13) gives

the result. For a detailed description, see Section C and Lemma 25.

6.2. Proof of linear convergence (Theorem 6)

The proof of this theorem involves showing that the potential function DIST(U,U?r ) is decreasing
per iteration (up to approximation error ||X? − X?

r ||F ), using the descent Lemma 14. Using the
algorithm’s update rule, we obtain

DIST(U+, U?r )2 = min
R: R∈O

‖U − U?rR‖2F
≤ ‖U+ − U?rR?U‖2F
= ‖U+ − U + U − U?rR?U‖2F
= ‖U+ − U‖2F + ‖U − U?rR?U‖2F − 2 〈U+ − U,U?rR?U − U〉 , (14)

which follows by adding and subtracting U and then expanding the squared term.

Step I: Bounding term 〈U − U+, U − U?R〉 in (14). By Lemma 14, we can bound the last term on
the right hand side as:

〈∇f(X)U,U − U?rR?U 〉 ≥ 2
3η‖∇f(X)U‖2F + 3m

20 · σr(X?)DIST(U,U?r )2 − M
4 ‖X? −X?

r ‖2F .
Furthermore, we can substitute U+ in the first term to obtain ‖U+ − U‖2F = η2‖∇f(X)U‖2F .
Step II: Combining bounds into (14). Combining the above two equations (14) becomes:

DIST(U+, U?r )2 ≤ η2‖∇f(X)U‖2F + ‖U − U?rR?U‖2F
− 2η

(
2
3η‖∇f(X)U‖2F + 3m

20 · σr(X?)DIST(U,U?r )2 − M
4 ‖X? −X?

r ‖2F
)

= ‖U − U?rR?U‖2F + ηM
2 ‖X? −X?

r ‖2F + η2
(
‖∇f(X)U‖2F − 4

3 ‖∇f(X)U‖2F
)

︸ ︷︷ ︸
≤0

− 3mη
10 · σr(X?)DIST(U,U?r )2

(i)

≤ ‖U − U?rR?U‖2F + ηM
2 ‖X? −X?

r ‖2F − 3mη
10 · σr(X?)DIST(U,U?r )2

=
(
1− 3mη

10 · σr(X?)
)
· DIST(U,U?r )2 + ηM

2 ‖X? −X?
r ‖2F

(ii)

≤
(

1− 3m
10 ·

10η?

11 · σr(X?)
)
· DIST(U,U?r )2 +M · 11η?20 ‖X? −X?

r ‖2F
≤
(

1− mη?

4 · σr(X?)
)

DIST(U,U?r )2 + 11Mη?

20 ‖X? −X?
r ‖2F

(iii)

≤
(

1− mσr(X
?)

64(M‖X?‖2+‖∇f(X?)‖2)

)
DIST(U,U?r )2

+ M
28(M‖X?‖2+‖∇f(X?)‖2) ‖X

? −X?
r ‖2F ,

14
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where (i) is due to removing the negative part from the right hand side, (ii) is due to 10
11η

? ≤ η ≤
11
10η

? by Lemma 21, (iii) follows from substituting η? = 1
16(M‖X?‖2+‖∇f(X?)‖2) . This proves the

first part of the theorem.

Step III: U+ satisfies the initial condition. Now we will prove the second part. By the above
equation, we have:

DIST(U+, U?r )2 ≤
(

1− mη?

4 · σr(X?)
)

DIST(U,U?r )2 + 11Mη?

20 ‖X? −X?
r ‖2F

(i)

≤
(

1− mη?

4 · σr(X?)
)

(ρ′)2σr(X
?) + 11Mη?

20
(ρ′)2

4κ σ2
r (X

?)

= (ρ′)2σr(X
?)
(

1− mη?

4 · σr(X?) + 11Mη?

80κ · σr(X?)
)

≤ (ρ′)2σr(X
?)
(

1− mη?

4 · σr(X?) + mη?

7 σr(X
?)
)

≤ (ρ′)2σr(X
?).

(i) follows from substituting the assumptions on DIST(U,U?r ) and ‖X? − X?
r ‖F and the last in-

equality is due to the term in the parenthesis being less than one.

6.3. Proof of sublinear convergence (Theorem 5)

Here, we show convergence of FGD when f is only a M -smooth convex function. At iterate k, we
assume f(Xk) > f(X?

r ); in the opposite case, the bound follows trivially. Recall the updates of
FGD over the U -space satisfy

U+ = U − η∇f(X)U.

It is easy to verify that X+ = U+ (U+)> = X − η∇f(X)XΛ − ηΛ>X∇f(X), where Λ =
I − η

2QUQ
>
U∇f(X) ∈ Rn×n. Notice that for step size η, using Lemma A.5 we get,

Λ � 0, ‖Λ‖2 ≤ 1 + 1/32 and σn(Λ) ≥ 1− 1/32. (15)

Our proof proceeds using the smoothness condition on f , at point X+. In particular,

f(X+) ≤ f(X) + 〈∇f(X), X+ −X〉+ M
2 ‖X+ −X‖2F

(i)

≤ f(X)− 2η · σn(Λ) · ‖∇f(X)U‖2F + 2Mη2 · ‖∇f(X)U‖2F · ‖X‖2 · ‖Λ‖22
(ii)

≤ f(X)− η·62
32 · ‖∇f(X)U‖2F + η

7 ·
(

33
32

)2 · ‖∇f(X)U‖2F
≤ f(X)− 17η

10 ‖∇f(X)U‖2F ,

where (i) follows from symmetry of∇f(X), X and

Tr(∇f(X)∇f(X)XΛ) = Tr(∇f(X)∇f(X)UU>)− η

2
Tr(∇f(X)∇f(X)UU>∇f(X))

≥ (1− η

2
‖QUQ>U∇f(X)‖2)‖∇f(X)U‖2F

≥ (1− 1/32)‖∇f(X)U‖2F , (16)

15
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and (ii) is due to (15) and the fact that η ≤ 1
16M‖X0‖2 ≤

1
14M‖X‖2 (see Lemma A.5). Hence,

f(X+)− f(X?
r ) ≤ f(X)− f(X?

r )− 18η
10 ‖∇f(X)U‖2F . (17)

To bound the term f(X)− f(X?
r ) on the right hand side of (17), we use standard convexity as

follows:

f(X)− f(X?
r ) ≤ 〈∇f(X), X −X?

r 〉
(i)
= 2

〈
∇f(X), UU> − U?rR?UU>

〉
−
〈
∇f(X), UU> + U?rR

?
U (U?rR

?
U )> − 2U?rR

?
UU
>
〉

= 2 〈∇f(X)U,U − U?rR?U 〉 −
〈
∇f(X), (U − U?rR?U )(U − U?rR?U )>

〉
(ii)
= 2 〈∇f(X)U,∆〉 −

〈
∇f(X),∆∆>

〉
≤ 2 〈∇f(X)U,∆〉+

∣∣∣〈∇f(X),∆∆>
〉∣∣∣

(iii)

≤ 2 · ‖∇f(X)U‖F · DIST(U,U?r ) + 1
40‖∇f(X)U‖2 · DIST(U,U?r )

(iv)

≤ 5
2‖∇f(X)U‖F · DIST(U,U?r ), (18)

where (i) is due to X = UU> and X?
r = U?rR

?
U (U?rR

?
U )> for orthonormal matrix R?U ∈ Rr×r,

(ii) is by ∆ := U − U?rR?U , (iii) is due to Cauchy-Schwarz inequality and Lemma 22 and, (iv) is
due to norm ordering ‖ · ‖2 ≤ ‖ · ‖F .

From (18), we obtain to the following bound:

‖∇f(X)U‖F ≥ 2
5 ·

f(X)−f(X?
r )

DIST(U,U?r ) . (19)

Define δ = f(X) − f(X?
r ) and δ+ = f(X+) − f(X?

r ). Moreover, by Lemma 26, we know that
DIST(U,U?r ) ≤ DIST(U0, U?r ) for all iterations of FGD; thus, we have 1

DIST(U,U?r ) ≥ 1
DIST(U0,U?r )

for
every update U . Using the above definitions and substituting (19) in (17), we obtain the following
recursion:

δ+ ≤ δ − 17η
10 ·

(
2
5

)2 · ( δ

‖∆‖F

)2

≤ δ − η
5·DIST(U0,U?r )2

· δ2 =⇒ δ+ ≤ δ
(

1− η
5·DIST(U0,U?r )2

· δ
)
,

which can be further transformed as:(
1− η

5·DIST(U0,U?r )2
· δ
)

δ+ ≥ 1

δ
=⇒ 1

δ+ ≥
1

δ
+ η

5·DIST(U0,U?r )2
· δ
δ+ ≥

1

δ
+ η

5·DIST(U0,U?r )2

since δ+ ≤ δ from equation (17). Since each δ and δ+ correspond to previous and new estimate in
FGD per iteration, we can sum up the above inequalities over k iterations to obtain

1

δk
≥ 1

δ0
+ η

5·DIST(U0,U?r )2
· k;

here, δk := f(Xk) − f(X?
r ) and δ0 := f(X0) − f(X?

r ). After simple transformations, we finally
obtain:

f(Xk)− f(X?
r ) ≤

5
η · DIST(U0, U?r )2

k + 5
η ·

DIST(U0,U?r )2

f(X0)−f(X?
r )

.
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One can further obtain a bound on the right hand side that depends on η? = 1
16 (M‖X?‖2+‖∇f(X?)‖2) .

By Lemma 21, we know η ≥ 10
11η

?. Substituting this in the above equation gives the result.

7. Related work

Convex approaches. A significant volume of work has focused on solving the classic Semi-Definite
Programming (SDP) formulation, where the objective f (as well as any additional convex con-
straints) is assumed to be linear. There, interior point methods (IPMs) constitute a popular choice
for small- and moderate-sized problems; see Karmarkar (1984); Alizadeh (1995). For a compre-
hensive treatment of this subject, see the excellent survey in Monteiro (2003).

Large scale SDPs pointed research towards first-order approaches, which are more computa-
tionally appealing. For linear f , we note among others the work of Wen et al. (2010), a provably
convergent alternating direction augmented Lagrangian algorithm, and that of Helmberg and Rendl
Helmberg and Rendl (2000), where they develop an efficient first-order spectral bundle method for
SDPs with the constant trace property; see also Helmberg et al. (2014) for extensions on this line
of work. In both cases, no convergence rate guarantees are provided; see also Monteiro (2003). For
completeness, we also mention the work of Burer (2003); Fukuda et al. (2001); Nakata et al. (2003);
Toh (2004) on second-order methods, that take advantage of data sparsity in order to handle large
SDPs in a more efficient way. However, it turns out that the amount of computations required per
iteration is comparable to that of log-barrier IPMs Monteiro (2003).

Standard SDPs have also found application in the field of combinatorial optimization; there,
in most cases, even a rough approximation to the discrete problem, via SDP, is sufficiently ac-
curate and computationally affordable, than exhaustive combinatorial algorithms. Goemans and
Williamson Goemans and Williamson (1995) were the first to propose the use of SDPs in approx-
imating graph MAX CUT, where a near-optimum solution can be found in polynomial time. Klein
and Lu (1996) propose an alternative approach for solving MAX CUT and GRAPH COLORING in-
stances, where SDPs are transformed into eigenvalue problems. Then, power method iterations lead
to ε-approximate solutions; however, the resulting running-time dependence on ε is worse, com-
pared to standard IPMs. Arora, Hazan and Kale in Arora et al. (2005) derive an algorithm to ap-
proximate SDPs, as a hybrid of the Multiplicative Weights Update method and of ideas originating
from an ellipsoid variant Vaidya (1989), improving upon existing algorithms for graph partitioning,
computational biology and metric embedding problems.13

Extending to non-linear convex f cases, Nesterov and Nemirovski (1988, 1989) have shown
how IPMs can be generalized to solve instances of (1), via the notion of self-concordance; see also
Lee et al. (2012); Dinh et al. (2015) for a more recent line of work. Within the class of first-order
methods, approaches for nonlinear convex f include, among others, projected and proximal gradi-
ent descent methods Nesterov (2004); Dinh et al. (2015); Jiang et al. (2012), (smoothed) dual ascent
methods Nesterov (2007), as well as Frank-Wolfe algorithm variants Jaggi (2011). Note that all
these schemes, often require heavy calculations, such as eigenvalue decompositions, to compute the

13. The algorithm in Arora et al. (2005) shows significant computational gains over standard IPMs per iteration, due to
requiring only a power method calculation per iteration (versus a Cholesky factorization per iteration, in the latter
case). However, the polynomial dependence on the accuracy parameter 1

ε
is worse, compared to IPMs. Improvements

upon this matter can be found in Arora and Kale (2007) where a primal-dual Multiplicative Weights Update scheme
is proposed.
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updates (often, to remain within the feasible set).

Burer & Monteiro factorization and related work. Burer and Monteiro Burer and Monteiro
(2003, 2005) popularized the idea of solving classic SDPs by representing the solution as a product
of two factor matrices. The main idea in such representation is to remove the positive semi-definite
constraint by directly embedding it into the objective. While the problem becomes non-convex,
Burer and Monteiro propose a method-of-multiplier type of algorithm which iteratively updates the
factors in an alternating fashion. For linear objective f , they establish convergence guarantees to
the optimum but do not provide convergence rates.

For generic smooth convex functions, Hazan in Hazan (2008) proposes SPARSEAPPROXSDP
algorithm,14 a generalization of the Frank-Wolfe algorithm for the vector case Clarkson (2010),
where putative solutions are refined by rank-1 approximations of the gradient. At the r-th iteration,
SPARSEAPPROXSDP is guaranteed to compute a 1

r -approximate solution, with rank at most r, i.e.,
achieves a sublinearO

(
1
ε

)
convergence rate. However, depending on ε, SPARSEAPPROXSDP is not

guaranteed to return a low rank solution unlike FGD. Application of these ideas in machine learn-
ing tasks can be found in Shalev-shwartz et al. (2011). Based on SPARSEAPPROXSDP algorithm,
Laue (2012) further introduces “de-bias” steps in order to optimize parameters in SPARSEAPPROX-
SDP and do local refinements of putative solutions via L-BFGS steps. Nevertheless, the resulting
convergence rate is still sublinear.15

Specialized algorithms – for objectives beyond the linear case – that utilize such factorization in-
clude matrix completion /sensing solvers Jain et al. (2013); Sun and Luo (2014); Zheng and Lafferty
(2015); Tu et al. (2015), non-negative matrix factorization schemes Lee and Seung (2001), phase
retrieval methods Netrapalli et al. (2013); Candes et al. (2015b) and sparse PCA algorithms Laue
(2012). Most of these results guarantee linear convergence for various algorithms on the factored
space starting from a “good” initialization. They also present a simple spectral method to compute
such an initialization. For the matrix completion /sensing setting, Sa et al. (2015) have shown that
stochastic gradient descent achieves global convergence at a sublinear rate. Note that these results
only apply to quadratic loss objectives and not to generic convex functions f .16 Jain et al. (2015)
consider the problem of computing the matrix square-root of a PSD matrix via gradient descent
on the factored space: in this case, the objective f boils down to minimizing the standard squared
Euclidean norm distance between two matrices. Surprisingly, the authors show that, given an initial
point that is well-conditioned, the proposed scheme is guaranteed to find an ε-accurate solution with
linear convergence rate; see also Sra (2015) for a more recent discussion on this problem.

Chen and Wainwright (2015) propose a first-order optimization framework for the problem (1),
where the same parametrization technique is used to efficiently accommodate the PSD constraint.17

Moreover, the proposed algorithmic solution can accommodate extra constraints on X .18 The set of
assumptions listed in Chen and Wainwright (2015) include—apart from X?-faithfulness—local de-

14. Sparsity here corresponds to low-rankness of the solution, as in the Cholesky factorization representation. More-
over, inspired by Quantum State Tomography applications Aaronson (2007), SPARSEAPPROXSDP can also handle
constant trace constraints, in addition to PSD ones.

15. For running time comparisons with FGD see Section G.
16. We recently became aware of the extension of the work Tu et al. (2015) for the non-square case X = UV >.
17. In this work, the authors further assume orthogonality of columns in U .
18. Though, additional constraints should satisfy the X?-faithfulness property: a constraint set on U , say U , is faithful

if for each U ∈ U , that is within some bounded radius from optimal point, we are guaranteed that the closest (in the
Euclidean sense)U?R lies within U .

18



DROPPING CONVEXITY FOR FASTER SEMI-DEFINITE OPTIMIZATION

scent, local Lipschitz and local smoothness conditions in the factored space. E.g., the local descent
condition can be established if g(U) := f(UU>) is locally strongly convex and ∇g(·) at an opti-
mum point vanishes. They also require bounded gradients as their step size doesn’t account for the
modified curvature of f(UU>). 19 These conditions are less standard than the global assumptions
of the current work and one needs to validate that they are satisfied for each problem, separately.
Chen and Wainwright (2015) presents some applications where these conditions are indeed satis-
fied. Their results are of the same flavor with ours: under such proper assumptions, one can prove
local convergence with O(1/ε) or O(log(1/ε)) rate and for f instances that even fail to be locally
convex.

Finally, for completeness, we also mention optimization over the Grassmannian manifold that
admits tailored solvers Edelman et al. (1998); see Keshavan et al. (2010); Boumal (2014, 2015);
Zhang and Balzano (2015); Uschmajew and Vandereycken (2015) for applications in matrix com-
pletion and references therein. Journée et al. (2010) presents a second-order method for (1), based
on manifold optimization over the set of all equivalence class O. The proposed algorithm can ad-
ditionally accommodate constraints and enjoys monotonic decrease of the objective function (in
contrast to Burer and Monteiro (2003, 2005)), featuring quadratic local convergence. In practice,
the per iteration complexity is dominated by the extraction of the eigenvector, corresponding to the
smallest eigenvalue, of a n × n matrix—and only when the current estimate of rank satisfies some
conditions.

Table 1 summarizes the comparison of the most relevant work to ours, for the case of matrix
factorization techniques.

Reference Conv. rate Initialization Output rank

Hazan (2008) 1/ε (Smooth f ) X0 = 0 1/ε
Laue (2012) 1/ε (Smooth f ) X0 = 0 1/ε

Chen and Wainwright (2015) 1/ε (Local Asm.) Application dependent r
Chen and Wainwright (2015) log(1/ε) (Local Asm.) Application dependent r

This work 1/ε (Smooth f ) SVD / top-r r
This work log(1/ε) (Smooth, RSC f ) SVD / top-r r

Table 1: Summary of selected results on solving variants of (1) via matrix factorization. “Conv.
rate” describes the number of iterations required to achieve ε accuracy. “Initialization”
describes the process for starting point computation. “SVD” stands for singular value
decomposition and “top-r” denotes that a rank-r decomposition is computed. For the case
of Chen and Wainwright (2015), “Local Asm.” refer to specific assumptions made on the
U -space; we refer the reader to the footnote for a short description. “Output rank” denotes
the maximum rank of solution returned for ε-accuracy.

8. Conclusion

In this paper, we focus on how to efficiently minimize a convex function f over the positive semi-
definite cone. Inspired by the seminal work Burer and Monteiro (2003, 2005), we drop convexity
by factorizing the optimization variable X = UU> and show that factored gradient descent with

19. One can define non-trivially conditions on the original space; we defer the reader to Chen and Wainwright (2015)
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a non-trivial step size selection results in linear convergence when f is smooth and (restricted)
strongly convex, even though the problem is now non-convex. In the case where f is only smooth,
only sublinear rate is guaranteed. In addition, we present initialization schemes that use only first
order information and guarantee to find a starting point with small relative distance from optimum.

There are many possible directions for future work, extending the idea of using non-convex
formulation for semi-definite optimization. Showing convergence under weaker initialization con-
dition or without any initialization requirement is definitely of great interest. Another interesting
direction is to improve the convergence rates presented in this work, by using acceleration tech-
niques and thus, extend ideas used in the case of convex gradient descent Nesterov (2004). Finally,
it would be valuable to see how the techniques presented in this paper can be generalized to other
standard algorithms like stochastic gradient descent and coordinate descent.

Furthermore, we identify applications, such as sparse PCA Vu et al. (2013); Asteris et al. (2015),
that require non-smooth constraints on the factors U . That being said, an extension of this work to
proximal techniques for the non-convex case is a very interesting future research direction.
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Appendix A. Supporting lemmata

Lemma 17 (Hoffman, Wielandt Bhatia (1987)) Let A and B be two PSD n × n matrices. Also
let A be full rank. Then,

Tr(AB) ≥ σmin(A) Tr(B). (20)

The following lemma shows that DIST, in the factor U space, upper bounds the Frobenius norm
distance in the matrix X space.

Lemma 18 LetX = UU> andX?
r = U?rU

?>
r be two n×n rank-r PSD matrices. Let DIST(U,U?r ) ≤

ρσr(U
?
r ), for some orthonormal matrix R?U and constant ρ > 0. Then,

‖X −X?
r ‖F ≤ (2 + ρ)ρ · ‖U?r ‖2 · σr(U?r ).

Proof By substituting X = UU> and X?
r = U?rU

?>
r in ‖X −X?

r ‖F , we have:

‖X −X?
r ‖F = ‖UU> − U?rU?>r ‖F

(i)
= ‖UU> − U?rR?UU> + U?rR

?
UU
> − U?rR?U (U?rR

?
U )>‖F

(ii)

≤ DIST(U,U?r ) · ‖U‖2 + DIST(U,U?r ) · ‖U?r ‖2
(iii)

≤ (1 + ρ)‖U?‖2 · DIST(U,U?r ) + DIST(U,U?r ) · ‖U?r ‖2
= (2 + ρ) · DIST(U,U?r ) · ‖U?r ‖2
(iv)

≤ (2 + ρ)ρ · ‖U?r ‖2 · σr(U?r )
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where (i) is due to the orthogonality R?>U R?U = Ir×r, (ii) is due to the triangle inequality, the
Cauchy-Schwarz inequality and the fact that spectral norm is invariant w.r.t. orthogonal transfor-
mations and, (iii) is due to the following sequence of inequalities, based on the hypothesis of the
lemma:

‖U‖2 − ‖U?r ‖2 ≤ ‖U − U?rR?U‖2 ≤ DIST(U,U?r ) ≤ ρσr(U?r )

and thus ‖U‖2 ≤ (1 + ρ) · ‖U?r ‖2. The final inequality (iv) follows from the hypothesis of the
lemma.

The following lemma connects the spectrum of U to U?r under the initialization assumptions.

Lemma 19 Let U and U?r be n × r matrices such that DIST(U,U?r ) ≤ ρσr (U?r ), for ρ =
1

100
σr(X?)
σ1(X?) . Also, define X?

r = U?rU
?>
r . Then, the following bounds hold true:

(1− 1/100)σ1(U?r ) ≤ σ1(U) ≤ (1 + 1/100)σ1(U?r ),

(1− 1/100)σr(U
?
r ) ≤ σr(U) ≤ (1 + 1/100)σr(U

?
r ).

Moreover, by definition of τ(V ) := σr(V )
σ1(V ) for some V matrix, we also observe:

τ(U) ≤ 101
99 · τ(U?r ) and τ(X) ≤

(
101
99

)2 · τ(X?
r ).

Proof Using the norm ordering ‖ ·‖2 ≤ ‖·‖F and the Weyl’s inequality for perturbation of singular
values (Theorem 3.3.16 Horn and Johnson (1991)) we get,

|σi(U)− σi(U?r )| ≤ 1
100τ(X?)σr(U

?), 1 ≤ i ≤ r.

Then, the first two inequalities of the lemma follow by using triangle inequality and the above
bound. For the last two inequalities, it is easy to derive bounds on condition numbers by combining
the first two inequalities. Viz.,

τ (U) = σ1(U)
σr(U) ≤

1+1/100
1−1/100 ·

σ1(U?r )
σr(U?r ) ≤ 101

99 · τ (U?r ) ,

while the last bound can be easily derived since τ (U?r ) =
√
τ (X?

r ).

The following lemma shows that DIST, in the factor U space, lower bounds the Frobenius norm
distance in the matrix X space.

Lemma 20 Let X = UU> and X?
r = U?rU

?>
r be two rank-r PSD matrices. Let DIST(U,U?r ) ≤

ρσr (U?r ), for ρ = 1
100

σr(X?)
σ1(X?) . Then,

‖X −X?
r ‖2F ≥

3σr(X?)
4 DIST(U,U?r )2.

26



DROPPING CONVEXITY FOR FASTER SEMI-DEFINITE OPTIMIZATION

Proof This proof largely follows the arguments for Lemma 5.4 in Tu et al. (2015), from which we
know that

||X −X?
r ||2F ≥ 2(

√
2− 1)σr(X

?)DIST(U,U?r )2. (21)

Hence, ‖X −X?
r ‖2F ≥

3σr(X?)
4 DIST(U,U?r )2, for the given value of ρ.

The following lemma shows equivalence between various step sizes used in the proofs.

Lemma 21 Let X0 = U0U0> and X = UU> be two n × n rank-r PSD matrices such that
DIST(U,U?r ) ≤ DIST(U0, U?r ) ≤ ρσr(U

?
r ), where ρ = 1

100 ·
σr(X?)
σ1(X?) . Define the following step

sizes:

(i) η = 1
16(M‖X0‖2+‖∇f(X0)‖2)

,

(ii) η̂ = 1
16(M‖X‖2+‖∇f(X)QUQ

>
U‖2)

, and

(iii) η? = 1
16(M‖X?‖2+‖∇f(X?)‖2) .

Then, η̂ ≥ 5
6η holds. Moreover, assuming ‖X? −X?

r ‖F ≤ σr(X?)
100

√
σr(X?)
σ1(X?) , the following inequal-

ities hold:

10
11η

? ≤ η ≤ 11
10η

?

Proof By the assumptions of this lemma and based on Lemma 19, we have, 98/100 ‖X?‖2 ≤∥∥X0
∥∥

2
≤ 103/100 ‖X?‖2; similarly 98/100 ‖X?‖2 ≤ ‖X‖2 ≤ 103/100 ‖X?‖2. Hence, we can com-

bine these two set of inequalities to obtain bounds between X0 and X , as follows:

98
103

∥∥X0
∥∥

2
≤ ‖X‖2 ≤ 103

98

∥∥X0
∥∥

2
.

To prove the desiderata, we show the relationship between the gradient terms ‖∇f(X)QUQ
>
U‖2,

‖∇f(X0)‖2 and ‖∇f(X?
r )‖2. In particular, for the case η̂ ≥ 5

6η, we have:

‖∇f(X)QUQ
>
U‖2 ≤ ‖∇f(X)‖2

(i)

≤ ‖∇f(X)−∇f(X0)‖2 + ‖∇f(X0)‖2
(ii)

≤ M‖X −X0‖F + ‖∇f(X0)‖2
(iii)

≤ M‖X −X?
r ‖F +M‖X0 −X?

r ‖F + ‖∇f(X0)‖2
(iv)

≤ 2M(2 + ρ)ρ‖U?r ‖2 · σr(U?r ) + ‖∇f(X0)‖2
(v)

≤ 2M · (2 + 1
100) · 1

100‖X?‖2 + ‖∇f(X0)‖2
≤ M

20‖X0‖2 + ‖∇f(X0)‖2

where (i) follows from the triangle inequality, (ii) is due to the smoothness assumption, (iii) is due
to the triangle inequality, (iv) follows by applying Lemma 18 on the first two terms on the right hand
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side and, (v) is due to the fact ‖U?r ‖2 ·σr(U?r ) ≤ ‖X?‖2 and by substituting ρ = 1
100 ·

σr(X?)
σ1(X?) ≤ 1

100 .
Last inequality follows from 98/100 ‖X?‖2 ≤

∥∥X0
∥∥

2
. Hence, using the above bounds in step size

selection, we get

η̂ = 1
16(M‖X‖2+‖∇f(X)QUQ

>
U‖2)

(i)

≥ 1

16
(

6M
5 ‖X

0‖2+‖∇f(X0)‖2
) ≥ 5

6η,

where (i) is based also on the bound ‖X‖2 ≤ 103
98 ‖X0‖2.

Similarly we show the bound 10
11η

? ≤ η ≤ 11
10η

?. First observe that,

‖∇f(X0)‖2 ≤ ‖∇f(X?
r )−∇f(X0)‖2 + ‖∇f(X?

r )‖2
≤M‖X?

r −X0‖F + ‖∇f(X?
r )‖2

(i)

≤ M‖X?
r −X0‖F +M‖X? −X?

r ‖F + ‖∇f(X?)‖2
≤M(2 + ρ)ρ · ‖U?r ‖2 · σr(U?r ) +

1

100
Mσr(X

?
r ) + ‖∇f(X?)‖2

≤ 4

100
M‖X?‖2 + ‖∇f(X?)‖2.

Combining the above bound with 98/100 ‖X?
r ‖2 ≤

∥∥X0
∥∥

2
≤ 103/100 ‖X?

r ‖2 gives, η ≥ 10
11η

?. Simi-
larly we can show the other bounds.

Appendix B. Main lemmas for the restricted strong convex case

In this section, we present proofs for the main lemmas used in the proof of Theorem 6, in Section 6.

B.1. Proof of Lemma 15

Here, we prove the existence of a non-trivial lower bound for 〈∇f(X), X −X?
r 〉. Our proof differs

from the standard convex gradient descent proof (see Nesterov (2004)), as we need to analyze
updates without any projections. Our proof technique constructs a pseudo-iterate to obtain a bigger
lower bound than the error term in Lemma 16. Here, the nature of the step size plays a key role in
achieving the bound.

Let us abuse our notation and define U+ = U − η̂∇f(X)U and X+ = U+U+>. Observe that
we use the surrogate step size η̂, where according to Lemma 21 satisfies η̂ ≥ 5

6η. By smoothness of
f , we get:

f(X) ≥ f(X+)− 〈∇f(X), X+ −X〉 − M
2 ‖X+ −X‖2F

(i)

≥ f(X?)− 〈∇f(X), X+ −X〉 − M
2 ‖X+ −X‖2F , (22)

where (i) follows from optimality of X? and since X+ is a feasible point (X+ � 0) for problem (1).
Further, note that X?

r is a PSD feasible point. By smoothness of f , we also get

f(X?
r ) ≤ f(X?) + 〈∇f(X?), X?

r −X?〉+ M
2 ‖X?

r −X?‖2F
(i)
= f(X?) + M

2 ‖X?
r −X?‖2F , (23)
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where (i) is due to KKT conditions Boyd and Vandenberghe (2004): since ∇f(X?) is orthogonal
toX?, it is also orthogonal to the n−r bottom eigenvectors ofX?. Viz., 〈∇f(X?), X?

r −X?〉 = 0.
Finally, since rank(X?

r ) = r, by the (m, r)-restricted strong convexity of f , we get,

f(X?
r ) ≥ f(X) + 〈∇f(X), X?

r −X〉+ m
2 ‖X?

r −X‖2F . (24)

Combining equations (22), (23), and (24), we obtain:

〈∇f(X), X −X?
r 〉 ≥ 〈∇f(X), X −X+〉 − M

2 ‖X+ −X‖2F + m
2 ‖X?

r −X‖2F − M
2 ‖X?

r −X?‖2F . (25)

It is easy to verify thatX+ = X−η̂∇f(X)XΛ−η̂Λ>X∇f(X), where Λ = I− η̂
2QUQ

>
U∇f(X) ∈

Rn×n. Notice that, for step size η̂, we have

Λ � 0, ‖Λ‖2 ≤ 1 + 1/32, and σn(Λ) ≥ 1− 1/32.

Substituting the above in (25), we obtain:

〈∇f(X), X −X?
r 〉 − m

2 ‖X?
r −X‖2F + M

2 ‖X?
r −X?‖2F

(i)

≥ 2η̂ 〈∇f(X),∇f(X)XΛ〉 − M
2 ‖2η̂∇f(X)XΛ‖2F

= 2η̂Tr(∇f(X)∇f(X)XΛ)− 2Mη̂2 ‖∇f(X)XΛ‖2F
(ii)

≥ 2η̂Tr(∇f(X)∇f(X)X) · σn(Λ)− 2Mη̂2 ‖∇f(X)U‖2F ‖U‖22‖Λ‖22
≥ 31·η̂

16 ‖∇f(X)U‖2F − 2Mη̂2 ·
(

33
32

)2 · ‖∇f(X)U‖2F ‖U‖22
= 31·η̂

16 η̂‖∇f(X)U‖2F
(

1− 2Mη̂
(

33
32

)2 · 16
31 · ‖X‖2

)
(iii)

≥ 18η̂
10 ‖∇f(X)U‖2F ,

where (i) follows from symmetry of∇f(X) and X , and (ii) follows from

Tr(∇f(X)∇f(X)XΛ) = Tr(∇f(X)∇f(X)UU>)− η

2
Tr(∇f(X)∇f(X)UU>∇f(X))

≥ (1− η

2
‖QUQ>U∇f(X)‖2)‖∇f(X)U‖2F

≥ (1− 1/32)‖∇f(X)U‖2F .

Finally, (iii) follows by observing that η̂ ≤ 1
16M‖X‖2 . Thus, we achieve the desiderata:

〈∇f(X), X −X?
r 〉 ≥ 18η̂

10 ‖∇f(X)U‖2F + m
2 ‖X?

r −X‖2F − M
2 ‖X? −X?

r ‖2F .

This completes the proof.
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B.2. Proof of Lemma 16

We lower bound
〈
∇f(X),∆∆>

〉
as follows:〈

∇f(X),∆∆>
〉

(i)
=
〈
Q∆Q

>
∆∇f(X),∆∆>

〉
≥ −

∣∣∣Tr
(
Q∆Q

>
∆∇f(X)∆∆>

)∣∣∣
(ii)

≥ −‖Q∆Q
>
∆∇f(X)‖2 Tr(∆∆>)

(iii)

≥ −
(
‖QUQ>U∇f(X)‖2 + ‖QU?rQ>U?r∇f(X)‖2

)
DIST(U,U?r )2. (26)

Note that (i) follows from the fact ∆ = Q∆Q
>
∆∆ and (ii) follows from |Tr(AB)| ≤ ‖A‖2 Tr(B),

for PSD matrix B (Von Neumann’s trace inequality Mirsky (1975)). For the transformation in (iii),
we use that fact that the column space of ∆, SPAN(∆), is a subset of SPAN(U ∪U?r ), as ∆ is a linear
combination of U and U?rR

?
U .

To bound the first term in equation (26), we observe:

‖QUQ>U∇f(X)‖2 · DIST(U,U?r )2 (27)
(i)
= η̂ · 16

(
M‖X‖2 + ‖QUQ>U∇f(X)‖2

)
· ‖QUQ>U∇f(X)‖2 · DIST(U,U?r )2

= η̂

16M‖X‖2‖QUQ>U∇f(X)‖2 · DIST(U,U?r )2︸ ︷︷ ︸
:=A

+16‖QUQ>U∇f(X)‖22 · DIST(U,U?r )2


At this point, we desire to introduce strong convexity parameter m and condition number κ in

our bound. In particular, to bound term A, we observe that ‖QUQ>U∇f(X)‖2 ≤ mσr(X)
40 or

‖QUQ>U∇f(X)‖2 ≥ mσr(X)
40 . This results into bounding A as follows:

M‖X‖2‖QUQ>U∇f(X)‖2 · DIST(U,U?r )2

≤ max
{

16·η̂·M‖X‖2·mσr(X)
40 · DIST(U,U?r )2, η̂ · 16 · 40κτ(X)‖QUQ>U∇f(X)‖22 · DIST(U,U?r )2

}
≤ 16·η̂·M‖X‖2·mσr(X)

40 · DIST(U,U?r )2 + η̂ · 16 · 40κτ(X)‖QUQ>U∇f(X)‖22 · DIST(U,U?r )2.

Combining the above inequalities, we obtain:

‖QUQ>U∇f(X)‖2 · DIST(U,U?r )2 (28)
(i)

≤ mσr(X)
40 · DIST(U,U?r )2 + (40κτ(X) + 1) · 16 · η̂‖QUQ>U∇f(X)‖22 · DIST(U,U?r )2

(ii)

≤ mσr(X)
40 · DIST(U,U?r )2 + (41κτ(X?

r ) + 1) · 16 · η̂‖QUQ>U∇f(X)‖22 · (ρ′)2σr(X?
r )

(iii)

≤ mσr(X)
40 · DIST(U,U?r )2 + 16 · 42 · η̂ · κτ(X?

r ) · ‖∇f(X)U‖2F · 11(ρ
′)2

10

(iv)

≤ mσr(X)
40 · DIST(U,U?r )2 + 2η̂

25 · ‖∇f(X)U‖2F , (29)

where (i) follows from η̂ ≤ 1
16M‖X‖2 , (ii) is due to Lemma 19 and bounding DIST(U,U?r ) ≤

ρ′σr(U
?
r ) by the hypothesis of the lemma, (iii) is due to σr(X?) ≤ 1.1σr(X) by Lemma 19 and

due to the facts σr(X)‖QUQ>U∇f(X)‖22 ≤ ‖U>∇f(X)‖2F and (41κτ(X?
r ) + 1) ≤ 42κτ(X?

r ).
Finally, (iv) follows from substituting ρ′ and using Lemma 19.
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Next, we bound the second term in equation (26):

‖QU?RQ>U?R∇f(X)‖2 · DIST(U,U?r )2 (30)
(i)

≤ ‖∇f(X)−∇f(X?)‖2 · DIST(U,U?r )2

≤ ‖∇f(X)−∇f(X?)‖F · DIST(U,U?r )2

(ii)

≤ M (‖X −X?
r ‖F + ‖X? −X?

r ‖F ) · DIST(U,U?r )2

(iii)

≤ M(2 + ρ′) · ρ′ · ‖U?r ‖2 · σr(U?r ) · DIST(U,U?r )2 +M‖X? −X?
r ‖F · DIST(U,U?r )2

(iv)

≤ M(2 + ρ′)‖U?r ‖2 1
100κτ(U?r )σr(U

?
r ) · DIST(U,U?r )2 +M‖X? −X?

r ‖F · DIST(U,U?r )2

≤ mσr(X?)
40 DIST(U,U?r )2 +M‖X? −X?

r ‖F · DIST(U,U?r )2, (31)

where (i) follows from ∇f(X?)X? = 0, (ii) is due to smoothness of f and (iii) follows from
Lemma 18. Finally (iv) follows from DIST(U,U?r ) ≤ ρ′σr(U?r ) and substituting ρ′ = 1

100κτ(U?r ) .
Substituting (29), (31) in (26), we get:〈
∇f(X),∆∆>

〉
≥ −

(
2η̂
25‖∇f(X)U‖2F + mσr(X

?)
20 · DIST(U,U?r )2 +M‖X? −X?

r ‖F · DIST(U,U?r )2
)

This completes the proof.

B.3. Proof of Lemma 14

Recall U+ = U − η∇f(X)U . First we rewrite the inner product as shown below.

1

η
〈U − U+, U − U?rR?U 〉 = 〈∇f(X)U,U − U?rR?U 〉

=
〈
∇f(X), X − U?rR?UU>

〉
=

1

2
〈∇f(X), X −X?

r 〉+

〈
∇f(X),

1

2
(X +X?

r )− U?rR?UU>
〉

=
1

2
〈∇f(X), X −X?

r 〉+
1

2

〈
∇f(X),∆∆>

〉
, (32)

which follows by adding and subtracting 1
2X

?
r .

Let, η̂ = 1
16(M‖X‖2+‖∇f(X)QUQ

>
U‖2)

. Using Lemmas 15 and 16, we have:

〈∇f(X)U,U − U?rR?U 〉
≥ 9η̂

10 · ‖∇f(X)U‖2F + m
4 ‖X −X?

r ‖2F − M
4 ‖X? −X?

r ‖2F
− 1

2

(
2η̂
25 · ‖∇f(X)U‖2F + mσr(X?)

20 · DIST(U,U?r )2 +M‖X? −X?
r ‖F · DIST(U,U?r )2

)
=
(

9
10 − 1

25

)
· η̂‖∇f(X)U‖2F − M

4 ‖X? −X?
r ‖2F

+ m
4

(
‖X −X?

r ‖2F −
4σr(X?)

25 · DIST(U,U?r )2 − 2κ · ‖X? −X?
r ‖F · DIST(U,U?r )2

)
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(i)

≥ 4η̂
5 · ‖∇f(X)U‖2F − M

4 ‖X? −X?
r ‖2F

+ m
4

(
‖X −X?

r ‖2F −
4σr(X?)

25 · DIST(U,U?r )2 − σr(X?)
50 · DIST(U,U?r )2

)
(ii)

≥ 4η̂
5 · ‖∇f(X)U‖2F + 3m

20 · σr(X?) · DIST(U,U?r )2 − M
4 ‖X? −X?

r ‖2F
where (i) follows from ‖X? − X?

r ‖ ≤ σr(X?)
100κ1.5

σr(X?)
σ1(X?) ≤

σr(X?)
100κ1.5

≤ σr(X?)
100κ and (ii) follows from

Lemma 20. Finally the result follows from η̂ ≥ 5
6η from Lemma 21.

Appendix C. Main lemmas for the smooth case

In this section, we present the main lemmas, used in the proof of Theorem 5 in Section 6. First, we
present a lemma bounding the error term

〈
∇f(X),∆∆>

〉
, that appears in eq. (18).

Lemma 22 Let f be M -smooth and X = UU>; also, define ∆ := U − U?rR
?
U . Then, for

DIST(U,U?r ) ≤ ρσr (U?r ) and ρ = 1
100

σr(X?)
σ1(X?) , the following bound holds true:〈

∇f(X),∆∆>
〉
≤ 1

40‖∇f(X)U‖2 · DIST(U,U?r ).

Proof By the Von Neumann’s trace inequality for PSD matrices, we know that Tr(AB) ≤ Tr(A) ·
‖B‖2, for A PSD matrix. In our context, we then have:〈

∇f(X),∆∆>
〉
≤ ‖∇f(X)Q∆Q

>
∆‖2 · Tr(∆∆>)

(i)

≤
(
‖∇f(X)QUQ

>
U‖2 + ‖∇f(X)QU?rQ

>
U?r
‖2
)
· DIST(U,U?r )2, (33)

where, (i) is because ∆ can be decomposed into the column span ofU andU?r , and the orthogonality
of the matrix RU?r . In sequence, we further bound the term ‖∇f(X)QU?rQ

>
U?r
‖2 as follows:

‖∇f(X)U?r ‖2
(i)

≤ ‖∇f(X)U‖2 + ‖∇f(X)∆‖2
(ii)

≤ ‖∇f(X)U‖2 + ‖∇f(X)Q∆Q
>
∆‖2‖∆‖2

(iii)

≤ ‖∇f(X)U‖2 +
(
‖∇f(X)QUQ

>
U‖2 + ‖∇f(X)QU?rQ

>
U?r
‖2
)
‖∆‖2

(iv)

≤ ‖∇f(X)U‖2 +
(
‖∇f(X)QUQ

>
U‖2 + ‖∇f(X)QU?rQ

>
U?r
‖2
)

1
100σr(U

?
r )

(v)

≤ ‖∇f(X)U‖2 + 1

(1− 1
100)
· 1

100‖∇f(X)U‖2 + 1
100‖∇f(X)U?r ‖2

≤ 102
100‖∇f(X)U‖2 + 1

100‖∇f(X)U?r ‖2.

where (i) is due to triangle inequality on U?rR
?
U = U − ∆, (ii) is due to generalized Cauchy-

Schwarz inequality; we denote as Q∆Q∆ the projection matrix on the column span of ∆ matrix,
(iii) is due to triangle inequality and the fact that the column span of ∆ can be decomposed into the
column span of U and U?r , by construction of ∆, (iv) is due to

‖∆‖2 ≤ DIST(U,U?r ) ≤ 1
100

σr(X?)
σ1(X?) · σr(U?r ) ≤ 1

100 · σr(U?r ).
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Finally, (v) is due to the facts:

‖∇f(X)U?r ‖2 = ‖∇f(X)QU?rQ
>
U?r
U?r ‖2 ≥ ‖∇f(X)QU?rQ

>
U?r
‖2 · σr(U?r ),

and

‖∇f(X)U‖2 = ‖∇f(X)QUQ
>
UU‖2 ≥ ‖∇f(X)QUQ

>
U‖2 · σr(U)

≥ ‖∇f(X)QUQ
>
U‖2 ·

(
1− 1

100

)
· σr(U?r ),

by Lemma 19. Thus:

‖∇f(X)QU?rQ
>
U?r
‖2 ≤ 1

σr(U?r )‖∇f(X)U?r ‖2
≤ 1

σr(U?r )
102
99 ‖∇f(X)U‖2

≤ 101σ1(U?r )
100σr(U?r )

102
99 ‖∇f(X)QUQ

>
U‖2, (34)

and, combining with (33), we get〈
∇f(X),∆∆>

〉
≤
(

102·101
100·99 + 1

)
· σ1(U?r )
σr(U?r ) · ‖∇f(X)QUQ

>
U‖2 · DIST(U,U?r )2

≤ 1
40‖∇f(X)U‖2 · DIST(U,U?r ).

The last inequality follows from DIST(U,U?r ) ≤ 1
100

σr(X?)
σ1(X?) · σr(U?r ). This completes the proof.

The following lemma lower bounds the term
〈
∇f(X),∆∆>

〉
; this result is used later in the

proof of Lemma 25.

Lemma 23 Let X = UU> and define ∆ := U − U?rR
?
U . Let f(X+) ≥ f(X?

r ), where X?
r is

the optimum of the problem (1). Then, for DIST(U,U?r ) ≤ ρσr (U?r ), where ρ = 1
100

σr(X?)
σ1(X?) , and f

being a M -smooth convex function, the following lower bound holds:〈
∇f(X),∆∆>

〉
≥ −

√
2√

2− 1
100

· 1
100 · |〈∇f(X), X −X?

r 〉| .

Proof Let the QR factorization of the matrix [U U?rR
?
U ]n×2r be Q · R, where Q is a n × 2r

orthonormal matrix and R is a 2r × 2r invertible matrix (since [U U?rR
?
U ] is assumed to be rank-

2r). Further, let [U U?rR
?
U ]†2r×n where C† denotes the pseudo-inverse of matrix C. It is obvious

that [U U?rR
?
U ]> ·

(
[U U?rR

?
U ]†
)>

= I2r×2r.
Given the above, let us re-define some quantities w.r.t. [U U?rR

?
U ], as follows

∆ = U − U?rR?U = [U U?rR
?
U ]n×2r ·

[
Ir×r
−Ir×r

]
2r×r

.

Moreover, it is straightforward to justify that:

X −X?
r = [U U?rR

?
U ]n×2r ·

[
Ir×r 0r×r
0r×r −Ir×r

]
· [U U?rR

?
U ]>2r×n
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Then, from the above, the two quantities X −X?
r and ∆ are connected as follows:

(X −X?
r ) ·

(
[U U?rR

?
U ]
†
)>
·
[
I
I

]
= [U U?rR

?
U ] ·

[
I 0
0 −I

]
· [U U?rR

?
U ]
> ·
(

[U U?rR
?
U ]
†
)>

︸ ︷︷ ︸
=I

·
[
I
I

]

which is equal to ∆. Then, the following sequence of (in)equalities holds true:〈
∇f(X),∆∆>

〉
(i)
=

〈
∇f(X), (X −X?

r ) ·
(

[U U?rR
?
U ]†
)>
·
[
I
I

]
·∆>

〉

(ii)

≥ −

∣∣∣∣∣∣∣∣∣Tr

∇f(X) · (X −X?
r )︸ ︷︷ ︸

=A

·
(

[U U?rR
?
U ]†
)>
·
[
I
I

]
·∆>︸ ︷︷ ︸

=B


∣∣∣∣∣∣∣∣∣

(iii)

≥ − |Tr (∇f(X) · (X −X?
r ))| ·

∥∥∥∥([U U?rR
?
U ]†
)>
·
[
I
I

]
·∆>

∥∥∥∥
2

(iv)

≥ − |〈∇f(X), X −X?
r 〉| ·

∥∥∥∥([U U?rR
?
U ]†
)>∥∥∥∥

2

·
∥∥∥∥[II

]∥∥∥∥
2

· ‖∆‖2
(v)

≥ −
√

2 · |〈∇f(X), X −X?
r 〉| ·

∥∥∥∥([U U?rR
?
U ]†
)>∥∥∥∥

2

· 1
100 · σr(U?r )

(vi)

≥ −
√

2 · |〈∇f(X), X −X?
r 〉| · 1√

2− 1
100

· 1
σr(U?r ) · 1

100 · σr(U?r )

= −
√

2√
2− 1

100

· 1
100 · |〈∇f(X), X −X?

r 〉| , (35)

where, (i) follows by substituting ∆, according to the discussion above, (ii) follows from symmetry
of ∇f(X), (iii) follows from the Von Neumann trace inequality Tr(AB) ≤ Tr(A)||B||2, for a
PSD matrix A; next, we show that y>Ay ≥ 0, ∀y and A := ∇f(X) · (X −X?

r ), (iv) is due
to successive application of the Cauchy-Schwarz inequality, (v) is due to

∥∥∥[I I
]>∥∥∥

2
=
√

2 and

‖∆‖2 ≤ DIST(U,U?r ) ≤ ρ · σr(U?r ) ≤ 1
100 · σr(U?r ), (vi) follows from the the following fact:

1∥∥∥[U U?rR
?
U ]
†
∥∥∥
2

= σr ([U U?rR
?
U ])

= σr ([U U?rR
?
U ]− [U?rR

?
U U?rR

?
U ] + [U?rR

?
U U?rR

?
U ])

= σr ([U − U?rR?U 0] + [U?rR
?
U U?rR

?
U ])

(i)

≥ σr ([U?rR
?
U U?rR

?
U ])− ‖U − U?rR?U‖2

(ii)
=
√

2 · σr (U?R)− ‖U − U?rR?U‖2
(iii)

≥
(√

2− 1
100

)
· σr(U?r ),

where, (i) follows from a variant of Weyl’s inequality, (ii) is due to σr ([U?rR
?
U U?rR

?
U ]) =

√
2 ·

σr (U?r ), (iii) follows from the assumption that ‖U − U?rR?U‖2 ≤ DIST(U,U?r ) ≤ 1
100 · σr (U?r ).
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The above lead to the inequality:∥∥∥∥([U U?rR
?
U ]†
)>∥∥∥∥

2

=
∥∥∥[U U?rR

?
U ]†
∥∥∥

2
≤ 1√

2− 1
100

· 1
σr(U?r ) .

In the above inequalities (35), we used the fact that symmetric version of A is a PSD matrix,
where A := ∇f(X)∆(U + U?rR

?
U )> = ∇f(X) · (X −X?

r ) is a PSD matrix, i.e., given a vector
y, y>∇f(X) · (X − X?

r )y ≥ 0. To show this, let g(t) = f(X + tyy>) be a function from
R → R. Hence, ∇g(t) =

〈
∇f(X + tyy>), yy>

〉
. Now, consider g restricted to the level set

{t : f(X + tyy>) ≤ f(X)}. Note that, since f is convex, this set is convex and further X belongs
to this set from the hypothesis of the lemma. Also f(X?

r ) ≤ f(X + tyy>), for t in this set from the
optimality of X?

r . Let t∗ be the minimizer of g(t) over this set. Then, by convexity of g,〈
∇f(X), yy>

〉
· −t∗ = ∇g(0) · (0− t∗) ≥ g(0)− g(t∗) ≥ 0.

Further, since g(t∗) = f(X + t∗yy>) ≥ f(X?
r ), X + t∗yy>−X?

r is orthogonal to y. Hence, (X +
t∗yy>−X?

r )y = 0. Combining this with the above inequality gives,
〈
∇f(X), (X −X?

r )yy>
〉
≥ 0.

This completes the proof.

We next present a lemma for lower bounding the term 〈∇f(X), X −X?
r 〉. This result is used

in the following Lemma 25, where we bound the term 〈∇f(X)U,U − U?rR?U 〉.

Lemma 24 Let f be a M -smooth convex function with optimum point X?
r . Then, under the as-

sumption that f(X+) ≥ f(X?
r ), the following holds:

〈∇f(X), X −X?
r 〉 ≥ 18η̂

10 ‖∇f(X)U‖2F .

Proof The proof follows much like the proof of the Lemma for strong convex case (Lemma 15),
except for the arguments used to bound equation (22). For completeness, we here highlight the
differences; in particular, we again have by smoothness of f :

f(X) ≥ f(X+)− 〈∇f(X), X+ −X〉 − M
2 ‖X+ −X‖2F ,

where we consider the same notation with Lemma 15. By the assumptions of the Lemma, we have
f(X+) ≥ f(X?

r ) and, thus, the above translates into:

f(X) ≥ f(X?
r )− 〈∇f(X), X+ −X〉 − M

2 ‖X+ −X‖2F ,

hence eliminating the need for equation (23). Combining the above and assuming just smoothness
(i.e., the restricted strong convexity parameter is m = 0), we obtain a simpler version of eq. (25):

〈∇f(X), X −X?
r 〉 ≥ 〈∇f(X), X −X+〉 − M

2 ‖X+ −X‖2F . (36)

Then, the result easily follows by the same steps in Lemma 15.

Next, we state an important result, relating the gradient step in the factored space U+−U to the
direction to the optimum U − U?. The result borrows the outcome of Lemmas 22-24.
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Lemma 25 Let X = UU> and define ∆ := U − U?rR
?
U . Assume f(X+) ≥ f(X?

r ) and
DIST(U,U?r ) ≤ ρσr (U?r ), where ρ = 1

100
σr(X?)
σ1(X?) . For f being a M -smooth convex function, the

following descent condition holds for the U -space:

〈∇f(X)U,U − U?rR?U 〉 ≥ η
2 · ‖∇f(X)U‖2F .

Proof Expanding the term 〈∇f(X)U,U − U?rR?U 〉, we obtain the equivalent characterization:

〈∇f(X)U,U − U?rR?U 〉 =
〈
∇f(X), X − U?rR?UU>

〉
= 1

2 〈∇f(X), X −X?
r 〉+

〈
∇f(X), 1

2(X +X?
r )− U?rR?UU>

〉
= 1

2 〈∇f(X), X −X?
r 〉+ 1

2

〈
∇f(X),∆∆>

〉
(37)

which follows by the definition of X and adding and subtracting 1
2X

?
r term. By Lemma 24, we can

bound the first term on the right hand side as:

1
2 〈∇f(X), X −X?

r 〉 ≥ 18η̂
20 · ‖∇f(X)U‖2F . (38)

Observe that 〈∇f(X), X −X?
r 〉 ≥ 0. By Lemma 23, we can lower bound the last term on the right

hand side of (37) as:

1
2

〈
∇f(X),∆∆>

〉
≥ −

√
2√

2− 1
100

· 1
200 |〈∇f(X), X −X?

r 〉| = −
√

2√
2− 1

100

· 1
200 〈∇f(X), X −X?

r 〉 .

(39)

Combining (38) and (39) in (37), we get:

〈∇f(X)U,U − U?rR?U 〉 ≥ 1
2 〈∇f(X), X −X?

r 〉 −
√

2√
2− 1

100

· 1
200 〈∇f(X), X −X?

r 〉

≥
(

1−
√

2√
2− 1

100

· 1
100

)
· 1

2 〈∇f(X), X −X?
r 〉

≥ 98
100 ·

18η̂
20 · ‖∇f(X)U‖2F

(i)

≥ 98
100 · 18

20 ·
5η
6 · ‖∇f(X)U‖2F

≥ 7η
10 · ‖∇f(X)U‖2F ≥ η

2 · ‖∇f(X)U‖2F ,
where (i) follows from η̂ ≥ 5

6η in Lemma 21. This completes the proof.

We conclude this section with a lemma that proves that the distance DIST(U,U?r ) is non-
increasing per iteration of FGD. This lemma is used in the proof of sublinear convergence of FGD

(Theorem 5), in Section 6.

Lemma 26 LetX = UU> andX+ = U+ (U+)> be the current and next estimate of FGD. Assume
f is a M -smooth convex function such that f(X+) ≥ f(X?

r ). Moreover, define ∆ := U − U?rR?U
and DIST(U,U?r ) ≤ ρσr (U?r ), where ρ = 1

100
σr(X?)
σ1(X?) . Then, the following inequality holds:

DIST(U+, U?r ) ≤ DIST(U,U?r ).

This further implies DIST(U,U?r ) ≤ DIST(U0, U?r ) for any estimate U of FGD.
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Proof Let R?U = arg minR∈O ‖U − U?rR‖2F . Expanding DIST(U+, U?r )2, we obtain:

DIST(U+, U?r )2 = min
R∈O
‖U+ − U?rR‖2F (40)

≤ ‖U+ − U?rR?U‖2F
= ‖U+ − U + U − U?rR?U‖2F
= ‖U+ − U‖2F + ‖U − U?rR?U‖2F − 2 〈U+ − U,U?rR?U − U〉
= η2‖∇f(X)U‖2F + DIST(U,U?r )2 − 2η 〈∇f(X)U,U − U?rR?U 〉
≤ DIST(U,U?r )2, (41)

where last inequality is due to Lemma 25.

Appendix D. Initialization proofs

D.1. Proof of Lemma 10

The proof borrows results from standard projected gradient descent. In particular, we know from
Theorem 3.6 in Bubeck (2014) that, for consecutive estimates X+, X and optimal point X?, pro-
jected gradient descent satisfies:

‖X+ −X?‖2F ≤
(
1− 1

κ

)
· ‖X −X?‖2F .

By taking square root of the above inequality, we further have:

‖X+ −X?‖F ≤
√

1− 1
κ · ‖X −X?‖F ≤

(
1− 1

2κ

)
· ‖X −X?‖F , (42)

since
√

1− 1
κ ≤ 1− 1

2κ , for all values of κ > 1.
Given the above, the following (in)equalities hold true:

‖X −X+‖F = ‖X −X? +X? −X+‖F
(i)

≥ ‖X −X?‖F − ‖X+ −X?‖F
(ii)

≥ 1

2κ
‖X −X?‖F ⇒

‖X −X?‖F ≤ 2κ · ‖X −X+‖F ,

where (i) is due to the lower bound on triangle inequality and (ii) is due to (42). Under the assump-
tions of the lemma, if ‖X −X+‖F ≤ c

κ
√
rτ(Xr)

σr(X), the above inequality translates into:

‖X −X?‖F ≤ 2c√
rτ(Xr)

σr(X).

By construction, bothX andX? are PSD matrices; moreover,X can be a matrix with rank(X) > r.
Hence,

||Xr −X?||F ≤
√
r||Xr −X?||2 ≤ 2

√
r‖X −X?‖2 ≤ 2

√
r‖X −X?‖F ,
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using Weyl’s inequalities. Thus, ‖Xr −X?‖F ≤ 4c
τ(Xr)

σr(X). Define Xr = UrU
>
r and X? =

U?r (U?r )>. Further, by Lemma 5.4 of Tu et al. (2015), we have:

‖Xr −X?‖F ≥
√

2
(√

2− 1
)
σr(U

?
r ) · DIST(Ur, U

?
r ).

The above lead to: √
2
(√

2− 1
)
σr(U

?
r ) · DIST(Ur, U

?
r ) ≤ 4c

τ(Xr)
σr(X).

Recall that σr(X) = σ2
r (Ur); then, by Lemma 19, there is constant c′′ > 0 such that 4c

τ(Xr)
σ2
r (U) ≤

c′′

τ(X?
r )σ

2
r (U

?
r ). Combining all the above, we conclude that there is constant c′ > 0 such that:

DIST(Ur, U
?
r ) ≤ c′

τ(X?
r )σr(U

?
r ).

D.2. Proof of Theorem 11

Recall X0 = P+

(
−∇f(0)

‖∇f(0)−∇f(e1e′1)‖F

)
. Here, we remind that P+(·) is the projection operator onto

the PSD cone and P−(·) is the projection operator onto the negative semi-definite cone.
To bound ‖X0 −X?‖F , we will bound each individual term in its squared expansion

‖X0 −X?‖2F = ‖X0‖2F + ‖X?‖2F − 2
〈
X0, X?

〉
.

From the smoothness of f , we get the following:

M ‖X?‖F ≥ ‖∇f(0)−∇f(X?)‖F
(i)

≥ ‖P−(∇f(0))− P−(∇f(X?))‖F
(ii)
= ‖P−(∇f(0))‖F .

where (i) follows from non-expansiveness of projection operator and (ii) follows from the fact that
∇f(X?) is PSD and hence P−(∇f(X?)) = 0. Finally, observe that P−(∇f(0)) = P+(−∇f(0)).
The above combined imply:

‖P+(−∇f(0))‖F ≤M ‖X?‖F =⇒
∥∥X0

∥∥
F
≤ M

‖∇f(0)−∇f(e1e′1)‖F
· ‖X?‖F ≤ κ ‖X?‖F

where we used the fact that m ≤
∥∥∇f(0)−∇f(e1e

>
1 )
∥∥
F
≤ M and κ = M/m. Hence ‖X0‖2F ≤

κ2 ‖X?‖2F .
Using the strong convexity of f around X?, we observe

f(0) ≥ f(X?) + 〈∇f(X?), 0−X?〉+
m

2
‖X?‖2F ≥ f(X?) +

m

2
‖X?‖2F ,

where the last inequality follows from first order optimality of X?, 〈∇f(X?), 0−X?〉 ≥ 0 and 0
is a feasible point for problem (1). Similarly, using strong convexity of f around 0, we have

f(X?) ≥ f(0) + 〈∇f(0), X?〉+
m

2
‖X?‖2F
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Combining the above two inequalities we get, 〈−∇f(0), X?〉 ≥ m ‖X?‖2F . Moreover:

〈−∇f(0), X?〉 = 〈P+ (−∇f(0)) + P− (−∇f(0)) , X?〉
= 〈P+ (−∇f(0)) , X?〉+ 〈P− (−∇f(0)) , X?〉︸ ︷︷ ︸

≤0

since X? is PSD. Thus, 〈P+(−∇f(0)), X?〉 ≥ 〈−∇f(0), X?〉 and〈
X0, X?

〉
≥ m

‖∇f(0)−∇f(e1e′1)‖F
‖X?‖2F ≥

1

κ
‖X?‖2F , (43)

where we used the fact that m ≤
∥∥∇f(0)−∇f(e1e

>
1 )
∥∥
F
≤ M . Given the above inequalities, we

can now prove the following:∥∥X0 −X?
∥∥2
F

= ‖X0‖2F + ‖X?‖2F − 2
〈
X0, X?

〉
≤ κ2 ‖X?‖2F + ‖X?‖2F −

2

κ
‖X?‖2F

=

(
κ2 − 2

κ
+ 1

)
‖X?‖2F .

Now we know that
∥∥X0 −X?

∥∥
F
≤

√
κ2 − 2/κ + 1 ‖X?‖F . Now, by triangle inequality∥∥X0 −X?

r

∥∥
F
≤
√
κ2 − 2/κ + 1 ‖X?‖F + ‖X? −X?

r ‖F . By ||.||2 ≤ ||.||F and Weyl’s inequality
for perturbation of singular values (Theorem 3.3.16 Horn and Johnson (1991)) we get,∥∥X0

r −X?
r

∥∥
2
≤ 2
√
κ2 − 2/κ + 1 ‖X?‖F + 2 ‖X? −X?

r ‖F .

By the assumptions of the theorem, we have ‖X? −X?
r ‖F ≤ ρ̃ ‖X?‖2. Therefore,∥∥X0

r −X?
r

∥∥
F
≤ 2
√

2r
(√

κ2 − 2/κ + 1 ‖X?‖F + ρ̃ ‖X?‖2
)
.

Now again using triangle inequality and substituting we get ‖X?‖F ≤ srank1/2 ‖X?‖2 + ρ̃ ‖X?‖2.
Finally combining this with Lemma 20 gives the result.

Appendix E. Dependence on condition number in linear convergence rate

It is known that the convergence rate of classic gradient descent schemes depends only on the con-
dition number κ = M

m of the function f . However, in the case of FGD, we notice that convergence
rate also depends on condition number τ(X?

r ) = σ1(X?)
σr(X?) , as well as ‖∇f(X?)‖2.

To elaborate more on this dependence, let us recall the update rule of FGD, as presented in
Section 3. In particular, one can observe that the gradient direction has an extra factorU , multiplying
∇f(UU>), as compared to the standard gradient descent on X . One way to reveal how this extra
factor affects the condition number of the Hessian of f , we consider the special case of separable
functions; see the definition of separable functions in the next lemma. Next, we show that the
condition number of the Hessian – for this special case – has indeed a dependence on both τ(X?

r )
and ‖∇f(X?)‖2, a scaling similar to the one appearing in the convergence rate α of FGD.
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Lemma 27 (Dependence of Hessian on τ(X?
r ) and ‖∇f(X?)‖2) Let f be a smooth, twice dif-

ferentiable function over the PSD cone. Further, assume f is a separable function over the matrix
entries, such that f(X) =

∑
(i,j) ϕij(Xij), where (i, j) ∈ [n]× [n], and let ϕij’s be M -smooth and

m-strongly convex functions, ∀i, j. Finally, letX? = U?(U?)> be rank-r and let∇2
URf(X) denote

the Hessian of f w.r.t. the U factor, for some orthonormal matrix R ∈ O. Then,

σ1

(
∇2
U?f(X?)

)
≤ C · (M‖X?‖2 + ‖∇f(X?)‖2),

for constant C. Further, for any unit vector y ∈ Rnr×1 such that columns of mat(y) ∈ Rn×r are
orthogonal to U?, i.e., mat(y)>U? = 0, we further have:

y>∇2
U?Rf(X?)y ≥ c ·mσr(X?),

for some constant c.

Proof By the definition of gradient, we know that ∇Uf(UU>) = (∇f(UU>) +∇f(UU>)>)U ;
for simplicity, we assume ∇f(UUT ) be symmetric. Since X is symmetric, with ∇f(UUT )ij =
ϕ′ij(Xij) and ϕ′ij(Xij) = ϕ′ji(Xji). By the definition of Hessian, the entries of ∇2

Uf(UUT ) are
given by:

(
∇2
Uf(UUT )

)
ij,kl

=
∂

∂Ukl

n∑
p=1

ϕ′ip(Xip)Upj =

n∑
p=1

∂ϕ′ip(Xip)

∂Ukl
Upj︸ ︷︷ ︸

:=T1

+

n∑
p=1

ϕ′ip(Xip)
∂Upj
∂Ukl︸ ︷︷ ︸

:=T2

.

In particular, for T1 we observe the following cases:

T1 =

{
ϕ′′ik(Xik)UilUkj if i 6= k,∑

p ϕ
′′
ip(Xip)UplUpj + ϕ′′ii(Xii)UilUkj if i = k.

while, for T2 we further have:

T2 =

{
0 if j 6= l,
ϕ′ik(Xik) if j = l.

Consider now the case where gradient and Hessian information is calculated at the optimal point
X?. Based on the above, the Hessian of f w.r.t U? turns out to be a sum of three PSD nr × nr
matrices, as follows:

∇2
U?f(X?) = A+B + C,

where

(i) A = (Û?)TGÛ?, where G is a n2×n2 diagonal matrix with diagonal elements ϕ′′ij(X
?
ij) and

Û? is a n2 × nr matrix with U? repeated n times on the diagonal. It is easy to see that

‖A‖2 ≤ ‖ϕ′′ij‖∞σmax(U?)2 = M‖X?‖2.

Similarly, we have σnr(A) ≥ minϕ′′ij · σmin(U?)2 = mσmin(X?).
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(ii) B is a nr×nr matrix, with Bij,kl = ϕ′′ik(X
?
ik)U

?
ilU

?
kj . Again, it is easy to verify that ‖B‖2 ≤

M‖X?‖2. Now for y perpendicular to U?, notice that y>By = 0, since the columns of B are
concatenation of scaled columns of U?.

(iii) C is a nr×nr diagonal block-matrix, with n×n blocks∇f(X?) repeated r times. It is again
easy to see that ‖C‖2 ≤ ‖∇f(X?)‖2, since C is a block diagonal matrix. Moreover, by KKT
optimality condition∇f(X?)X? = 0, rank(∇f(X?)) ≤ n− r and thus, σnr(C) = 0.

Combining the above results and observing that all the three matrices are PSD, we conclude that
σ1

(
∇2
U?f(X?)

)
≤ C · (M‖X?‖2 + ‖∇fX?‖2). Regarding the lower bound on σnr

(
∇2
U?f(X?)

)
,

we observe the following: due to UU> factorization and for U? optimum, we know that also
U?R is optimum, where gradient ∇f(U?(U?)>) = ∇f(U?RR>(U?)>) = 0. This further in-
dicates that the hessian of f is zero along directions corresponding to columns of U?, and thus
σnr

(
∇2
U?f(X?)

)
= 0 along these directions; see figure 3 (right panel) for an example. However,

for any other directions orthogonal to U?, we have y>
(
∇2
U?Rf(X?)

)
y ≥ c ·mσmin(X?), for some

constant c. This completes the proof.

To show this dependence in practice, we present some simulation results in Figure 3. We observe
that the convergence rate does indeed depend on τ(X?

r ).

Appendix F. Test case I: Matrix sensing problem

In this section, we briefly describe and compare algorithms designed specifically for the matrix
sensing problem, using the variable parametrization X = UU>. To accommodate the PSD con-
straint, we consider a variation of the matrix sensing problem where one desires to find X? that
minimizes20:

minimize
X∈Rn×n

1
2‖b−A (X) ‖2F subject to rank(X) ≤ r, X � 0. (44)

W.l.o.g., we assume b = A (X?) for some rank-r X?. Here, A : Rn×n → Rp is the linear sensing
mechanism, such that the i-th entry of A(X) is given by 〈Ai, X〉, for Ai ∈ Rn×n sub-Gaussian
independent measurement matrices.

Jain et al. (2013) is one of the first works to propose a provable and efficient algorithm for
(44), operating in the U -factor space, while Sa et al. (2015) solves (44) in the stochastic setting;
see also Zheng and Lafferty (2015); Tu et al. (2015); Chen and Wainwright (2015). To guarantee
convergence, most of these algorithms rely on restricted isometry assumptions; see Definition 28
below.

To compare the above algorithms with FGD, Subsection F.1 further describes the notion of
restricted strong convexity and its connection with the RIP. Then, Subsection F.2 provides explicit
comparison results of the aforementioned algorithms, with respect to the convergence rate factor α,
as well as initialization conditions assumed, for each case.

20. This problem is a special case of affine rank minimization problem Recht et al. (2010), where no PSD constraints are
present.
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Figure 3: Left panel: Assume dimension n = 50. We consider the matrix sensing setup Recht et al.
(2010) and generatem = d2n log neGaussian linear measurements of n×nmatricesX?

of rank r = 2, with varying condition number τ(X?). We compute matrix X = UU>,
U is n × r tall matrix, by minimizing the standard least squares lost function, using our
scheme. In the plot, we show the log error versus total number of iterations. Observe that,
varying the condition number of X?, higher τ(X?) leads to slower convergence. Right
panel: Contour of function (u2

1 + u2
2 − 1)2. Observe the “ring” of points (u1, u2) where

f is minimized. This illustrates the existence of multiple points with zero gradient and,
thus, directions where the hessian of the objective is zero.

F.1. Restricted isometry property and restricted strong convexity

To shed some light on the notion of restricted strong convexity and how it relates to the RIP, consider
the matrix sensing problem, as described above. According to (44), we consider the quadratic loss
function:

f(X) = 1
2‖b−A(X)‖2F .

Since the Hessian of f is given by A∗A, restricted strong convexity suggests that Negahban and
Wainwright (2012):

‖A(Z)‖22 ≥ C · ‖Z‖2F , Z ∈ Rn×n,

for a restricted set of directions Z, where C > 0 is a small constant. This bound implies that the
quadratic loss function, as defined above, is strongly convex in such a restricted set of directions
Z.21

A similar but stricter notion is that of restricted isometry property for low rank matrices Candes
and Plan (2011); Liu (2011):

21. One can similarly define the notion of restricted smoothness condition, where ‖A(Z)‖22 is upper bounded by ‖Z‖2F .
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Definition 28 (Restricted Isometry Property (RIP)) A linear mapA satisfies the r-RIP with con-
stant δr, if

(1− δr)‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr)‖X‖2F ,

is satisfied for all matrices X ∈ Rn×n such that rank(X) ≤ r.

The correspondence of restricted strong convexity with the RIP is obvious: both lower bound
the quantity ‖A(X)‖22, where X is drawn from a restricted set. It turns out that linear maps that
satisfy the RIP for low rank matrices, also satisfy the restricted strong convexity; see Theorem 2 in
Chen and Sanghavi (2010).

By assuming RIP in (44), the condition number of f depends on the RIP constants of the linear
map A; in particular, one can show that κ = M

m ∝ 1+δ
1−δ , since the eigenvalues of A∗A lie between

1 − δ and 1 + δ, when restricted to low-rank matrices. For δ sufficiently small and dimension n
sufficiently large, κ ≈ 1, which, with high probability, is the case forA drawn from a sub-Gaussian
distribution.

F.2. Comparison

Given the above discussion, the following hold true for FGD, under RIP settings:

(i) In the noiseless case, b = A(X?) and thus, ‖∇f(X?)‖2 = ‖ − 2A∗ (b−A(X?)) ‖2 = 0.
Combined with the above discussion, this leads to convergence rate factor

α . 1− c4
τ(U?r )2

,

in FGD.

(ii) In the noisy case, b = A(X?) + e where e is an additive noise term; for this case, we further
assume that ‖A (e) ‖2 is bounded. Then,

α . 1− c4

τ(U?r )2+
‖A(e)‖2

(1−δ)σr(X?)
.

Table 2 summarizes convergence rate factors α and initialization conditions of state-of-the-art
approaches for the noiseless case.

F.3. Empirical results

We start our discussion on empirical findings with respect to the convergence rate of the algorithm,
how the step size and initialization affects its efficiency and some comparison plots with an efficient
first-order projected gradient solver. We note that the experiments presented below are performed
as a proof of concept and are not complete in the set of algorithms we could compare with.

Linear convergence rate and step size selection: To show the convergence rate of the fac-
tored gradient descent in practice, we solve affine rank minimization problems instances with
synthetic data. In particular, the ground truth X? ∈ Rn×n is synthesized as a rank-r matrix as
X? = U? (U?)>, where U? ∈ Rn×r. In sequence, we sub-sampleX? by observingm = Csam ·p ·r
entries, according to:

y = A(X?) ∈ Rm. (45)
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Reference DIST (U+, U?)
2 ≤ α · DIST (U,U?)

2 DIST
(
U0, U?

)
≤ · · ·

Jain et al. (2013) α = 1
16

† √
6δ · σr(X

?)
σ1(X?)σr(U

?
r )

Tu et al. (2015) α = 1− c1
τ(U?

r )
4

1
4σr(U

?
r )

Zheng and Lafferty (2015) α = 1− c2
τ(U?

r )·r

√
3
16 · σr(U?r )

Chen and Wainwright (2015) α = 1− c3
τ(U?

r )
10 (1− τ) · σr(U?r )

This work α = 1− c4
τ(U?

r )
2

1
100 ·

σr(X
?)

σ1(X?)σr(U
?
r )

Table 2: Comparison of related work for the matrix sensing problem. All methods use UU>

parametrization of the variable X and admit linear convergence. τ =
√

12δ according to
Chen and Wainwright (2015). ci > 0, ∀i denote absolute constants. In Jain et al. (2013),
the proposed algorithm is designed to solve the rectangular case where X = UV >; the
reported factor α and initial conditions could be improved for the case of (2). † Note that
this convergence is in terms of subspace distance.

We use permuted and sub-sampled noiselets for the linear operator A : Rn×n → Rm; for more
information, see Waters et al. (2011). y ∈ Rm contains the linear measurements of X? through A
in vectorized form. We consider the noiseless case, for ease of exposition. Under this setting, we
solve (2) with f(UU>) := 1/2 · ‖y − A

(
UU>

)
‖22. We use as a stopping criterion the condition

‖U+ (U+)> − UU>‖F < tol · ‖U+ (U+)> ‖F where tol := 5 · 10−6.
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Figure 4: Median error per iteration of factored gradient descent algorithm for different step sizes,
over 20 Monte Carlo iterations. The number of measurements is fixed to Csam · n · r for
varying Csam ∈ {4, 6, 10}. Here, n = 1204 and rank r = 5. Curves show convergence
behavior of factored gradient descent as a function of the step size selection. One can
observe that arbitrary step size selections can lead to slow convergence. Moreover, good
constant step size selections – for a specific problem configuration, do not necessarily
translate into good performance for a different setting; e.g., observe how the constant
step size convergence rates worsen faster, as we decrease the number of observations.

Figure 4 show the linear convergence of our approach as well as the efficiency of our step selec-
tion, as compared to other arbitrary constant step size selections. All instances use our initialization
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point. It is worth mentioning that the performance of our step size can be inferior to specific constant
step size selections; however, finding such a good constant step size usually requires trial-and-error
rounds and do not come with convergence guarantees. Moreover, we note that one can perform
line search procedures to find the “best” step size per iteration; although, for more complicated f
instances, such step size selection might not be computationally desirable, even infeasible.

Impact of avoiding low-rank projections on the PSD cone: In this experiment, we compare
factored gradient descent with a variant of the Singular Value Projection (SVP) algorithm Jain et al.
(2010); Becker et al. (2013)22. For the purpose of this experiment, the SVP variant further projects
on the PSD cone, along with the low rank projection. Its main difference is that it does not operate
on the factor U space but requires projection over the (low-rank) positive semi-definite cone per
iteration. In the discussion below, we refer to this variant as SVP (SDP).
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Figure 5: Median error per iteration for factored gradient descent and SVP (SDP) algorithms, over
20 Monte Carlo iterations. For all cases, the number of measurements is fixed toCsam ·n·r
for Csam = 6. From left to right, we consider different rank configurations: (i) r = 5 and
(ii) r = 10. Both schemes use the same initialization point. Both plots show better
convergence rate performance in terms of iterations due to our step size selection. In
addition, factored gradient descent avoids performing SVD operations per iteration, a
fact that leads also to lower per iteration complexity; see also Table 3.

We perform two experiments. In the first experiment, we compare factored gradient descent
with SVP (SDP), as designed in Jain et al. (2010); i.e., while we use our initialization point for both
schemes, step size selections are different. Figure 5 shows some convergence rate results: clearly
our step size selection performs better in practice, in terms of the total number of iterations required
for convergence.

In the second experiment, we would like to highlight the time bottleneck introduced by the
projection operations: for this aim, we use the same initialization points and step sizes for both
the algorithms under comparison. Thus, the only difference lies in the SVD computations of SVP
(SDP) to retain a PSD low rank estimate per iteration. Table 3 presents reconstruction error and

22. SVP is a non-convex, first-order, projected gradient descent scheme for low rank recovery from linear measurements.
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Model ‖X̂ −X?‖F /‖X?‖F Time (sec)

n r SVP (SDP) Our scheme SVP (SDP) Our scheme

512

5 1.1339e-03 8.4793e-04 36.9652 11.4757
10 4.6552e-04 4.4954e-04 19.6089 7.9902
20 1.6541e-04 2.0571e-04 10.6052 6.4149

1024

5 2.4224e-03 9.9180e-04 225.6230 43.0964
10 1.0203e-03 4.5103e-04 121.7779 29.4016
20 4.1149e-04 2.3442e-04 67.6272 22.9616

2048

5 4.8500e-03 1.0093e-03 1512.1969 173.5237
10 2.0836e-03 4.6735e-04 835.0538 115.6227
20 9.4893e-04 2.6417e-04 458.8766 88.1960

Table 3: Summary of comparison results for reconstruction and efficiency. Observe that both our
scheme and SVP (SDP) require more iterations to converge as r radically decreases. This
justifies the higher time-complexity observed; see also Figure 5 for comparison.

execution time results. It is obvious that projecting on the low-rank PSD code per iteration con-
stitutes a computational bottleneck per iteration, which slows down (w.r.t. total time required) the
convergence of SVP (SDP).

Initialization. Here, we evaluate the importance of our initialization point selection:

X0 := P+

( −∇f(0)

‖∇f(0)−∇f(e1e′1)‖F

)
(46)

To do so, we consider the following settings: we compare random initializations against the rule
(46), both for constant step size selections and our step size selection. In all cases, we work with
the factored parametrization.

Figure 6 shows the results. Left panel presents results for constant step size selections where η =
0.1/‖U‖2F and right panel uses our step size selection; again, note that the selection of the constant step
size is after many trial-and-errors for best step size selection, based on the specific configuration.
Both figures compare the performance of factored gradient descent when (i) a random initialization
point is selected and, (ii) our initialization is performed, according to (46). All curves depict median
reconstruction errors over 20 Monte Carlo iterations. For all cases, the number of measurements is
fixed to Csam · n · r for Csam = 10, n = 1024 and rank r = 20.

Dependence of α on σ1(X?)
σr(X?) . Here, we highlight the dependence of σ1(X?)

σr(X?) on the convergence
rate of factored gradient descent. Consider the following matrix sensing toy example: let X? :=
U? (U?)> ∈ Rn×n for n = 50 and assume rank(X?) > r. We desire to compute a (at most) rank-r
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Figure 6: Median error per iteration for different initialization set ups. Left panel presents results
for constant step size selections where η = 0.1/‖U‖2F and right panel uses our step size
selection. Both figures compare the performance of factored gradient descent when (i) a
random initialization point is selected and, (ii) our initialization is performed, according
to (46). All curves depict median reconstruction errors over 20 Monte Carlo iterations.
For all cases, the number of measurements is fixed to Csam ·n ·r for Csam = 10, n = 1024
and rank r = 20.

approximation of X? by minimizing the simple least squares loss function:

minimize
X∈Rn×n

1

2
‖X −X?‖2F

subject to X � 0, rank(X) ≤ r
(47)

For this example, let us consider r = 3 and designX? according to the following three scenarios: we
fix σ1(X?) = σ2(X?) = 100 and vary σ3(X?) ∈ {1, 10, 20}. This leads to condition numbers for
these three cases as: (i) σ1(X?)

σ3(X?) = 100, (ii) σ1(X?)
σ3(X?) = 10 and, (iii) σ1(X?)

σ3(X?) = 5. The convergence
behavior is shown in Figure 7(Left panel). It is obvious that factored gradient descent suffers –
w.r.t. convergence rate – as the condition number σ1(X?)

σ3(X?) get worse; especially, for the case where
σ1(X?)
σ3(X?) = 100, factored gradient descent reaches a plateau after the∼80-th iteration, where the steps
towards solution become smaller. As the condition number improves, factored gradient descent
enjoys faster convergence to the optimum, which shows the dependence of the algorithm on σ1(X?)

σ3(X?)
also in practice.

As a second setting, we fix r = 2, thereby computing a rank-2 approximation. As Figure
7(Right panel) illustrates, for all values of σ3(X?), factored gradient descent performs similarly,
enjoying fast convergence towards the optimum X?. Thus, while the condition number of original
X? varies to a large degree for r = 3, the convergence rate factor α only depends on σ1(X?)

σ2(X?) = 1,
for r = 2. This leads to similar convergence behavior for all three scenarios described above.
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Figure 7: Toy example on the dependence of α on the term σ1(X?)
σr(X?) . Here, X? := U? (U?)> ∈

Rn×n for n = 50. We use factored gradient descent to solve (47) for r = 3. Left
panel: As condition number σ1(X?)

σ3(X?) improves, factored gradient descent enjoys faster
convergence in practice, as dictated by our theory. Right panel: convergence rate behavior
of factored gradient descent when r = 2 in (47).

Appendix G. Test case II: PSD problems with high-rank solutions

As a final example, we consider problems of the form:

minimize
X∈Rn×n

f(X) subject to X � 0,

where X? is the minimizer of the above problem and rank(X?) = O(n). In this particular case and
assuming we are interested in finding high-ranked X?, we can reparameterized the above problem
as follows:

minimize
U∈Rn×O(n)

f(UU>).

Observe that U is a square n×O(n) matrix. Under this setting, FGD performs the recursion:

U+︸︷︷︸
n×O(n)

= U︸︷︷︸
n×O(n)

−η∇f(UU>)︸ ︷︷ ︸
n×n

· U︸︷︷︸
n×O(n)

.

Due to the matrix-matrix multiplication, the per-iteration time complexity of FGD is O(n3), which
is comparable to a SVD calculation of a n×nmatrix. In this experiment, we study the performance
of FGD in such high-rank cases and compare it with state-of-the-art approaches for PSD constrained
problems.

For the purpose of this experiment, we only consider first-order solvers; i.e., second order meth-
ods such as interior point methods are excluded as, in high dimensions, it is prohibitively expensive
the hessian of f . To this end, the algorithms to compare include: (i) standard projected gradient
descent approach Kyrillidis and Cevher (2014) and (ii) Frank-Wolfe type of algorithms, such as
the one in Hazan (2008). We note that this experiment can be seen as a proof of concept on how
avoiding SVD calculations help in practice.23

23. Here, we assume a standard Lanczos implementation of SVD, as the one provided in Matlab enviroment.
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Figure 8: Convergence performance of algorithms under comparison w.r.t. ‖X̂−X
?‖F

‖X?‖F vs. (i) the
total number of iterations (top) and (ii) the total execution time (bottom).

Experiments. We consider the simple example of matrix sensing Kyrillidis and Cevher (2014):
we obtain a set of measurements y ∈ Rm according to the linear model:

y = A(X?).

Here, A : Rn×n → Rm is a sensing mechanism such that (A(X))i = Tr(AiX) for some Gaussian
random matricesAi, i = 1, . . . ,m. The ground truth matrixX? is design such that rank(X?) = n/4
and Tr(X?) = 1.24

Figure 8 and Table 4 show some results for the following settings: (i) n = 1024, r = n/4
and m = 2nr, (ii) n = 2048, r = n/4 and m = 2nr, (iii) n = 2048, r = n/8 and m = 4nr.
From our finding, we observe that, even for high rank cases—where r = O(n)—performing matrix
factorization and optimizing over the factors results into a much faster convergence, as compared
to low-rank projection algorithms, such as RSVP in Becker et al. (2013). Furthermore, FGD per-
forms better than SparseApproxSDP Hazan (2008) in practice: while SparseApproxSDP is
a Frank-Wolfe type-of algorithm (and thus, the per iteration complexity is low), it admits sublinear
convergence which leads to suboptimal performance, in terms of total execution time. However,
RSVP and SparseApproxSDP algorithms do not assume specific initialization procedures to
work in theory.

24. The reason we design X? such that Tr(X?) = 1 is such that the algorithm SparseApproxSDP Hazan (2008)
applies; this is due to the fact that SparseApproxSDP is designed for QST problems, where trace constraint is
present in the optimization criterion.
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Appendix H. Convergence without tail bound assumptions

In this section, we show how assumptions (A3) and (A4) can be dropped by using a different step
size η, where spectral norm calculation of two n × r matrices is required per iteration. Here, we
succinctly describe the main theorems and how they differ from the case where η as in (8) is used.
We also focus only on the case of restricted strongly convex functions. Similar extension is possible
without restricted strong convexity.

Our discussion is organized as follows: we first re-define key lemmas (e.g., descent lemmas,
etc.) for a different step size; then, we state the main theorems and a sketch of their proof. In the
analysis below we use as step size:

η̂ =
1

16 (M ‖X‖2 +
∥∥∇f(X)QUQ>U

∥∥
2
)

H.1. Key lemmas

Next, we present the main descent lemma that is used for both sublinear and linear convergence rate
guarantees of FGD.

Lemma 29 (Descent lemma) For f being a M -smooth and (m, r)-strongly convex function and
under assumptions (A2) and f(X+) ≥ f(X?

r ), the following inequality holds true:
1
η̂ 〈U − U+, U − U?rR?U 〉 ≥ 3

5 η̂‖∇f(X)U‖2F + 3m
20 · σr(X?)‖∆‖2F .

Proof [Proof of Lemma 29] By (13), we have:

〈∇f(X)U,U − U?rR?U 〉 =
1

2
〈∇f(X), X −X?

r 〉+
1

2

〈
∇f(X),∆∆>

〉
, (48)

Step I: Bounding 〈∇f(X), X −X?
r 〉. For this term, we have a variant of Lemma 15, as follows:

Algorithm ‖X̂ −X?‖F /‖X?‖F Total time (sec) Time per iter. (sec - median)

Setting: n = 1024, r = n/4, m = 2nr.

RSVP 4.9579e-04 1262.3719 2.1644
SparseApproxSDP 3.3329e-01 895.9605 2.1380e-01

FGD 1.6763e-04 57.8495 2.1961e-01

Setting: n = 2048, r = n/4, m = 2nr.

RSVP 4.9537e-04 8412.6981 14.6811
SparseApproxSDP 3.3526e-01 26962.0379 8.7761e-01

FGD 1.6673e-04 272.8102 1.0040e+00

Setting: n = 2048, r = n/8, m = 4nr.

RSVP 2.4254e-04 1945.6714 5.9763
SparseApproxSDP 9.6725e-02 3506.8147 8.6440e-01

FGD 3.8917e-05 68.5689 9.2567e-01

Table 4: Comparison of related work in high-rank matrix sensing problems. We construct X? with
Tr(X?) = 1 such that Hazan (2008) applies. It is apparent that avoiding SVDs helps in
practice.
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Lemma 30 Let f be a M -smooth and (m, r)-restricted strongly convex function with optimum
point X?. Assume f(X+) ≥ f(X?

r ). Let X = UU>. Then,

〈∇f(X), X −X?
r 〉 ≥ 18η̂

10 ‖∇f(X)U‖2F + m
2 ‖X −X?

r ‖2F ,

where η̂ = 1
16(M‖X‖2+‖∇f(X)QUQ

>
U‖2)

.

The proof of this lemma is provided in Section I.1.

Step II: Bounding
〈
∇f(X),∆∆>

〉
. For the second term, we have the following variant of Lemma

16.

Lemma 31 Let f be M -smooth and (m, r)-restricted strongly convex. Then, under assumptions
(A2) and f(X+) ≥ f(X?

r ), the following bound holds true:〈
∇f(X),∆∆>

〉
≥ −6η̂

25‖∇f(X)U‖2F − 3mσr(X?)
40 · ‖∆‖2F .

Proof of this lemma can be found in Section I.2.

Step III: Combining the bounds in equation (48). The rest of the proof is similar to that of
Lemma 14.

H.2. Proof of linear convergence

For the case of (restricted) strongly convex functions f , we have the following revised theorem:

Theorem 32 (Convergence rate for restricted strongly convex f ) Let current iterate be U and
X = UU>. Assume DIST(U,U?r ) ≤ ρ′σr(U?r ) and let the step size be η̂ = 1

16 (M‖X‖2+‖∇f(X)QUQ
>
U‖2)

.

Then under assumptions (A2) and f(X+) ≥ f(X?
r ), the new estimate U+ = U − η∇f(X) · U

satisfies
DIST(U+, U?r )2 ≤ α · DIST(U,U?r )2, (49)

where α = 1− mσr(X?)
64(M‖X?‖2+‖∇f(X?

r )‖2) . Furthermore, U+ satisfies DIST(U+, U?r ) ≤ ρ′σr(U?r ).

The proof follows the same steps as that of theorem 6, except from the fact Lemmas 30 and 31
are used.

Appendix I. Main lemmas for convergence proof without tail bound assumptions

I.1. Proof of Lemma 30

Let U+ = U − η̂∇f(X)U and X+ = U+(U+)>. By smoothness of f , we get:

f(X) ≥ f(X+)− 〈∇f(X), X+ −X〉 − M
2 ‖X+ −X‖2F

(i)

≥ f(X?
r )− 〈∇f(X), X+ −X〉 − M

2 ‖X+ −X‖2F , (50)
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where (i) follows from hypothesis of the lemma and since X+ is a feasible point (X+ � 0) for
problem (1). Finally, since rank(X?

r ) = r, by the (m, r)-restricted strong convexity of f , we get,

f(X?
r ) ≥ f(X) + 〈∇f(X), X?

r −X〉+ m
2 ‖X?

r −X‖2F . (51)

Combining equations (50) and (51), we obtain:

〈∇f(X), X −X?
r 〉 ≥ 〈∇f(X), X −X+〉 − M

2 ‖X+ −X‖2F + m
2 ‖X?

r −X‖2F , (52)

instead of (25) in the proof where η is used. The rest of the proof follows the same steps as that of
Lemma 15 and we get:

〈∇f(X), X −X?
r 〉 ≥ 18η̂

10 ‖∇f(X)U‖2F + m
2 ‖X?

r −X‖2F .

Moreover, for the case where f is just M -smooth and X? ≡ X?
r , the above bound becomes:

〈∇f(X), X −X?
r 〉 ≥ 18η̂

10 ‖∇f(X)U‖2F .

This completes the proof.

I.2. Proof of Lemma 31
Similar to Lemma 16, we have:

‖QUQ>U∇f(X)‖2 · ‖∆‖2F = η̂

16M‖X‖2‖QUQ>U∇f(X)‖2‖∆‖2F︸ ︷︷ ︸
:=A

+16‖QUQ>U∇f(X)‖22 · ‖∆‖2F


At this point, we desire to introduce strong convexity parameter m and condition number κ in

our bound. In particular, to bound term A, we observe that ‖QUQ>U∇f(X)‖2 ≤ mσr(X)
40τ(U?r ) or

‖QUQ>U∇f(X)‖2 ≥ mσr(X)
40τ(U?r ) . This results into bounding A as follows:

M‖X‖2‖QUQ>U∇f(X)‖2‖∆‖2F
≤ max

{
16·η̂·M‖X‖2·mσr(X)

40τ(U?
r )

· ‖∆‖2F , η̂ · 16 · 40τ(U?r )κτ(X)‖QUQ>U∇f(X)‖22 · ‖∆‖2F
}

≤ 16·η̂·M‖X‖2·mσr(X)
40τ(U?

r )
· ‖∆‖2F + η̂ · 16 · 40κτ(X)τ(U?r )‖QUQ>U∇f(X)‖22 · ‖∆‖2F .

Combining the above inequalities, we obtain:

‖QUQ>U∇f(X)‖2‖∆‖2F (53)
(i)

≤ mσr(X)
40τ(U?r ) · ‖∆‖2F + (40κτ(X)τ(U?r ) + 1) · 16 · η̂‖QUQ>U∇f(X)‖22 · ‖∆‖2F

(ii)

≤ mσr(X)
40τ(U?r ) · ‖∆‖2F + (41κτ(X?

r )τ(U?r ) + 1) · 16 · η̂‖QUQ>U∇f(X)‖22 · (ρ′)2σr(X
?
r )

(iii)

≤ mσr(X)
40τ(U?r ) · ‖∆‖2F + 16 · 42 · η̂ · κτ(X?

r )τ(U?r ) · ‖∇f(X)U‖2F · 11(ρ′)2

10

(iv)

≤ mσr(X)
40τ(U?r ) · ‖∆‖2F + 2η̂

25τ(U?r ) · ‖∇f(X)U‖2F , (54)
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where (i) follows from η̂ ≤ 1
16M‖X‖2 , (ii) is due to Lemma 19 and bounding ‖∆‖F ≤ ρ′σr(U

?
r )

by the hypothesis of the lemma, (iii) is due to σr(X?) ≤ 1.1σr(X) by Lemma 19,
σr(X)‖QUQ>U∇f(X)‖22 ≤ ‖U>∇f(X)‖2F and (41κτ(X?

r ) + 1) ≤ 42κτ(X?
r ). Finally, (iv)

follows from substituting ρ′ and using Lemma 19.
From Lemma 16, we also have the following bound:

‖QU?RQ>U?R∇f(X)‖2 ≤
102 · 101τ(U?r )

99 · 100
‖QUQ>U∇f(X)‖2. (55)

This follows from equation (34). Then, the proof completes when we combine the above two
inequalities to obtain:〈

∇f(X),∆∆>
〉
≥ −

(
6η̂
25‖∇f(X)U‖2F + 3mσr(X?)

40 · ‖∆‖2F
)
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