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Abstract
In this paper we study a model-based approach to calculating approximately optimal policies in

Markovian Decision Processes. In particular, we derive novel bounds on the loss of using a policy
derived from a factored linear model, a class of models which generalize numerous previous models
out of those that come with strong computational guarantees. For the first time in the literature, we
derive performance bounds for model-based techniques where the model inaccuracy is measured
in weighted norms. Moreover, our bounds show a decreased sensitivity to the discount factor
and, unlike similar bounds derived for other approaches, they are insensitive to measure mismatch.
Similarly to previous works, our proofs are also based on contraction arguments, but with the main
differences that we use carefully constructed norms building on Banach lattices, and the contraction
property is only assumed for operators acting on “compressed” spaces, thus weakening previous
assumptions, while strengthening previous results.

1. Introduction

The recent years have witnessed a renewed interest in model-based reinforcement learning (MBRL).
Barreto et al. (2011); Kveton and Theocharous (2012) and Precup et al. (2012), building on the sem-
inal work of Ormoneit and Sen (2002), studied various approaches to stochastic factorizations of the
transition probability kernel, while Grünewälder et al. (2012) proposed to use RKHS embeddings
to approximate the transition kernel, with further enhancements proposed recently by Lever et al.
(2016). A key common feature of these otherwise distant-looking works is that once the model is
set up, it leads to a policy in a computationally efficient way (i.e., in poly-time and space in the size
of the model). Having realized that this is not a mere coincidence, Yao et al. (2014) introduced the
concept of factored linear models, which keeps the advantageous computational properties, while
generalizing all previous works. While efficient computation is a necessity, efficient learning and
good performance of the policy are equally important. In this paper we focus on the second of these
criteria, namely the performance of the policy derived from the model. The argument for omitting
the learning part for the time being is that one should better understand first what errors need to be
controlled because this will influence the choice of the learning objective and hence the algorithms
(we also note in passing that, in the above-mentioned examples, the statistical analysis of the model
learning algorithms is well understood by now).
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We are not the first to consider the performance of the policy as a function of the model errors.
In fact, most of the previously mentioned works also give bounds on the policy error (we define
the policy error to be the performance loss due to using the derived policy instead of an optimal
one). However, all these previous works derive bounds that express model errors in a supremum
norm. While the supremum norm is a convenient choice when working with Markovian Decision
Processes (which give the theoretical foundations in these works), an observation that goes back
to at least Whitt (1978), the supremum norm is also known to be a rather unforgiving metric: In
learning settings, when data comes from a large cardinality set, and the data may have an uneven
distribution, while the objects of interest lack appropriate smoothness, or other helpful structural
properties, we expect errors measured in the supremum norm to decrease rather slowly. Further-
more, most learning algorithms aim to reduce some weighted norms, hence deriving bounds for
the supremum norm is neither natural, nor desirable. Can existing bounds of the policy error from
the MBRL literature be extended to other norms? In the analogue context of approximate dynamic
programming methods, Munos (2003) pioneered a technique to allow the use of weighted Lp-norms
to bound the policy error, while in the context of approximate linear programming, de Farias and
Van Roy (2003) proposed a different technique to allow the use of weighted supremum norms, both
leading to substantial further work (Busoniu et al., 2010), (Wiering and van Otterlo, 2012, Chapter
3). While the use of weighted norms is a major advance, these bounds do not come without any
caveats. In particular, in ALP, the bounds rely on the similarity of the so-called constraint sampling
distribution to the stationary distribution µ∗ of the optimal policy, while in ADP they rely on the
similarity of the data sampling distribution and the start-state distribution, leading to hard to control
error terms. Can this be avoided by model-based approaches?

Contributions. We derive bounds on the policy error of policies derived from factored linear
models in MBRL. The policy error is bounded in supremum, weighted supremum and weighted
Lp norms (Theorems 8, 10 and 11). The results hold under some conditions: the left factor of
the approximate factorization of the transition kernel must satisfy a mild boundedness condition
(Assumption 5), the right factor must be a join-homomorphism (Assumption 2), the operator ob-
tained by swapping the left and right factors must satisfy a boundedness condition (Assumption 3
or Assumption 4). This latter condition is not mild as the one on the left factor, but it i) general-
izes the conditions used to derive previous policy error bounds; and ii) can be easier to enforce as
it constrains the norm of a low-dimensional operator, unlike the analogue constraints in previous
works.

We recover results for unfactored linear models that satisfy a contraction assumption, and we
recover existing supremum norm bounds for factored linear models that meet Assumption 2. In
addition to being able to recover previous results, we also provide a new type of analysis, which
has interesting implications. The new analysis shows that MBRL can in fact escape the sensitivities
in ALP and ADP (cf. Theorem 11, term ε1), answering the above major question on the positive.
In fact, the new bound also shows the potential for better scaling with the discount factor, which
is another surprising result. We attribute this success to the systematic use of the language of
Banach lattices, which forced us to discover amongst other things a definition of mixed norms
for action-value functions which is general, yet makes the so-called value selection operators non-
expansions (cf. Proposition 1). For the skeptics who believe that MBRL is “hard” because the
derived policy cannot be good before the model approximates “reality” uniformly everywhere, we
point out that already the first ever bound derived for policy error in MBRL (due to Whitt (1978))
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shows that the model has to be accurate only in an extremely localized way. Our bounds also share
this characteristic of previous bounds.

Our analysis builds on techniques borrowed from approximate policy iteration (API) and ap-
proximate linear programming (ALP), and provide new insights to existing results for ALP (Propo-
sition 4). However, the MBRL setup we consider is nevertheless different from API and ALP, so
the connections in our proofs are not a mere translation of API or ALP results to MBRL, as we will
explain in Section 6, which is also attested by the novel features of our bounds.

Other miscellaneous contributions include an example that shows why controlling the deviation
between the optimal value function underlying the true and approximate models, a metric often
used in some previous works to evaluate model quality, is insufficient to derive a policy error bound
(Proposition 19 and Theorem 20). We present a characterization of linear join-homomorphisms
(Proposition 3). We show that our supremum norm bounds are tight to arbitrary accuracy (Proposi-
tion 16), but that quantifying policy error in supremum norm can be harsh, so it pays off to consider
the policy error in Lp(µ) norm instead (Proposition 17).

The rest of the paper is organized as follows: We start by providing the necessary background
on MDPs in Section 2, followed by introducing factored linear models and the questions studied in
Section 3. After this, we state our assumptions in Section 4, present our main results in Section 5,
and close with placing our work in the context of existing work, and providing an outlook for future
work in Section 6. While we include the proofs of our main results in the main body of the paper,
proofs of technical results are relegated to the appendix.

2. Markov Decision Processes

We shall describe the agent-environment interaction using the framework of Markov Decision Pro-
cesses (MDPs), with which the reader is assumed to be familiar. The notation used here is perhaps
closest to that of Szepesvári (2010), but the reader may also consult the books of Puterman (1994)
and Sutton and Barto (1998) on background. Here, we describe only the main concepts so as to
clarify our notation. Well-understood technical details (such as measurability) are (mostly) omitted
for brevity. The first two paragraphs describe standard notation, while the rest of the section defines
less standard notation which is essential to understand the paper.

Markov Decision Processes. An MDP is a tuple 〈X ,A,P, r〉, where X is the state space, A is
the action space, P = (Pa)a∈A is the transition probability kernel and r = (ra)a∈A is the reward
function. For each state x ∈ X and action a ∈ A, Pa(·|x) gives a distribution over the states in
X , interpreted as the distribution over the next states given that action a is taken in state x. For
each action a ∈ A and state x ∈ X , ra(x) gives a real number, which is interpreted as the reward
received when action a is taken in state x.1

An MDP describes the interaction of an agent and its environment. The interaction happens
in a sequential manner where in each step the agent chooses an action At ∈ A based on the past
information it has, sends the action to the environment, which then moves from the current state Xt

to the next one according to the transition kernel: Xt+1 ∼ Pa(·|Xt). The agent then observes the
next state and the reward associated with the transition. In this paper we assume that the agent’s

1. The standard MDP definitions would allow stochastic rewards, which may also be correlated with the next state. Our
simplified model enhances clarity and extending our results to the case of stochastic rewards is trivial under a suitable
set of assumptions.
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goal is to maximize the expected total discounted reward, E
[∑∞

t=0 γ
trAt(Xt)

]
, where 0 ≤ γ < 1

is the so-called discount factor. A rule describing the way an agent acts given its past actions and
observations is called a policy. The value of a policy π in a state x, denoted by V π(x), is the
expected total discounted reward when the initial state (X0) is x assuming the agent follows the
policy. An optimal policy is one that achieves the maximum possible value amongst all policies in
each state x ∈ X . The optimal value for state x is denoted by V ∗(x). A deterministic Markov policy
disregards everything in the history except the last step. Such policies can and will be identified with
a map π : X → A, and the space of measurable deterministic Markov policies will be denoted by
Π. We will assume that the action set is finite. When, in addition, the reward function is bounded,
which we assume from now on, all the value functions are bounded and one can always find a
deterministic Markov policy that is optimal (Puterman, 1994). The suboptimality or policy error of
a policy π at a state x is the difference V ∗(x)− V π(x). Loosely speaking, a policy is near-optimal
when this difference is small for the states that one cares about. In this work we are interested in
bounding the policy error (for policies described in Section 3) in different norm choices: supremum
norm, a weighted supremum norm and an Lp(µ) norm.

Spaces of value functions. Let (V, ‖ · ‖V) be a Banach space of real-valued measurable functions
over X , equipped with a given norm, and (VA, ‖ · ‖VA) be a Banach space of all measurable
functions mapping A to V . Elements of V are called value functions, while elements of VA are
called action-value functions. Oftentimes, we will choose ‖ · ‖V to be the norms mentioned before.
The choice of ‖ · ‖VA will in general depend on that of ‖ · ‖V , but this will be made clear in
the actual context. Of course, VA can also be identified with the set of real-valued functions with
domain X × A (since A is finite). To avoid too many parentheses, for V ∈ VA, we will use V a as
an alternate notation to V (a). Conveniently, V a ∈ V . With a slight abuse of notation, we denote
by Pa the V → V right linear operator defined by (PaV )(x)

.
=
∫
V (x′)Pa(dx′|x) (we assume that

V ∈ V implies integrability, hence the integrals are well defined). We also view Pa as a left linear
operator, acting over the space of probability measures defined over X : Pa :M1(X ) →M1(X ),
(µPa)(dy) =

∫
µ(dx)P a(dy|x), µ ∈ M1(X ). In what follows, whenever a norm is uniquely

identifiable from its argument, we will drop the index of the norm denoting the underlying space.

Operators. The Bellman return operator w.r.t. to P , TP : V → VA, is defined by TPV
.
=

r + γPV (the indexing of T with P will help us to replace P with some other operator) and the
so-called maximum selection operator M : VA → V is defined by (MV )(x)

.
= maxa V

a(x).
Then, MTP , corresponds to the Bellman optimality operator (Puterman, 1994). The optimal value
function satisfies V ∗ = MTPV

∗ (Puterman, 1994), a non-linear fixed-point equation, which is
known as the Bellman optimality equation. The greedy operator G : VA → Π, which selects
the maximizing actions chosen by M , is defined by GV (x)

.
= argmaxa V

a(x) (x ∈ X , with ties
broken arbitrarily). Recall that GV ∗ is an optimal policy (Puterman, 1994).

Planning in MDPs. In the online planning problem we wish to compute, at any given state x,
an action that a near-optimal policy would take (the attribute “online” signifies that one is allowed
some amount of calculation for each state). By collecting all actions at all states, a planning method
defines a policy π̂. Disregarding computation, planning methods are compared by how good the
policy they return is, i.e., by the policy error of π̂. One approach to efficient online planning is to
use an abstract model which i) contains relevant information about the MDP, ii) can be efficiently
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constructed, and iii) allows π̂(x) to be computed efficiently at any state x. In this work we are
interested in online planning with a special type of abstract models, called factored linear models.

3. Factored Linear Models

In this section, we define factored linear models, the core of our MBRL approach. We also show
examples of MBRL approaches that use factored linear models.

In a factored linear model we approximate the MDP’s stochastic kernel P as the product of two
linear operators, QR, where R : V → W , Q = (Qa)a∈A and Qa : W → VA (Yao et al., 2014).
Here, W = (W, ‖ · ‖W) is a Banach space of functions with (measurable) domain I. We will
refer to elements of W as compressed value functions and elements of WA as compressed action
value functions (and, occasionally, the corresponding spaces will also be called compressed, while
the spaces V and VA will be called uncompressed). These names come from the fact that often we
will want to choose I to be “small". In fact, for computational reasons one should choose I to be
finite, in which caseW will be a finite-dimensional Euclidean space. We also allow infinite I, so
that we can then use I = X and compare the tightness of our results to existing results that consider
unfactored linear models.

In this work, for simplicity, we assume that the reward function r remains the same in the
factored linear model (the extension of our results to the case when the reward function is also
approximated is routine). Formally, in this work we will call a tuple of the form 〈X ,A,Q,R, r〉 a
factored linear model, where Q andR are as above. Finally, note that we do not require that QR is
a stochastic operator. Hence, a factored linear model defines a pseudo-MDP (Yao et al., 2014).

We must define some additional operators in order to describe how we use factored linear mod-
els to derive policies. The extension of R to multiple actions, RA : VA → WA, is defined by
(RAV )a

.
= RV (a ∈ A), whereWA is a Banach space of A → W functions analogously to VA.

The Bellman return operator for Q, written as TQ : W → VA, is defined by TQw
.
= r + γQw

(w ∈ W). We also define the shorthands TRAQ
.
= RATQ = RAr + γRAQ (the equality holds

by linearity of RA) and TQR
.
= TQR = r + γQR (by linearity of R). Finally, M ′ : WA → W ,

the counterpart of the maximum selection operator M , is defined by (M ′w)(i) = maxa∈Aw
a(i)

(i ∈ I). The relationship between these operators is shown on Fig. 1, and we collected the operators
defined here in Appendix A of the appendix into a table for easy of reference.

V

W WA

VA Π

R
TRAQ

TQ

M ′

M

G

W VA

V WA
MTQ

RAQ

M ′TRAQ
Q

RAR

MTQR

Figure 1: Commutative diagrams showing the operators and the spaces that they act on.
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The factored linear model approach to reinforcement learning is as follows: Given the factored
linear model 〈X ,A,Q,R, r〉, we take the policy

π̂
.
= GTQu

∗, (1)

where

u∗ = M ′TRAQu
∗ . (2)

that is, the policy π̂ does a Bellman lookahead with TQ from u∗ ∈ W , a function that satisfies a
fixed-point equation. Note that even when X is very large, or infinite,W can be finite dimensional,
in which case a good approximation to u∗ can often be found in a computationally efficient manner,
for example by iterating uk+1 = M ′TRAQuk, which can be seen as a form of value iteration (Yao
et al., 2014). The dashed lines on the left subfigure on Fig. 1 show that this computation can be
done over the compressed spacesW andWA. The diagram also shows that once u∗ is found, TQ
extends this function to VA, from where using the greedy operatorG one obtains a policy. Note that
in the applications the policy itself does not need to be explicitly represented, but the actions that
the policy takes in a particular state x ∈ X can be computed “on demand” given u∗ and the Bellman
return operator TQ. (The right-hand side figure shows some more useful relationships between the
operators involved.) We will say that this approach is viable when u∗ is well-defined.

Factored linear models allow one to analyze modeling errors in seemingly distant model-based
planning methods in a unified manner. This will be illustrated soon by describing how models pro-
posed in numerous previous works can be written in a factored form (this was also shortly mentioned
by Yao et al. (2014)). Before describing these previous models, we need some more definitions, to
be able to describe the differences and similarities between them. In particular, the models will
differ in terms of whether R is stochastic, or more specifically R is also a point-evaluator. Recall
that the operatorR is stochastic if infV≥0 infx(RV )(x) ≥ 0 andR1V = 1W where 1V(x) = 1 for
all x ∈ X and (1W)i = 1 for all i ∈ I. Here, we started to use the convention of using wi instead
of w(i) to reduce clutter. Also, we say that R is a point-evaluator if I indexes elements of X and
(RV )i = V (xi) for all i ∈ I, V ∈ V . Note that point evaluators are stochastic. Choosing I = X
allows us to choose R to be the identity, which becomes a point evaluator when choosing xi = i,
i ∈ I.

When R is a point selector, a short direct calculation shows that RM = M ′RA, which means
that on Fig. 1 the solid cycle and the dashed cycle starting from W are equivalent and we can
interweave solid and dashed lines. For example, starting from V: MTQM

′TRAQR = (MTQR)2.
The equivalence M ′TRAQ = RMTQ gives that U∗ .= MTQu

∗ is a fixed point of MTQR, and that
the identity u∗ = RU∗ also holds (cf. Theorem 5). It also follows that if M ′TRAQ is a contraction
(though MTQR may not be), the factored linear model approach is viable. To the best of our
knowledge, this observation has not been made elsewhere: In all previous works, viability was
achieved by assuming that Q and R are both stochastic, or that R is a point evaluator and QR is a
non-expansion in supremum norm. (In both cases M ′TRAQ is a contraction, so u∗ is well-defined
and the factored linear model approach is viable.)

With this, we are ready to present different instances of the factored linear model approach:

Example 1 (Kernel-based reinforcement learning) In kernel-based reinforcement learning (KBRL),
introduced by Ormoneit and Sen (2002), I is indexing elements ofX , andQ is a stochastic operator
constructed from kernel functions at elements of S .

= {xi : i ∈ I}. Moreover,
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(a) S is an i.i.d. sample from X .
= Rd andR is a point evaluator (Ormoneit and Sen, 2002); or

(b) S is a set of reference states andR is stochastic (Barreto et al., 2011; Kveton and Theocharous,
2012; Precup et al., 2012).

KBRL is viable because Q andR are stochastic, soRAQ is also stochastic.

Example 2 (Pseudo-MDPs) Pseudo-MDPs (Yao et al., 2014) are factored linear models with a
point evaluator R. In pseudo-MDPs, Q is no longer stochastic, but QR is assumed to be a non-
expansion in supremum norm (Grünewälder et al., 2012; Yao et al., 2014; Lever et al., 2016).
It can be shown that under this assumption both MTQR and M ′TRAQ are contractions. In the
approach of these authors, one should take π̃ .

= GTQRU
∗, where U∗ is the fixed point of MTQR.

Our formulation still applies, though, because we can show that u∗ = RU∗ is the fixed point of
M ′TRAQ (cf. Theorem 5), so that π̃ = GTQRU

∗ = GTQu
∗ = π̂. Here, Q is essentially learned

using a penalized least-squared approach.

Example 3 (State aggregation) State aggregation (Whitt, 1978; Bertsekas, 2011) in MBRL gener-
alizes KBRL. Here, too, I is an index set over X , and {xi : i ∈ I} is the set of reference states.
In hard aggregation, R is a point evaluator, while in soft aggregation (Singh et al., 1995) it is
stochastic.

Example 4 (MDP homomorphisms) MDP homomorphisms (Ravindran, 2004; Sorg and Singh,
2009) can be used for transfer learning in reinforcement learning. Here, I is not identified with an
index set over X . If R is a point-evaluator, we recover MDP homomorphisms per se (Ravindran,
2004), and the more general case ofR stochastic yields soft MRP homomorphisms (Sorg and Singh,
2009).

Example 5 (Unfactored linear models) It is possible to recover unfactored linear models as a
special case of factored linear models by takingW = V , andR to be the identity mapping. For the
approach to be viable, it is sufficient forQ to be stochastic, which is often assumed with unfactored
linear models.

4. Assumptions

The purpose of this section is to state and discuss the assumptions that will be used in our subsequent
results.

Our first assumption states that the operators M : VA → V , M ′ : WA → W , and the related
policy based value selector operators Mπ : VA → V and M ′π : WA → W to be defined soon
are non-expansions. Operator Mπ is defined by (MπV )(x)

.
= V π(x)(x) (x ∈ X , π ∈ Π), while

(M ′πw)i
.
= w

π(i)
i (i ∈ I, π : I → A). Now, recall that an operator J : E → F mapping between

Banach spaces E = (E , ‖·‖E),F = (F , ‖·‖F ) is called a non-expansion when its Lipschitz constant
does not exceed one. The Lipschitz constant of J is defined by

Lip(J)
.
= sup

e,e′∈E:e6=e′

‖Je− Je′‖
‖e− e′‖

,

where we follow the convention that the identity of the norm is derived from what space the ar-
gument belongs to. Note the dependence of Lip on the norms of E and F , which we suppressed.
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The definition implies that for any e, e′, ‖Je − Je′‖ ≤ Lip(J)‖e − e′‖. Useful properties of Lip
include that it is submultiplicative (Lip(JJ ′) ≤ Lip(J) Lip(J ′)), it is invariant to constant shifts of
operators (Lip(J + e) = Lip(J), where J + e is defined by (J + e)e′ = e+ Je′) and when J is a
linear operator, Lip(J) = ‖J‖, the induced operator norm of J , which is defined by

‖J‖ .= sup
e∈E,e 6=0

‖Je‖
‖e‖

.

Again, the induced norm depends on the norms that the operator acts between, but we suppress this
dependence.

Let us now formally state the aforementioned assumption:

Assumption 1 (Non-expanding selectors) We have Lip(M) ≤ 1, Lip(M ′) ≤ 1 and for any
π1 ∈ Π, π2 : I → A, Lip(Mπ1) ≤ 1 and Lip(M ′π2) ≤ 1.

Note that this assumption constrains what norms can be selected for the spaces VA, V , WA and
W . Assumption 1 will be helpful to establish that various operators involving M are Lipschitz with
a factor strictly below one, i.e., that they are contractions. For example, to establish that MTP is
a contraction, one can use Lip(MTP) ≤ Lip(M) Lip(TP) ≤ γ Lip(P) = γ‖P‖, reducing the
question to showing γ‖P‖ < 1. Similar arguments work the other operators that will involve M ′,
Mπ, or M ′π.

As it was alluded to earlier, we will use a number of different norms. However, in all cases
we choose the norm for VA (WA) based on the norm of V (respectively, the norm of W) to be
a mixed max-norm: In particular, for U being either V or W , the norm of UA will be defined as
‖U‖UA = ‖M|·|U‖U where M|·| : UA → U is defined by (M|·|U)(·) = maxa |Ua(·)|. We call the
resulting norm the mixed max-norm w.r.t. the norm of U .

The next proposition shows that this choice of the mixed norm makes Assumption 1 hold when-
ever the underlying spaces are so-called Banach lattices (Meyer-Nieber, 1991). Recall that a lattice
is a non-empty set U with a partial ordering ≤ such that every pair f, g ∈ U has a supremum (or
least upper bound), denoted by f ∨ g, and an infimum (greatest lower bound), denoted by f ∧ g.
Spaces of real-valued functions are lattices with the componentwise ordering, our default choice
in what follows, when it comes to V and W . Operator ∨ is also called a join, a terminology we
will adopt. A vector lattice U is a lattice that is also a vector space. In a vector lattice, for f ∈ U ,
f+ = f ∨ 0, f− = (−f) ∨ 0 and |f | = f+ + f− (these generalize the usual definitions of positive
part, negative part and absolute value). A Banach lattice U is a normed vector lattice where U is
also a Banach space and the norm satisfies that for any f, g ∈ V , |f | ≤ |g| =⇒ ‖f‖ ≤ ‖g‖. With
this we are ready to restate and prove the said statement:

Proposition 1 Assume that V andW are Banach lattices. Then Assumption 1 is satisfied.

Proof To see why this holds, take for example M . Then for any U, V ∈ VA, MU − MV ≤
M|·|(U − V ) (≤ denotes the componentwise ordering) and by swapping the order of U, V , we also
get |MU −MV | ≤ M|·|(U − V ). Now, since for any f, g ∈ V , |f | ≤ |g| implies ‖f‖ ≤ ‖g‖,
we get ‖MU −MV ‖ ≤ ‖M|·|(U − V )‖ = ‖U − V ‖VA . For Mπ, since it is a linear operator,
Lip(Mπ) = ‖Mπ‖, and for any V ∈ VA,

∣∣MπV A
∣∣ ≤M ∣∣V A∣∣, so Lip(Mπ) ≤ Lip(M) ≤ 1. The

statement is proven for the other operators analogously.
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Let us now define the norms we will use in this paper. The weighted supremum norm of a func-
tion f : Z → R with respect to weight w : Z → R+ is defined as ‖f‖∞,w = supz∈Z |f(z)|/w(z).
When w = 1 (i.e., w(z) = 1 for all z ∈ Z), we drop w from the index and use ‖f‖∞. For p ≥ 1,
the Lp(µ)-norm of f is defined as ‖f‖pµ,p

.
=
∫
Z |f(z)|p dµ(z). By slightly abusing notation, the

mixed norm of space UA derived from ‖ · ‖∞,w, or ‖ · ‖p,µ will be denoted identically (i.e., for
V ∈ VA, ‖V ‖∞,w is a mixed norm defined using M|·|). Since these norms make their underlying
spaces a Banach lattice, we immediately get the following corollary to Proposition 1:

Corollary 2 Assume that the norms over V and W are supremum norms, weighted supremum
norms, or Lp(µ) and Lp(ρ) norms, and equip the spaces VA and WA with the respective mixed
norms. Then Assumption 1 is satisfied.

Note that (V,∨) is a semi-lattice (a lattice with only a join). For the sake of simplicity, we make
the following assumption, which will be assumed to hold until Theorem 12.

Assumption 2 (R is a join-homorphism) The operator R is a join-homomorphism of the semi-
lattice (V,∨) into the semi-lattice (W,∨), i.e.,R(U ∨ V ) = (RU) ∨ (RV ) for any U, V ∈ V .

This assumption ensures thatRM = M ′RA, an identity which can be seen to hold simply by using
the definitions and the above assumption, and which will be frequently used in our proofs.

The point evaluator defined in Section 3 is a linear join-homomorphism, and, since the identity
operator is a point evaluator, it is also a linear join-homomorphism. However, stochastic operators
(also often used in place ofR) may not be join-homomorphisms. As it turns out, the class of linear
join-homomorphisms is not very diverse. Proposition 3 supports this claim for finite-dimensional
V andW , and the extension to infinite-dimensional spaces can be obtained by projection on finite-
dimensional spaces. For a positive integer m, we let [m] = {1, . . . ,m}.

Proposition 3 Assume that V = Rm andW = Rn, and let R be any linear join-homomorphism.
Then there exists a ∈ Rn+ and J ∈ [m]n s.t. (Rv)i = ai vJi for all v ∈ V and i ∈ [n].

Our subsequent assumptions will ensure that certain operators are contractions in appropriate
norms. We start with the simplest of these assumptions:

Assumption 3 The following hold for Q andRA: ‖RAQ‖ ≤ 1.

Note thatRAQ is a (W, ‖·‖W)→ (WA, ‖·‖WA) operator and the norm used in Assumption 3 is the
respective operator norm. As mentioned earlier, whenever Assumption 1 holds (which is the case for
the norms under which we bound the policy error, cf. Corollary 2), we have that Lip(M ′TRAQ) ≤
γ
∥∥RAQ∥∥, and then Assumption 3 implies thatM ′TRAQ is a γ-contraction (again, for the respective

operator norm). That RAQ is a map between the compressed spaces W and WA is significant:
WhenW is a finite dimensional space, Assumption 3 can be enforced during a learning procedure
as done, e.g., by Yao et al. (2014). In fact, Yao et al. (2014) argue by means of some examples that
enforcing this constraint as opposed to enforcing ‖QR‖ ≤ 1 (which may be difficult to enforce as
it constrains the norm of an operator between potentially infinite dimensional spaces) can lead to
better results in some learning settings.

When the norms are specifically chosen to be weighted supremum norms, the previous as-
sumption can be replaced by a weaker one, to be stated next. To state this assumption, we need
to introduce the concept of Lyapunov functions, building on a more specialized definition due to

9
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de Farias and Van Roy (2003). As de Farias and Van Roy (2003) showed by means of an example,
using weighted supremum norms can greatly reduce the error bounds. Intuitively, one achieves this
by assigning large weights to unimportant states, i.e., to states that are infrequently visited by any
policy. Indeed, one should not expect much data, or a good behavior at such states, but since they
are not visited often, the errors made at such states can be safely discounted.

Given Z = (Z, ‖ · ‖∞,w), with w : Z → R+, and an operator J : Z → Z , first let us define

βw,J = γ sup
f :|f |=w

‖Jf‖∞,w .

Then, we say that the function w is γ-Lyapunov with respect to operator J if βw,J < 1. We also
extend the definition for operators of the form K : Z → ZA, i.e., when K = (Ka)a∈A. In this
case, we say that w is γ-Lyapunov w.r.t. to K if it is γ-Lyapunov w.r.t. to each operator Ka for any
a ∈ A. If J satisfies Jf ≤ J |f | for all f ∈ Z (e.g., if J is a stochastic operator), then the definition
of βw,J simplifies to γ ‖Jw‖∞,w, coinciding with the definition of de Farias and Van Roy (2003).

Lyapunov functions enable us to ensure that MTP , MπTP (π ∈ Π) and M ′TRAQ are con-
tractions in the corresponding weighted supremum norms. For this, notice that the following hold:

Proposition 4 Given (U , ‖ · ‖∞,ν) with ν : U → R+, and J : U → UA, if each Ja is a linear
operator, then γ Lip(J) = βν,J .

Now, if ν is γ-Lyapunov w.r.t. the probability kernel P , then we immediately get from Corol-
lary 2 and Proposition 4 that MTP and MπTP (for any π ∈ Π) are βν,P -contractions in ν-
weighted supremum norm. Similarly, if η is γ-Lyapunov w.r.t. toRAQ, thenM ′TRAQ is a βη,RAQ-
contraction in η-weighted supremum norm.

With this, we can state the assumption that we will use to relax Assumption 3 when the norms
used the respective function spaces are weighted supremum norms. In what follows we fix two
functions, ν : V → R+ and η :W → R+, which will act as weighting functions.

Assumption 4 (Lyapunov weights) The following hold for Q,RA, ν, and η:

(i) ν is γ-Lyapunov w.r.t. P;

(ii) η is γ-Lyapunov w.r.t. toRAQ.

Note that choosing the weight function ν to be the constant one function, Assumption 4(i) is auto-
matically satisfied, while choosing η to be the constant one function, Assumption 4(ii) is equivalent
to Assumption 3 when the norm used there is the supremum norm.

Some (but not all) of our bounds will have a dependency on Lip(TQ) = γ ‖Q‖. Therefore, we
will also make Assumption 5 to avoid vacuous bounds.

Assumption 5 We have that B .
= ‖Q‖ <∞.

Note that this assumption is mild: Learning procedures would more often than not guarantee finite-
ness of the objects they return. In fact, by appropriate normalization, even ‖Q‖ ≤ 1 can be arranged
(if necessary) as done, for example, by Grünewälder et al. (2012).

10
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5. Results

In this section we present our main results. We start with a viability result (explaining why our
minimal assumptions are sufficient for the existence of the policy whose performance we are inter-
ested in), followed by a short review of previous bounds on the policy error. These previous bounds
provide the context for our new results, which we present afterwards. After each result we discuss
their relative merits and present their proofs. We reiterate that for all the results in this section
Assumption 2 is assumed to hold, i.e.,R is assumed to be a join-homomorphism.

5.1. A viability result

Theorem 5 formalizes that u∗ is well-defined (the MBRL approach with factored linear models is
viable) under Assumption 3 or Assumption 4 (ii), provided that the norm overWA is a mixed max-
norm w.r.t. the norm over W . Theorem 5 shows that M ′TRAQ is a contraction (in ‖·‖W ) and we
can compute u∗ by value iteration. Therefore, as remarked in Section 2, if the compressed space
W is finite dimensional, we are able to evaluate M ′TRAQ and thus also approximate u∗ efficiently
(up to the desired accuracy). Evaluating π̂(x) can be done by computing (TQu

∗)(x) for each x as
needed. Theorem 5 also shows that MTQR has a unique fixed point U∗ = MTQu

∗, and it is not
hard to see that U∗ is a fixed point of M π̂TQR as well. The fixed points U∗ and u∗, as well the
contraction M ′TQR, will play pivotal roles in our bounds.

Theorem 5 Assume that the norm over WA is the mixed max-norm w.r.t. the norm over W , and
let Assumption 3 or Assumption 4 (ii) hold. Assume also that R satisfies Assumption 2. Then
M ′TRAQ is a contraction w.r.t. to the norm underlyingW , M ′TRAQ has a unique fixed point u∗,
and the iteration uk+1 = M ′TRAQuk converges geometrically to u∗, for any u0 ∈ W . Moreover,
U∗

.
= MTQu

∗ is the unique fixed point of MTQR, and the identity u∗ = RU∗ holds.

Before this work, it was not known that M ′TRAQ being a contraction is sufficient for MTQR
to have a unique fixed point. As pointed out in Section 2, to the best of our knowledge, all previous
works either assumed or imposed a contraction property on MTQR. In fact, with the exception of
Yao et al. (2014), all previous works required QR to be stochastic.

In the proof of Theorem 5, which is presented ahead, we will use the following more general
result:

Lemma 6 Let (V, ‖ · ‖V) and (W, ‖ · ‖W) be two Banach spaces. Let T :W → V and H : V →
W be two operators such that Lip((HT )m) < 1 for some m > 0. Then HT has a unique fixed
point W ∗, and V ∗ .= TW ∗ is the unique fixed point of TH .

The proof of Lemma 6 can be found in Appendix B. The argument we use is intuitive when
m = 1: IfHT is a contraction, it has a fixed pointW ∗, so defining V ∗ .= TW ∗ gives V ∗ = TW ∗ =
THTW ∗ = THV ∗, so V ∗ is a fixed point of TH (and we also have the identity W ∗ = HV ∗).
The operator TH need not be a contraction for V ∗ to be its fixed point; indeed, we can even have
Lip(TH) = ∞ and still have V ∗ = THV ∗ (cf. Proposition 23). The argument for m > 1 and for
ensuring uniqueness relies largely on Banach’s fixed point theorem.
Proof (of Theorem 5). To prove Theorem 5, we can apply Lemma 6 with m = 1, T = MTQ and
H = R, but we have to ensure that Lip(M ′TRAQ) < 1. We can use submultiplicativity of Lip and
affinity of TRAQ to get that Lip(M ′TRAQ) ≤ γ Lip(M ′) Lip(RAQ). By the choice of norm over
WA, Lip(M ′) ≤ 1, and by assumption γ Lip(RAQ) < 1, so, indeed, Lip(M ′TRAQ) < 1.

11
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So far we have established that M ′TRAQ is a contraction, and Lemma 6 gives us that u∗ is the
fixed point of M ′TRAQ, that U∗ is the fixed point of MTQR, and that the two fixed points satisfy
u∗ = RU∗. Because M ′TRAQ is a contraction, the iteration uk+1 = M ′TRAQuk converges geo-
metrically to u∗, for any u0 ∈ W , by Banach’s fixed-point theorem.

5.2. Previous results on the policy error

The typical MBRL performance bound is a supremum-norm bound on the policy error of π̃ .
=

GTP̃ Ṽ , where P̃ is stochastic and Ṽ is the fixed point of MTP̃ .

Theorem 7 (Baseline bound on MBRL policy error) Consider some transition probability ker-
nel P̃ for the state and action spaces X and A. Let Ṽ be the fixed point of MTP̃ , and π̃ = GTP̃ Ṽ .
Then ∥∥V ∗ − V π̃

∥∥
∞ ≤

2γ

1− γ

∥∥∥(P − P̃)Ṽ
∥∥∥
∞
.

This result is essentially contained in the works of Whitt (1978, Corollary to Theorem 3.1),
Singh and Yee (1994, Corollary 2)2, Bertsekas (2012, Proposition 3.1), and Grünewälder et al.
(2011, Lemma 1.1).

An important implication of this result, which we feel is often overlooked, is that the approxi-
mation P̃ to P does not have to be precise everywhere (at all functions V ∈ V), but only at Ṽ , the
fixed point of the approximate model – a self-fulfilling prophecy, prone to failure? To understand
why this works, consider the case when P̃Ṽ perfectly matches PṼ , i.e., when the bound on the
right-hand side is zero. In this case Ṽ = MTP̃ Ṽ = MTP Ṽ , which implies that Ṽ = V ∗ and,
π̃ = GTP̃ Ṽ = GTPV

∗ is optimal. The moral is that models do not have to be precise everywhere;
if PṼ can be estimated, the above inequality can be used to derive a posteriori bounds on the policy
error and even form the basis of improving the model. This can be viewed as a major, unexpected
win for model-based RL.

Ormoneit and Sen (2002); Barreto et al. (2011); Barreto and Fragoso (2011); Precup et al.
(2012); Barreto et al. (2014b,a) bound ‖V ∗ − Ṽ ‖∞ rather than the policy error. We emphasize
(cf. Appendix D) that ‖V ∗ − Ṽ ‖∞ is not the correct quantity to bound in order to understand the
quality of π̂, and that the policy error should be bounded. As we also discuss in Appendix D, this
contrasts to ADP bounds, where, in order to understand the policy error in supremum norm, it is
sufficient to bound the deviation between the optimal value function and the value estimate that
generates the policy.

5.3. Bounds on the policy error in factored linear models

Our first novel result is a supremum-norm bound for policy error when we use factored linear
models: Theorem 8. Because we can recover results for unfactored linear models by takingR to be
the identity mapping over X , we can use Theorem 8 to get a bound that is tighter than Theorem 7.
Strictly speaking, taking Q stochastic, R as the identity mapping, and upper-bounding the right-
hand side of Theorem 8 by 2ε2 gives us Theorem 7.

2. Singh and Yee (1994) correctly bound
∥∥V ∗ − V π̃

∥∥
∞, but their statement of Corollary 2 suggests that they are

bounding a different quantity.
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Theorem 8 (Supremum-norm bound) Let π̂ be the policy derived from the factored linear model
defined using (1) and (2). If Assumptions 3 and 5 hold, then∥∥∥V ∗ − V π̂

∥∥∥
∞
≤ ε(V ∗) + ε(V π̂), (3)

where ε(V ) = min(ε1(V ), ε2), and

ε1(V ) = γ ‖(P −QR)V ‖∞ +
Bγ2

1− γ
‖R(P −QR)V ‖∞ ,

ε2 =
γ

1− γ
∥∥(P −QR)U∗

∥∥
∞.

The comments after Theorem 7 apply to Theorem 8: Curiously, it is enough if the model is
“good” at its own fixed point. However, what is most striking about Theorem 8 is the ε1(V ) term.
It means that if B is not too big, and if the error of the model at V ∗ and V π̂ in the compressed space
WA is small, then the term that depends on 1

1−γ is small. Moreover, we can expect this term to
be easier to control than ‖(P −QR)V ‖∞, though while the term with ε2 may lead to a posteriori
bounds, due to the presence of V ∗ and V π̂, objects in the true MDP, the ε1 terms are better treated
as a priori bounds.

The proof of Theorem 8 (presented below) uses the triangle inequality

‖V ∗ − V π̂‖ ≤ ‖V ∗ − U∗‖+ ‖U∗ − V π̂‖, (4)

combined with Lemma 9 stated next (Lemma 9 is a technical lemma and its proof is in Appendix C):

Lemma 9 Let Assumptions 1 and 5 hold, and assume that γ Lip(RAQ) ≤ α < 1. For V ∈{
V ∗, V π̂

}
we have that

‖V − U∗‖ ≤ γ ‖(P −QR)V ‖+
Bγ2

1− α
∥∥RA(P −QR)V

∥∥ . (5)

Additionally, if γ Lip(P) ≤ β < 1 (or, alternatively, γ Lip(M π̂P) ≤ β < 1), we also have for
V = V ∗ (respectively, V = V π̂) that

‖V − U∗‖ ≤ γ

1− β
∥∥(P −QR)U∗

∥∥. (6)

Lemma 9 (5) can be interpreted as the bound we get by doing a Bellman lookahead with MTQ,
followed by application of the well-known bound for an α-contraction T with fixed point Ṽ (Bert-
sekas, 1995): ∥∥∥V − Ṽ ∥∥∥ ≤ 1

1− α
‖V − TV ‖ (7)

(with T = M ′TRAQ in the case of Lemma 9). Similarly, taking T = MTP (T = M π̂TP ) in (7)
combined with γ Lip(P) ≤ β < 1 (γ Lip(M π̂P) ≤ β < 1), allows us to see that MTP (M π̂TP )
is a β-contraction, so (7) gives us Lemma 9 (6) for V ∗ (V π̂). Lemma 9 (5) is also interesting in
the special case of unfactored linear models (when R is the identity mapping) with Q as a non-
expansion (e.g., Q stochastic): Because B = 1 and α = γ, the bound becomes

‖V − U∗‖ ≤ γ

1− γ
‖(P −QR)V ‖ ,

13
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and in this case no looseness was introduced by doing a Bellman lookahead and then applying (7),
relative to applying (7) directly. This will allow us to recover results for unfactored linear models
from the bounds we derive from Lemma 9.
Proof (of Theorem 8) We will verify the assumptions of Lemma 9, so that we can bound the terms
on the right-hand side (RHS) of (4) with the help of this lemma. Lemma 9 needs: Assumption 1,
Assumption 5, γ Lip(RAQ) < 1, γ Lip(P) < 1 and γ Lip(M π̂P) < 1. Assumption 1 holds by
Corollary 2, whose assumptions are satisfied because Theorem 8 uses supremum norms. Assump-
tion 5 holds by assumption. Next, Assumption 3 implies that γ Lip(RAQ) ≤ γ < 1. Because
Lip(P) = 1 in supremum norm, we get γ Lip(P ) ≤ γ < 1. Finally, Lip(P) = 1 and Assump-
tion 1 imply together that Lip(M π̂P) ≤ γ < 1. The result is obtained by using Lemma 9 (with
α = β = γ) to bound the terms on the RHS of (4).

Theorem 8 is tight, as shown by Proposition 16 (cf. Appendix C). Trivially, we can use The-
orem 8 to crudely upper-bound the policy error in Lp(µ) norm, but the bound we obtain this way
is not very interesting. This is because supremum norm bounds, though easy to prove, can be too
harsh: V ∗ and V π̂ can be close in other meaningful norms, while not being close in supremum
norm, in which case the right-hand side of the bound in Theorem 8 can be large even if the left-hand
side is small (cf. Proposition 17, Appendix C).

De Farias and Van Roy (2003) show that the harshness of the supremum norm can be mitigated
by considering the policy error in weighted supremum norm. Intuitively, the error in states that are
unlikely to be visited by π∗ should be underweighted, as we discussed earlier. Thus, one alternative
to supremum norm bounds is to use a generalization of Theorem 8 for the weighted supremum
norm:

Theorem 10 (Weighted supremum norm bound) Let π̂ be the policy derived from the factored
linear model defined using (1) and (2). If Assumptions 4 and 5 hold, then∥∥∥V ∗ − V π̂

∥∥∥
∞,ν
≤ ε(V ∗) + ε(V π̂),

where ε(V ) = min(ε1(V ), ε2), and

ε1(V ) = γ ‖(P −QR)V ‖∞,ν +
Bγ2

1− βη,RAQ
‖R(P −QR)V ‖∞,η

ε2 =
γ

1− βν,P
∥∥(P −QR)U∗

∥∥
∞,ν .

Under Assumption 3 and Assumption 4 (i), Theorem 10 holds with βη,RAQ = γ. The comments
about ε1(V ) and ε2 in Theorems 7 and 8 are also valid for Theorem 10, but the dependencies are,
evidently, expressed in different norms. Moreover, by taking ν = x 7→ 1 and η = i 7→ 1, and
by realizing that ν is γ-Lyapunov w.r.t. to P and, under Assumption 3, η is γ-Lyapunov w.r.t. to
RAQ, we recover Theorem 8 from Theorem 10. Previously, weighted-supremum norm bounds
were derived for ALP. However, the weakness of these bounds is that they are sensitive to the
measure-change between the “ideal constraint sampling distribution” (which depends on unknown
quantities whose knowledge basically implies the knowledge of the optimal policy) and the actual
one used in the algorithm (de Farias and Van Roy, 2003).
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Proof (of Theorem 10) We start with the triangle inequality in (4). To obtain ε1(V ) we use
Lemma 9 (5) with α = βη,RAQ. The conditions of Lemma 9 (5) are fulfilled by Corollary 2
and Assumption 5, and because η is γ-Lyapunov w.r.t.RAQ (via Assumption 4 (ii)).

Lemma 9 (5) gives ε2 after we realize that Lip(MTP) ≤ γ Lip(P) = γβν < 1 and that
Lip(M π̂TP) ≤ γ Lip(P) = γβν < 1, since ν is γ-Lyapunov w.r.t. P by Assumption 4 (i).

Normally, we are interested in the policy error w.r.t. to an initial state distribution, or a stationary
distribution of a policy (e.g., a stationary distribution of π∗), and we can naturally consider the policy
error inL1(µ) norm, where µ is a measure overX that we are interested in. We can get an immediate
bound for the more general Lp(µ) norm (for any p ≥ 1) of the policy error, using Theorem 10 (cf.
Theorem 18, Appendix C). However, we can also bound the policy error in Lp(µ) “directly”, i.e., in
terms of model errors in Lp(µ) norm, as Theorem 11, to be stated next, shows.

In order to state Theorem 11, we need to use a concentrability coefficient Cπ̂,P,µ,ξ (although
part of our bound will be free of this coefficient). Consider a measure ξ over X , and the operator
I − γM π̂P : (V, ‖ · ‖ξ,p) → (V, ‖ · ‖µ,p). If I − γM π̂P has no inverse (as an operator acting
between the above two spaces), define Cγ,π̂,P,µ,ξ

.
=∞, otherwise let the concentrability coefficient

be
Cγ,π̂,P,µ,ξ

.
= (1− γ) Lip((I − γM π̂P)−1) = (1− γ)

∥∥∥(I − γM π̂P)−1
∥∥∥ . (8)

(Note that here both Lip(·) and ‖·‖ hide a dependence on ξ, π and p.) As opposed to previous uses
of concentrability coefficients (Munos, 2003; Farahmand et al., 2010), our coefficient depends only
on the policy computed, which makes it more suitable for the estimation of our bound. In case the
Cγ,π̂,P,µ,ξ is not very large, we can get meaningful bounds from Theorem 11 from ε2, but even if
Cγ,π̂,P,µ,ξ =∞ and ε2 is vacuous, we can still get a priori bounds with a dependence on ε1(V π̂), in
addition to the dependence on ε1(V ∗). The ε1(V ) term can be analyzed similarly to its analogues in
Theorems 8 and 10, modulo the norm differences. We are flexible about the choice of ‖ · ‖W (which
nonetheless affects Assumptions 3 and 5). One may think of choosing ‖ · ‖W = ‖ · ‖ρ,p for some
ρ, however with this norm choice, Assumption 3 becomes restrictive. When it comes to satisfying
Assumption 3, a weighted supremum norm is reasonable, as discussed earlier, so we choose this
norm as the norm over the compressed spaceW in Theorem 11.

Theorem 11 (Lp(µ) norm bound) Let π̂ be the policy derived from the factored linear model
defined using (1) and (2). Choose the norms so that ‖ · ‖V = ‖ · ‖µ,p and ‖ · ‖W = ‖ · ‖∞,η. If
Assumptions 3 and 5 hold, then∥∥∥V ∗ − V π̂

∥∥∥
µ,p
≤ ε1(V ∗) + min

{
ε1(V

π̂), ε2

}
,

where

ε1(V ) = γ ‖(P −QR)V ‖µ,p +
Bγ2

1− γ
∥∥RA(P −QR)V

∥∥
∞,η ,

ε2 = Cγ,π̂,P,µ,ξ
γ

1− γ
‖(P −QR)U∗‖ξ,p ,

where Cγ,π̂,P,µ,ξ is defined in (8).
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Before the proof, let us point out that ε1 is independent of the concentrability coefficient. Fur-
ther, as remarked beforehand, its dependence on the discount factor can be quite mild (if the second
term in the definition of ε1 is small).
Proof The first step is to use (4). Then we see that Corollary 2 ensures that Assumption 1 is
satisfied, and Assumption 3 guarantees that

∥∥RAQ∥∥ ≤ 1. Thus, Lemma 9 (5) with α = γ gives us
‖U∗ − V ‖µ,p ≤ ε1(V ) for V ∈

{
V ∗, V π̂

}
.

To bound
∥∥U∗ − V π̂

∥∥
µ,p
≤ ε2(V

π̂) we proceed as follows. If (I − γM π̂P) is not invertible,
then Cγ,π̂,P,µ,ξ =∞ and the result holds vacuously, so assume otherwise. Since V π̂ = M π̂TPV

π̂,

(I − γM π̂P)V π̂ = M π̂r.

Moreover,
U∗ − γM π̂PU∗ −M π̂r = U∗ −M π̂TPU

∗.

Hence, ∥∥∥U∗ − V π̂
∥∥∥
µ,p

=
∥∥∥(I − γM π̂P)−1(I − γM π̂P)(U∗ − V π̂)

∥∥∥
µ,p

≤ Lip((I − γM π̂P)−1)
∥∥∥(I − γM π̂P)(U∗ − V π̂)

∥∥∥
ξ,p

= Cγ,π̂,P,µ,ξ
1

1− γ

∥∥∥U∗ −M π̂TPU
∗
∥∥∥
ξ,p

≤ Cγ,π̂,P,µ,ξ Lip(M π̂)
γ

1− γ
‖(P −QR)U∗‖ξ,p

To conclude, we use that Lip(M π̂) ≤ 1 by Corollary 2.

6. Discussion and summary

Our results unify, strengthen and extend previous works. The unifying framework of factored linear
models was introduced by Yao et al. (2014). The focus of the present work is the derivation of policy
error bounds, while putting issues of designing and analyzing algorithms to learn models aside. We
believe that in fact this should be the preferred approach to developing theories for reinforcement
learning: By first figuring out what quantities control the policy error in a given error, one is in a
better position to design learning algorithms which then control the said quantities (this is distantly
reminiscent to choosing surrogate losses in supervised learning).

Previous work that derives policy error bounds goes back to at least Whitt (1978). In fact,
looking at the literature we see that the results of Whitt (1978) have been independently rederived
in part or as a whole multiple times (often confounded with the issue of statistical questions), e.g.,
in the works mentioned in Section 3. Compared to the work of Whitt (1978), main advances in
deriving policy error bounds have been the introduction of norms other than the supremum norm,
though this happened in different contexts (e.g., de Farias and Van Roy 2003; Munos 2003), and
breaking down the bound of Whitt (1978) to more specialized models (e.g., Ormoneit and Sen 2002;
Ravindran 2004; Barreto et al. 2011; Sorg and Singh 2009).

One of the main novelties of the present work is that we are importing previous techniques to
model-based RL to obtain policy error bounds in norms other than (unweighted) supremum norms.
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In particular, to derive policy error bounds that use weighted supremum norms, we are building
on the work of de Farias and Van Roy (2003), and we bring Lyapunov analysis from the approx-
imate linear programming (ALP) methodology to model-based RL. At the same time, to derive
policy error bounds that use weighted Lp-norms we import ideas from Munos (2003), who ana-
lyzed approximate dynamic programming (ADP) algorithms. During this process we streamlined
the definitions from these works by sticking to the language of operator algebras (specifically, Ba-
nach lattices). The use of this language has two main benefits: It allowed us to present shorter and
rather direct proofs, while it also shed light on the algebraic and geometric assumptions that were
key in the proofs. We believe that our operator algebra approach could also improve previous re-
sults in either ALP or ADP. An interesting avenue for further work is to investigate the minimum set
of assumptions under which our calculations remain valid: At present it appears that we use very
little of the rich structure of the function spaces involved. We speculate that the results can also
be proven in certain max-plus (a.k.a. tropical) algebras, leading to results that may hold, e.g., for
various versions of sequential games.

Another major novel aspect of the present work is that we tightened previous bounds. In par-
ticular, our bounds come in two forms: One form (the “ε1” term) tells us how model errors should
be controlled in the spaces of compressed value functions, while the other form (the “ε2” term)
tells us that it is enough if the model operator approximates the true model operator at only the
(uncompressed) value function derived from the model.

While we shorten and improve previous results, we also managed to relax the key condition
of previous works that required that the Bellman operator acting on uncompressed value functions
and underlying the model needs to be a contraction. While we are still relying on contraction-type
arguments, the contraction arguments are used with the compressed space, as previously suggested
(but not analyzed) by Yao et al. (2014). We feel that it is more natural to require that the Bellman
operator for the compressed space is a contraction than to require the same for the respective op-
erator acting on the uncompressed space. Indeed, our bounds show that this second assumption is
entirely superfluous (cf. the “ε2” terms).

One limitation of the results presented so far is that we assumed thatRwas a join-homomorphism.
In many models, such as state-aggregation (soft or not) or stochastic factorization Van Roy (2006);
Barreto et al. (2011), R is linear (and stochastic) but is not a join-homomorphism. Investigating
our proofs reveals that we can allow R to be a linear operator (and RA to be a linear operator s.t.
(RA)a 6= R) at the price of introducing additional error terms. For the sake of illustration, in The-
orem 12 below we present a version of the Lp(µ)-norm bounds (and a sketch of proof) that can be
obtained for such operators.

For presenting Theorem 12, we will use the greedy action selector in the compressed space as
well, i.e. G′ mapping compressed action value functions to policies in W (i.e., M ′G

′ww = M ′w
for w ∈ WA). It is important to recall the definition of U∗ for Theorem 12: U∗ = MTQu

∗.
Note that if RM = M ′RA, then we also have U∗ = MTQRU

∗, and we can recover Theorem 11
from Theorem 12. However, U∗ is not a fixed point of MTQR in general when R is not a join-
homomorphism, a fact that will be important in our discussion below.

Theorem 12 (Lp(µ) norm bound for linearR,RA) Let π̂ be the policy derived from the factored
linear model defined using (1) and (2). Choose the norms so that ‖ · ‖V = ‖ · ‖µ,p and ‖ · ‖W =
‖ · ‖∞,η. Assume thatR,RA are linear (but not necessarily join-homomorphisms, and (RA)a not
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necessarily equal toR). If Assumptions 3 and 5 hold, then∥∥∥V ∗ − V π̂
∥∥∥
µ,p
≤ ε1(V ∗,M ′) + min

{
ε1(V

π̂,M ′G
′TRAQu

∗
), ε2

}
, (9)

where

ε1(V,N
′) = γ ‖(P −QR)V ‖µ,p

+
Bγ

1− γ

(∥∥RV −N ′RATPV ∥∥∞,η + γ
∥∥RA(P −QR)V

∥∥
∞,η

)
,

ε2 = Cγ,π̂,P,µ,ξ
1

1− γ
‖PU∗ −Qu∗‖ξ,p ,

and where Cγ,π̂,P,µ,ξ is defined in (8).

Proof (Sketch) The ε1 terms are obtained by appropriately modifying Lemma 15 (which is an
intermediate result, presented in the appendix, that is used in the proof of Lemma 9), as we describe
below. We will take V = V ∗ (V = V π̂), N = M (resp. N = M π̂) and N ′ = M ′ (resp. N ′ =
M ′G

′TRAQu
∗
. Then the identity u∗ = N ′TRAQu

∗ holds.
Because we cannot use the identity RM = M ′RA, we need to use the following chain of

inequalities:

‖R(V − U∗)‖ = inf
k≥1

1

1− αk
∥∥RV − (N ′TRAQ)kRV

∥∥
≤ 1

1− α
∥∥RNTPV −N ′RATQRV ∥∥

≤ 1

1− α
(∥∥RNTPV −N ′RATPV ∥∥+

∥∥N ′RATPV −N ′RATQRV ∥∥)
≤ 1

1− α
(∥∥RNTPV −N ′RATPV ∥∥+ γ

∥∥RA(P −QR)V
∥∥) .

To obtain ε2, we cannot use that U∗ = MTQRU
∗, so we simply write∥∥∥U∗ −M π̂TPU

∗
∥∥∥ =

∥∥∥M π̂TQu
∗ −M π̂TPU

∗
∥∥∥

≤ ‖Qu∗ − PU∗‖ .

The above can be used to modify Lemma 9 as well, leading to analogues of Theorems 8 and 10
whereR is linear but not a join-homomorphism.

Note that both this result and Theorem 11 show a curious scaling as a function of 1/(1 − γ). In
fact, the astute reader may recall that policy error bounds typically scale with 1/(1 − γ)2. A little
thinking reveals that our result may be subject to the same scaling: Just like in Theorem 7, where
Ṽ hides 1/(1− γ), in the above bounds the value functions themselves bring in another 1/(1− γ),
too. Is the scaling with 1/(1 − γ)2 necessary? The answer is no: Theorem 4.1 of Van Roy (2006)
shows that in some version of state-aggregation the policy error can scale with 1/(1 − γ) only
(as a sidenote, the only result so far with this property). Thus, it may be worthwhile to look at
the differences between Theorem 4.1 and the above result. First, recall that in his Theorem 4.1
Van Roy (2006) bounds the error of the policy π̃ that is greedy with respect to the fixed point Ũ∗
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of MTQR, where R = Rπ̃ is chosen to depend on the policy (for some policy π, Rπ is a weighted
Euclidean projection to the compressed space induced by the aggregation, where the weights depend
on the stationary distribution of π). Formally, the policy is defined by π̃ = GTQRπ̃ Ũ

∗ where
Ũ∗ = MTQRπ̃ Ũ

∗. Thus, the policy whose error he bounds is different from ours in two respects:
As pointed out above, U∗ = MTQRu

∗ (that our π̂ is greedy with respect to) is not necessarily
the fixed point of MTQR. Further, our result is proven for general R. At this time it is not clear
whether with a specific choice ofR (likeRπ̂) the terms involved in the definition of ε1 would cancel
the additional 1/(1 − γ) factor. For what it is worth, we note that for the “counterexample” that
Van Roy (2006) presents, whenR = Rπ̂, ε1 scales with 1/(1− γ) only (as opposed to scaling with
1/(1 − γ)2), showing that our bound has the ability to exploit the benefits of a “good” choice of
R. However, it remains to be seen whether this or some other systematic way of choosing R will
always cancel the extra 1/(1− γ) factor.

To summarize, this paper advances our understanding of model errors on policy error in rein-
forcement learning. We do this by improving previous bounds by using a versatile set of norms
and introducing a completely new bound which has the potential of better scaling with the discount
factor, while at the same time we extend the range of the models by relaxing previous assumptions.
We also showed that (some) of our bounds are unimprovable. By effectively using the language of
Banach lattices, our proofs are shorter, while at the same time hold the promise of being generaliz-
able beyond MDPs. We believe that our approach may lead to advances in the analysis and design
of alternate approaches to reinforcement learning, namely both in approximate linear programming
and approximate dynamic programming.
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Appendix A. List of operators

For ease of reference, we present Table 1, which gives a summary of the operators we define and
use.

Operator Between Definition

Pa V → V (PaV )(x)
.
=
∫
V (x′)Pa(dx′|x)

Qa W → V (Qaw)i
.
=
∫
wi′Qa(di′|i)

P V → VA (PV )(a)(= (PV )a)
.
= PaV

Q W → VA (QV )(a)(= (QV )a)
.
= QaV

R V → W almost always a join-homomorphism
RA VA →WA (RAV )a = RV, ∀a ∈ A
RAQ W →WA (RAQw)(a)(= (RAQw)a)

.
= RQaw

M VA → V (MV )(x)
.
= maxa V

a(x)
M ′ WA →W (M ′w)i

.
= maxaw

a
i

Mπ VA → V (MπV )(x)
.
= V π(x)(x)

M ′π WA →W (M ′πw)i
.
= w

π(i)
i

G VA → Π GV (x)
.
= argmaxa V

a(x)
TP V → VA TPV

.
= r + γPV

TQ W → VA TQw
.
= r + γQw

TQR V → VA TQRV
.
= TQRV = r + γQRV

TRAQ W →WA TRAQw
.
= RATQw = RAr + γRAQw

Table 1: Definitions of operators used in the paper.

Appendix B. General results

In this section, we present some general technical results.

Proposition 13 Consider an operator T : V → V mapping a normed space (V, ‖ · ‖V) to itself. If
Lip(T ) <∞ and Tm is a contraction for some m > 0, then T has a unique fixed point.

Proof Banach’s fixed point theorem ensures that Tm has a unique fixed point V , which must also
be the unique fixed point of Tm

2
and Tm(m+1), so V = Tm(m+1) = TTm

2
V = TV , so V is a

fixed point of T . Since every fixed point of T is also a fixed point of Tm, it follows that V is the
unique fixed point of T .

Lemma 6 Let (V, ‖ · ‖V) and (W, ‖ · ‖W) be two Banach spaces. Let T : W → V and
H : V → W be two operators such that Lip((HT )m) < 1 for some m > 0. Then HT has a unique
fixed point W ∗, and V ∗ .= TW ∗ is the unique fixed point of TH .

Proof Since (HT )m is a contraction, Proposition 13 ensures that (HT )m has a unique fixed point
W ∗, which is also the unique fixed point of HT . Defining V ∗ .= TW ∗, we can see that THV ∗ =
THTW ∗ = TW ∗ = V ∗. It remains to show that V ∗ is the unique fixed point of TH , so let us
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assume that there exists V ′ 6= V ∗ s.t. V ′ = THV ′. Then with W ′ .= HV ′ we have TW ′ = V ′.
Now, HTW ′ = HV ′ = W ′, so W ′ is a fixed point of HT , which implies W ′ = W ∗, since the
fixed point of HT is unique, but then V ′ = TW ′ = TW ∗ = V ∗, which is a contradiction.

Lemma 14 Let (V, ‖ · ‖) be a Banach space and T : V → V be an operator. Assume that there
exists V ∗ ∈ V such that TV ∗ = V ∗, and that there exist constants a < 1 and b such that for all
m ≥ 0 we have Lip(Tm+1) ≤ bam. Then for all V ∈ V and m ≥ 0 such that bam < 1,

‖V − V ∗‖ ≤ 1

1− bam
∥∥V − Tm+1V

∥∥ .
Further, if we take the infimum of both sides for m such that bam < 1, we get an equality.

Proof We have that for all m ≥ 0,

‖V − V ∗‖ =
∥∥V − Tm+1V ∗

∥∥
=
∥∥V − Tm+1V + Tm+1V − Tm+1V ∗

∥∥
≤
∥∥V − Tm+1V

∥∥+
∥∥Tm+1V − Tm+1V ∗

∥∥
≤
∥∥V − Tm+1V

∥∥+ bam ‖V − V ∗‖ .

To arrive at an upper-bound, we need to move the third term to the right-hand side and divide the
inequality by 1 − bam. The inequality is preserved after division only for those m when bam < 1,
giving the result.

To see why we get the equality, note that T∞V = V ∗. Hence,

inf
m:bam<1

1

1− bam
∥∥V − Tm+1V

∥∥ ≤ ‖V − V ∗‖ .

Proposition 3 Assume that V = Rm andW = Rn, and let R be any linear join-homomorphism.
Then there exists a ∈ Rn+ and J ∈ [m]n s.t. (Rv)i = ai vJi for all v ∈ V and i ∈ [n].

Proof Consider v ≥ 0. We can write v =
∑m

j=1 vjej , where (ej)
m
j=1 is the Euclidean basis. Because

v ≥ 0, we can also write v =
∨m
j=1 vjej . By linearity of R, we have that Rv =

∑m
j=1 vjRej , and

sinceR is a join-homomorphism and linear, we also haveRv =
∨m
j=1R(vjej) =

∨m
j=1 vjRej .

Next, we show that for all i, (Rej)i 6= 0 for at most one j ∈ [m]. Taking v s.t. vi = 1 for all i,
we have that for all i ∈ [n]  m∑

j=1

Rej


i

= (Rv)i =

 m∨
j=1

Rej


i

,

which implies that for all i ∈ [n] there is at most one j ∈ [m] s.t. (Rej)i > 0, and Ji is defined as
such j if it exists, otherwise arbitrary. Defining ai

.
= (ReJi)i for (i ∈ [n]) gives the result.
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Proposition 4 Given (U , ‖ · ‖∞,ν) with ν : U → R+, and J : U → UA, if each Ja is a linear
operator, then γ Lip(J) = βν,J .

Proof Define A(U)
.
= {U ′ ∈ U : |U ′| = |U |} for U ∈ U . Since J is linear, Lip(J) = ‖J‖. Since

‖ · ‖ .
= ‖ · ‖∞,ν is a type of supremum norm, ‖J‖ = maxa ‖Ja‖ (the maximum over the actions

and states commute). Thus, we have that

Lip(J) = sup
U :‖U‖=1

max
a
‖JaU‖

= sup
U :‖U‖=1

max
a

sup
x

|(JaU)(x)|
ν(x)

= sup
x

max
a

sup
U>0:‖U‖=1

sup
U ′∈A(U)

|(JaU ′)(x)|
ν(x)

.

Note that equality still holds in the last line by equivalence of the suprema with the supremum on
the previous line. The term supU ′∈A(U)

|(JaU ′)(x)|
ν(x) can be maximized w.r.t. U by maximizing U

subject to U(x)
ν(x) ≤ 1, for all x ∈ X , a ∈ A. Therefore the term is maximized by U = ν, and, since

A(ν) = {U ′ ∈ U : |U ′| = ν}, we get

γ Lip(J) = γ sup
U :|U |=ν

‖JU‖ = βν,J .

Appendix C. MDP-specific results

In this section, we present accessory results and proofs omitted from the main text. Lemma 15 is
an intermediate result for Lemma 9. The proof of Lemma 9 is also presented here. Moreover, we
present the proof of three omitted results: Propositions 16 and 17 and Theorem 18, respectively
a tightness example for Theorem 8, an example showing that the Theorem 8 can be harsh, and a
weighted supremum norm bound for the policy error in Lp(µ) norm.

Lemma 15 Let Assumptions 1 and 5 hold, and assume that γ Lip(RAQ) ≤ α < 1. Then, for
V ∈

{
V ∗, V π̂

}
∥∥V − U∗∥∥ ≤ γ ‖(P −QR)V ‖+

Bγ2

1− α
∥∥RA(P −QR)V

∥∥ ,
Proof Using that V ∗ = MTPV

∗, V π̂ = M π̂TPV
π̂ and M π̂TQRU

∗ = U∗ = MTQRU
∗, we first

upper-bound, with N = M (N = M π̂) and V = V ∗ (V = V π̂),

‖V − U∗‖ = ‖NTPV −NTQRU∗‖
≤ ‖NTPV −NTQRV ‖+ ‖NTQRV −NTQRU∗‖
≤ γ Lip(N) ‖(P −QR)V ‖+ Lip(NTQ) ‖R(V − U∗)‖
≤ γ ‖(P −QR)V ‖+Bγ ‖R(V − U∗)‖ .
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Given N ∈
{
M,M π̂

}
, we define N ′ as the operator satisfying RN = N ′RA. In particular,

if N = M , then N ′ = M ′, otherwise N ′ = M ′π2 for some π2 : I → A (in either case N ′

is well-defined because R is a join-homomorphism, cf. Assumption 2). Since Lip(N ′) ≤ 1 by
Assumption 1, we get Lip(N ′TRAQ) ≤ γ Lip(RAQ) ≤ α < 1. Lemma 14 with T = N ′TRAQ
and a = b = α < 1, combined gives for N = M (N = M π̂) and V = V ∗ (V = V π̂),

‖R(V − U∗)‖ = inf
k≥1

1

1− αk
∥∥RV − (N ′TRAQ)kRV

∥∥
≤ 1

1− α
∥∥N ′RATPV −N ′RATQRV ∥∥

≤ γ

1− α
Lip(N ′)

∥∥RA(P −QR)V
∥∥

≤ γ

1− α
∥∥RA(P −QR)V

∥∥,
where we have also used that V = NTPV and thatRN = N ′RA. Combining the above gives,

‖V − U∗‖ ≤ γ ‖(P −QR)V ‖+Bγ ‖R(V − U∗)‖

≤ γ ‖(P −QR)V ‖+
Bγ2

1− α
∥∥RA(P −QR)V

∥∥ .

Lemma 9 Let Assumptions 1 and 5 hold, and assume that γ Lip(RAQ) ≤ α < 1. For V ∈{
V ∗, V π̂

}
we have that

‖V − U∗‖ ≤ γ ‖(P −QR)V ‖+
Bγ2

1− α
∥∥RA(P −QR)V

∥∥ . (5)

Additionally, if γ Lip(P) ≤ β < 1 (or, alternatively, γ Lip(M π̂P) ≤ β < 1), we also have for
V = V ∗ (respectively, V = V π̂) that

‖V − U∗‖ ≤ γ

1− β
∥∥(P −QR)U∗

∥∥. (6)

Proof Recall that V ∗ is the optimal value function, i.e., the fixed point of the Bellman optimality
equation V ∗ = MTPV

∗. Recall also that V π̂ is the value function of π̂ and the fixed point of the
Bellman equation V π̂ = M π̂TPV

π̂. Lemma 15 gives us (5) directly.
To prove (6) for V = V ∗, we use Lemma 14 with T = MTP and a = b = β, which gives

‖V ∗ − U∗‖ = inf
k≥1

1

1− βk
∥∥∥U∗ − (MTP)kU∗

∥∥∥
≤ 1

1− β
‖MTQRU

∗ −MTPU
∗‖

≤ γ

1− β
Lip(M) ‖(P −QR)U∗‖ ,
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and then we plug in Lip(M) ≤ 1. For (6) for V = V π̂, we observe that Lip(M π̂TP) = γ Lip(M π̂P),
then we follow a similar approach:∥∥∥V π̂ − U∗

∥∥∥ = inf
k≥1

1

1− βk
∥∥∥U∗ − (M π̂TP)kU∗

∥∥∥
≤ 1

1− β

∥∥∥M π̂TQRU
∗ −M π̂TPU

∗
∥∥∥

≤ γ

1− β
Lip(M π̂) ‖(P −QR)U∗‖ ,

and plug in Lip(M π̂) ≤ 1.

The recipe for constructing the example proving Proposition 16 is simple: i) create a three-
state, two-action MDP with a “fork” state s1 leading to a high-value terminal state s2 with action
a1 and a low-value terminal state s3 with action a2; ii) choose the rewards so that the immediate
reward ra2(s1) > ra1(s1), while the value of (s1, a1) is higher than (s1, a2); iii) make a poor
model for the fork state s1, so that π̂ becomes nearsighted, picking a2 rather than a1. We can
also perturb the model for s3, in order to have a desired value for ‖V ∗ − U∗‖∞. The rest of the
effort pertains to choosing the rewards and the model carefully in order to have the correct value for
‖(P −QR)U∗‖∞. There is factor of 1

γ in the scaling of the rewards, as a result of requiring the
return from s1 after the first action to dominate the immediate reward at s1, and the rewards also
scale with max τ for the bound to scale. The example underlying Proposition 16 is also well-defined
for ε = 0, but then GTRAQu∗ is no longer unique: It can yield an optimal policy or a policy that is
τ -suboptimal in ‖ · ‖∞, depending on how ties are broken.

Proposition 16 (Theorem 8 is tight) There exist P,Q and R s.t. for every γ ∈ (0, 1), τ ≥ 0 and
ε ∈ (0, 1) there exists r ∈ VA (the rewards scale with 1−γ2

γ τ ) s.t. Lip(QR) < ∞, Lip(RAQ) ≤
1, 2γ

1−γ ‖(P −QR)U∗‖∞ = τ , and
∥∥V ∗ − V π̂

∥∥
∞ = (1 − ε)τ . Thus, Theorem 8 can be made

arbitrarily tight.

Proof The set of states is X = {x1, . . . , x3}, the set of actions is A = {a1, a2} and the transition
probability kernel is specified by P as follows:

Pa1 =

 0 1 0
0 1 0
0 0 1

 , Pa2 =

 0 0 1
0 1 0
0 0 1


We letW = R2 andRV .

= (V (x2), V (x3))
>.

The model is

Qa1 =

 −1 0
0 1
1 0

 , Qa2 =

 0 −1
0 1
1 0

 .

Given γ ∈ (0, 1), τ ≥ 0 and ε ∈ (0, 1), define

ra1 =

 −
τ
4 (2ε+ γ − 1)
τ(1−γ2)

4γ

− τ(1−γ2)
4γ

 , ra2 =


τ
4 (2ε+ γ − 1)

τ(1−γ2)
4γ

− τ(1−γ2)
4γ

 ,
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which gives V ∗ = τ
4

(
2(1− ε), 1+γγ ,−1+γ

γ

)>
and U∗ = τ

4

(
2ε, 1−γγ ,−1−γ

γ

)>
. Given that

(Pa1 −Qa1R)U∗ =

 U∗2 + U∗2
U∗2 − U∗3
U∗3 − U∗2

 , (Pa2 −Qa2R)U∗ =

 U∗3 + U∗3
U∗2 − U∗3
U∗3 − U∗2

 ,

and thatU∗2 = −U∗3 , we have ‖(P −QR)U∗‖ = 2U∗2 = 1−γ
2γ τ , which gives 2γ

1−γ ‖(P −QR)U∗‖ =

τ . It can be seen also that π̂(x1) = a2 (and that the policy in x2 and x3 is irrelevant), so
∥∥V ∗ − V π̂

∥∥ =
(1−ε)τ , since ra2(x1)+γV

∗
3 = −V ∗1 = −(1−ε) τ2 . We note in passing that ‖V ∗ − U∗‖ =

∣∣ τ
2 − τε

∣∣
and that

∥∥V π̂ − U∗
∥∥ = τ

2 .

Proposition 17 is based on the natural argument that the model does not need to be good in states
that are not visited by an optimal policy: i) we can extend the example in Proposition 16 with an
initial state with two actions: “stay”, or “go to the fork state”; ii) we pick the value of staying to be
higher than the value of going to the fork state; iii) we pick an accurate model at the initial state, so
that both π̂ and π∗ choose to stay there (rather than go to the fork state). The policy error is zero
when we take µ that puts measure one on the initial state, however π̂ is still near-sighted in the fork
state, and it suffers the supremum norm error outlined in Proposition 16.

Proposition 17 (The supremum norm is harsh) There exist P,Q and R s.t. for every γ ∈ (0, 1)

and τ > 0, there exists r ∈ VA (the rewards scale with 1−γ2
γ τ ) s.t. Lip(QR) <∞, Lip(RAQ) ≤ 1,∥∥V − V π̂

∥∥
∞ = τ and

∥∥V ∗ − V π̂
∥∥
µ,p

=
∥∥V ∗ − V π̂

∥∥
ξ,p

= 0 where µ and ξ are stationary w.r.t. to
π∗ and π̂, respectively.

Proof Pick any τ ′ > 0. Consider P,Q, r as in Proposition 16, for the choice of ε = 1
2 and τ ′ = τ

2 .
Add a state, x4, to X , redefine RV .

= (V (x2), V (x3), V (x4))
>, let Pa14,4 = 1, Pa24,1 = 1, Qai,4 = 0

for all a and i 6= 4, and let also Qa4,i = Pa4,i for all a, i. Finally, let ra1(x4) = 2(1 − γ)τ ′ and
ra2(x4) = 0

Thus, V ∗4 = 2τ ′, π∗(x4) = a1, U∗1 = V ∗1 = τ ′, π̂(x4) = a1 and U∗4 = 2τ ′. Moreover,
the distribution µ (ξ) defined by µ(x4)

.
= 1 (ξ(x4)

.
= 1) is stationary w.r.t. π∗ (π̂). This gives∥∥V ∗ − V π̂

∥∥
µ,p

=
∥∥V ∗ − V π̂

∥∥
ξ,p

= 0 as desired, and
∥∥V ∗ − V π̂

∥∥
∞ = τ ′, which implies the result.

To conclude, we present Theorem 18.

Theorem 18 (Weighted supremum norm bound for the policy error in Lp(µ) norm) Let π̂ be
the policy derived from the factored linear model defined using (1) and (2). If Assumptions 4 and 5
holds for the weighted supremum norm over VA andWA, then∥∥∥V ∗ − V π̂

∥∥∥
µ,p
≤ ‖ν‖µ,p

(
ε(V ∗) + ε(V π̂)

)
,

where ε(V ) = min(ε1(V ), ε2), and

ε1(V ) = γ ‖(P −QR)V ‖∞,ν +
Bγ2

1− βη,RAQ
‖R(P −QR)V ‖∞,η

ε2 =
γ

1− βν,P
∥∥(P −QR)U∗

∥∥
∞,ν .
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Proof (of Theorem 18) Since

‖V ‖µ ≤ (µ(νp))
1
p ‖ |V |p ‖∞,νp = ‖ν‖µ,p ‖V ‖∞,ν ,

we can apply Theorem 10 to obtain the result.

Appendix D. Issues with bounding ‖U∗ − V ∗‖∞ instead of the policy error

As we indicated in Section 5.2, Ormoneit and Sen (2002); Barreto et al. (2011); Barreto and Fragoso
(2011); Precup et al. (2012); Barreto et al. (2014b,a) 3 bound ‖V ∗ − Ṽ ‖∞ (not the policy error).
We can show by counterexample that this is not is not the correct quantity to bound in order to
understand the quality of π̂, and that the policy error should be bounded instead. The recipe for
constructing the counterexample proving this Proposition 19 is similar to the one used in Proposi-
tion 16.

Proposition 19 (Controlling only ‖U∗ − V ∗‖∞ is not enough) There exist P,Q and R s.t. sat-
isfying Assumptions 3 and 5 such that for every γ ∈ (0, 1), τ1 ≥ 0 and τ2 ≥ 0 there exists a
reward function r ∈ VA with ‖r‖∞ ≤ 2(τ1 ∨ τ2)/γ s.t. ‖V ∗ − U∗‖ = τ1,

∥∥V π̂ − U∗
∥∥ = τ2 and∥∥V ∗ − V π̂

∥∥
∞ = τ1 + τ2. The rewards scale proportionally to 1−γ

γ max {τ1, τ2}.

Proof The set of states is X = {x1, . . . , x3}, the set of actions is A = {a1, a2} and the transition
probability kernel is specified by P as follows:

Pa1 =

 0 1 0
0 1 0
0 0 1

 , Pa2 =

 0 0 1
0 1 0
0 0 1


We letW = R andRV .

= (V (x2))
>.

Given γ ∈ (0, 1), τ1 ≥ 0 and τ2 ≥ 0, define τmax = max {τ1, τ2} and

ra1 =

 τ1
1−γ
γ (τ1 + τmax)

−1−γ
γ τ2

 , ra2 =

 τ1 + τmax
1−γ
γ (τ1 + τmax)

−1−γ
γ τ2

 ,

which gives V ∗ =
(

2τ1 + τmax,
τ1+τmax

γ ,− τ2
γ

)>
.

Next, we construct Q. First, we set Qa11,1 = Qa21,1 = 0. We want u∗ = (V ∗2 ) (which means
RV .

= V (x2) for V ∈ V), so we set Qa12,2 = Qa22,2 = 1. Since U∗ = MTQu
∗, we have U∗2 = u∗2

and U∗1 = maxa r
a(x1) = τ1 + τmax = V ∗1 − τ1. We choose Qa3,1 = − τ2

τ1+τmax+I{τmax=0} (that is,
if τmax = 0, we set Qa3,1 = 0), so that

U∗3 = max
a

ra(x3) + γQa3,2u∗2 = V ∗3 .

3. To be precise, the proof of Ormoneit and Sen (2002)’s Theorem 2 implies that this quantity converges to zero as the
model error converges to zero (their analysis confounds the estimation and approximation errors). Their Theorem
3, using an additional argument, is concerned with the probability of choosing a suboptimal action when using the
approximate model.
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To summarize,

Qa1 = Qa2 =

 0
1

− τ2
τ1+τmax+I{τmax=0}

 .

At this point, we can see thatQ does not depend on γ, that Lip(QR) <∞ and that Lip(RAQ) = 1.
The policies obtained are given by π∗(x1) = 1 and π̂(x1) = 2, while the choices for other states

are irrelevant. This gives V π = (ra2(x1) + γV ∗3 , V
∗
2 , V

∗
3 )>, so that

‖V ∗ − V π̂‖ = V ∗1 − ra2(x1)− γV ∗3 = τ1 + τ2.

Moreover,
‖V ∗ − U∗‖ = |V ∗1 − (V ∗1 − τ1)| = τ1,

and
‖V π̂ − U∗‖ = V ∗1 − τ1 − (ra2(x1) + γV ∗3 ) = τ2,

which concludes the proof.

Comparison to ADP. When a simulator of the true MDP is available (a case studied in the so-
called simulation optimization literature), one can imagine to be able to compute a policy that is
greedy in the true MDP with respect to some fixed value function up to an arbitrary accuracy at
any given state. Singh and Yee (1994, Theorem 1), de Farias and Van Roy (2003, Theorem 4.1),
Bertsekas (2012, Proposition 3.1) and Grünewälder et al. (2011) bound the suboptimality of the
resulting policy.

A potentially more useful result is to bound the suboptimality of a policy derived from an action
value-function (derived from a model). Although we were unable to locate such a result in the
literature, it can be derived using the techniques in the above-mentioned works. These two results
are summarized as follows:

Theorem 20 (ADP policy error bounds) For any Ṽ ∈ VA, if π̃ .
= GṼ , then∥∥V ∗ − V π̃

∥∥
∞ ≤

2(1 + γ)

1− γ

∥∥∥Ṽ − TPV ∗∥∥∥
∞
. (10)

Alternatively, for any Ṽ ∈ V , if π̃ .
= GTP Ṽ , then∥∥V ∗ − V π̃

∥∥
∞ ≤

2γ

1− γ

∥∥∥Ṽ − V ∗∥∥∥
∞
. (11)

To finish the discussion of the relevance of bounding the deviation ‖U∗ − V ∗‖∞ in a model-based
setting, from (11) (by choosing Ṽ ′ = U∗) we see that controlling this deviation would suffice if
the policy was derived using the true model. When this is not an option, one needs to fall back to
(10), calling for bounding the difference between the action-value fixed point of a model and the
action-value fixed point of the true model. To that end, we could use Theorem 8, but the resulting
bound would scale with γ

(1−γ)2 , while both Theorem 7 and our later results scale with γ
1−γ only.

Therefore, it is better to use Theorem 8 directly to bound the policy error.
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Appendix E. Additional remarks aboutR

In this section, we carry out a brief discussion about the case whenR is a point evaluator (in which
case Lip(R) = Lip(RA)).

In supremum norm, we were able to use that Lip(R) ≤ 1 to get from Proposition 21 that
if M ′TRAQ is a contraction and Lip(Q) < ∞, then some power of MTQR is a contraction. In
weighted supremum norm, Lip(R) = maxi

ηi
ν(xi)

, and, if this quantity is finite, some power of
MTQR is a contraction as well.

Proposition 21 If Lip(M) Lip(Q) Lip(R) <∞, Lip(M ′) ≤ 1, and Lip(RAQ) ≤ 1, (MTQR)m

is a contraction for all m large enough.

Proof We have that Lip(MTQ) = Lip(M)γ Lip(Q)
.
= B′ <∞, and Lip(M ′TRAQ) ≤ Lip(M ′)γ ≤

γ. For m ≥ 0, (MTQR)m+1 = MTQ(M ′TRAQ)mR, so Lip((MTQR)m+1) ≤ B′γm+1 Lip(R).
Given m s.t. B′γm < 1, thus (MTQR)m

′
is a contraction for all m′ ≥ m.

In the case of Lp(µ) norms, Proposition 22 gives us the form for Lip(R). Having noted that
I indexes a measurable subset of X (since R is a point evaluator), we extend ρ to X by ρ(X)

.
=

ρ(i ∈ I : xi ∈ X) for measurable X ⊆ X . We denote absolute continuity of (the extension of) ρ
w.r.t. to µ by ρ� µ.

Proposition 22 Assume thatR is a point evaluator, and that the norm overs V andW are respec-

tively an Lp(µ) and an Lp(ρ) norm. If ρ� µ, then Lip(R) =
∥∥∥ dρdµ∥∥∥ 1

p

∞
, otherwise Lip(R) =∞.

Proof Thanks to the linearity ofR, we have

Lip(R) = sup
V 6=0

‖RV ‖ρ,p
‖V ‖

.

From absolute continuity we get that
∫
|V (x)|p dρ(x) =

∫
|V (x)|p

(
dρ(x)
dµ(x)

)
dµ(x), and from Hölder’s

inequality we get ∫
|V (x)|p

(
dρ(x)

dµ(x)

)
dµ(x) ≤

∥∥∥∥dρdµ
∥∥∥∥
∞
·
∫
|V (x)|p dµ(x),

which implies that Lip(R) ≤
∥∥∥ dρdµ∥∥∥ 1

p

∞
.

To show that the upper-bound above is tight, we can see that

Lip(R) = sup
V 6=0

‖RV ‖ρ,p
‖V ‖

≥ sup
X⊆X
µ(X)>0

∫
X dρ(x)∫
X dµ(x)

= sup
X⊆X
µ(X)>0

ρ(X)

µ(X)
,

because we can restrict V to the indicator function of an X ⊆ X . If ρ is not absolutely continuous
w.r.t. to µ, then there exists X s.t. µ(X) = 0 and ρ(X) > 0, which implies that Lip(R) = ∞.
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Otherwise, µ(X) = 0⇒ ρ(X) = 0 for all X ⊆ X , and

sup
X⊆X
µ(X)>0

ρ(X)

µ(X)
= sup

X⊆X

ρ(X)

µ(X)
=

∥∥∥∥dρdµ
∥∥∥∥
∞
,

which concludes the proof.

Interestingly, an unbounded Lip(R) can lead to Lip(MTQR) =∞, as stated by Proposition 23,
and, yet, if Assumption 3 MTQR still has a fixed point, and, provided that Assumption 5 is met in
addition, we can still obtain performance bounds for the policy error of π̂.

Proposition 23 Assume R is a point evaluator, that the norms over V and W are, respectively,
an Lp(µ) and an Lp(ρ) norm, and that the norms over VA andWA are the corresponding mixed
norms defined using M|·|. If µ({xi : i ∈ I}) = 0, then for all m ≥ 0, the following holds: If
Lip(MTQ(M ′TRAQ)m) > 0 then Lip((MTQR)m+1) =∞.

Proof Let S .
= {xi : i ∈ I}. When µ(S) = 0, we have ρ 6� µ and Lip(R) = ∞. We will show

that for any m ≥ 0 either Lip((MTQR)m+1) = 0 or Lip((MTQR)m+1) = ∞. To that end, define
(Zu)(xi)

.
= ui for i ∈ I (for simplicity, assume that, for all xi, xj ∈ S, xi = xj ⇒ i = j), and let

(Zu)(x)
.
= 0 for x /∈ S. Then supu∈W ‖Zu‖ = 0 and RZu = u for all u ∈ W . The definitions

then give:

Lip((MTQR)m+1) = Lip((MTQR)mTQR)

= sup
V,V ′∈V:
V 6=V ′

‖(MTQR)mMTQRV − (MTQR)mMTQRV ′‖
‖V − V ′‖

≥ sup
u,u′∈W:
u6=u′

‖(MTQR)mMTQu− (MTQR)mMTQu
′‖

‖Zu− Zu′‖
,

which is unbounded unless Lip((MTQR)mMTQ) = 0. To conclude, we observe that (MTQR)mMTQ =
MTQ(M ′TRAQ)m, sinceR is a point evaluator.
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