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Abstract

Local search heuristics for non-convex optimizations are popular in applied machine learn-
ing. However, in general it is hard to guarantee that such algorithms even converge to a
local minimum, due to the existence of complicated saddle point structures in high dimen-
sions. Many functions have degenerate saddle points such that the first and second order
derivatives cannot distinguish them with local optima. In this paper we use higher order
derivatives to escape these saddle points: we design the first efficient algorithm guaranteed
to converge to a third order local optimum (while existing techniques are at most second
order). We also show that it is NP-hard to extend this further to finding fourth order local
optima.

Keywords: Non-convex optimization, degenerate saddle points, higher order conditions
for local optimality, trust region methods.

1. Introduction

Recent trend in applied machine learning has been dominated by the use of large-scale
non-convex optimization, e.g. deep learning. However, analyzing non-convex optimization
in high dimensions is very challenging. Current theoretical results are mostly negative
regarding the hardness of reaching the globally optimal solution.

Less attention is paid to the issue of reaching a locally optimal solution. In fact, even
this is computationally hard in the worst case (Nie, 2015). The hardness arises due to
diversity and ubiquity of critical points in high dimensions. In addition to local optima, the
set of critical points also consists of saddle points, which possess directions along which the
objective value improves. Since the objective function can be arbitrarily bad at these points,
it is important to develop strategies to escape them, in order to reach a local optimum.

The problem of saddle points is compounded in high dimensions. Due to curse of
dimensionality, the number of saddle points grows exponentially for many problems of
interest, e.g. (Auer et al., 1996; Cartwright and Sturmfels, 2013; Auffinger et al., 2013).
Ordinary gradient descent can be stuck in a saddle point for an arbitrarily long time before
making progress. A few recent works have addressed this issue, either by incorporating
second order Hessian information (Nesterov and Polyak, 2006) or through noisy stochastic
gradient descent (Ge et al., 2015). These works however require the Hessian matrix at the
saddle point to have a strictly negative eigenvalue, termed as the strict saddle condition. The
time to escape the saddle point depends (polynomially) on this negative eigenvalue. Some

© 2016 A. Anandkumar & R. Ge.



ANANDKUMAR GE

Figure 1: Examples of Degenerate Saddle Points: (a) Monkey Saddle —3z2y +142, (0,0) is a
second order local minimum but not third order local minimum; (b) z2y-+?2, (0, 0)
is a third order local minimum but not fourth order local minimum; (c) “wine
bottle”, the bottom of the bottle is a connected set with degenerate Hessian;
(d) “inverted wine bottle”: the points on the circle with degenerate Hessian are
actually saddle points and not local minima.

structured problems such as complete dictionary learning, phase retrieval and orthogonal
tensor decomposition possess this property (Sun et al., 2015).

On the other hand, for problems without the strict saddle property, the above techniques
can converge to a saddle point, which is disguised as a local minimum when only first and
second order information is used. We address this problem in this work, and extend the
notion of second order optimality to higher order optimality conditions. We propose a new
efficient algorithm that is guaranteed to converge to a third order local minimum, and show
that it is NP-hard to find a fourth order local minimum.

Our results are relevant for a wide range of non-convex problems which possess degen-
erate critical points. At these points, the Hessian matrix is singular. Such points arise due
to symmetries in the optimization problem, e.g., permutation symmetry in a multi-layer
neural network. Singularities also arise in over-specified models, where the model capacity
(such as the number of neurons in neural networks) exceeds the complexity of the target
function. Here, certain neurons can be eliminated (i.e. have weights set to zero), and such
critical points possess the so-called elimination singularity (Wei et al., 2008). Alternatively,
two neurons can have the same weight, and this is known as overlap singularity (Wei et al.,
2008). The Hessian matrix is singular at such critical points. This behavior is limited not
just to neural networks, but has also been studied in overspecified Gaussian mixtures, radial
basis function networks, ARMA models of time series (Amari et al., 2006; Wei et al., 2008),
and student-teacher networks, also known as soft committee models (Saad and Solla, 1995;
Inoue et al., 2003).

The current trend in practice is to incorporate overspecified models (Giles, 2001). The-
oretically, bad local optima are guaranteed to disappear in neural networks under massive
levels of overspecification (Safran and Shamir, 2015). On the other hand, as discussed
above, the saddle point problem is compounded in these overspecified models. Empirically,
the presence of singular saddle points is found to slow down learning substantially (Saad
and Solla, 1995; Inoue et al., 2003; Amari et al., 2006; Wei et al., 2008). Intuitively, these
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singular saddle points are surrounded by plateaus or flat regions with a sub-optimal ob-
jective value. For these regions neither the gradient or Hessian information can lead to a
direction that improves the function value. Therefore they can “fool” the (ordinary) first
and second order algorithms and they may stuck there for long periods of time. Higher
order derivatives are needed to classify the point as either a local optimum or a saddle
point. In this work, we tackle this challenging problem of escaping such higher order saddle
points.

1.1. Summary of Results

We call a point = a p™ order local minimum if for any nearby point y f(z)— f(y) < o(||z—y||P)
(see Definition 3).

We give a necessary and sufficient condition for a point x to be a third order local
minimum (see Section 4). Similar conditions (for even higher order) have been discussed
in previous works, however their algorithmic implications were not known. We design an
algorithm that is guaranteed to find a third order local minimum.

Theorem 1 (Informal) There is an algorithm that always converges to a third order local
minimum (see Theorem 19). Also, in polynomial time the algorithm can find a point that
is “similar” to a third order local minimum (see Theorem 18).

By “similar” we mean the point x approximately satisfies the necessary and sufficient
condition for third order local minimum (see Definition 9): the gradient V f(z) is small,
Hessian V2 f(z) is almost positive semidefinite (p.s.d) and in every subspace where the
Hessian is small, the norm of the third order derivatives is also small.

To the best of our knowledge this is the first algorithm that is guaranteed to converge to
a third order local minimum. The algorithm alternates between a second order step (which
we use cubic regularization(Nesterov and Polyak, 2006)) and a third order step. The third
order step first identifies a “competitive subspace” where the third order derivative has
a much larger norm than the second order. It then tries to find a good direction in this
subspace to make improvement. For more details see Section 5.

We also show that it is NP-hard to find a fourth order local minimum:

Theorem 2 (Informal) Even for a well-behaved function, it is NP-hard to find a fourth
order local minimum (see Theorem 24).

1.2. Related Work

A popular approach to overcoming saddle points is to incorporate second order information.
However, the popular second order approach of Newton’s method is not suitable since it
converges to an arbitrary critical point, and does not distinguish between a local minimum
and a saddle point. Directions along negative values of the Hessian matrix help in escaping
the saddle point. A simple solution is then to use these directions, whenever gradient descent
improvements are small (which signals the approach towards a critical point) (Frieze et al.,
1996; Vempala and Xiao, 2011).

A more elegant framework is the so-called trust region method (Dauphin et al., 2014;
Sun et al., 2015) which involves optimizing the second order Taylor’s approximation of the
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objective function in a local neighborhood of the current point. Intuitively, this objective
“switches” smoothly between first order and second order updates. Nesterov and Polyak
(2006) propose adding a cubic regularization term to this Taylor’s approximation. In a
beautiful result, they show that in each step, this cubic regularized objective can be solved
optimally due to hidden convexity and overall, the algorithm converges to a local optimum
in bounded time. We give an overview of this algorithm in Section 3. Baes (2009) gener-
alizes this idea to use higher order Taylor expansion, however the optimization problem is
intractable even for third order Taylor expansion with quartic regularizer. Ge et al. (2015)
recently showed that it is possible to escape saddle points using only first order information
based on noisy stochastic gradient descent (SGD) in polynomial time in high dimensions.
In many applications, this is far cheaper than the computation of the Hessian eigenvec-
tors. Nie (2015) propose using the hierarchy of semi-definite relaxations to compute all the
local optima which satisfy first and second order necessary conditions based on semi-definite
relaxations.

All the above works deal with local optimality based on second order conditions. When
the Hessian matrix is singular and p.s.d., higher order derivatives are required to determine
whether it is a local optimum or a saddle point. Higher order optimality conditions, both
necessary and sufficient, have been characterized before, e.g. (Bernstein, 1984; Warga, 1986).
But these conditions are not efficiently computable, and it is NP-hard to determine local
optimality, given such information about higher order derivatives (Murty and Kabadi, 1987).

2. Preliminaries

In this section we first introduce the classifications of saddle points. Next, as we often work
with third order derivatives, and we treat it as a order 3 tensor, we introduce the necessary
notations for tensors.

2.1. Critical Points

Throughout the paper we consider functions f : R® — R whose first three order derivatives
exist. We represent the derivatives by Vf(z) € R, V2f(z) € R and V3f(z) € R",
where
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For such smooth function f(z), we say z is a critical point if V f(x) = 0. Traditionally,
critical points are classified into four cases according to the Hessian matrix:

. (Local Minimum) All eigenvalues of V2 f(x) are positive.
. (Local Maximum) All eigenvalues of V2f(x) are negative.

. (Strict saddle) V2 f(z) has at least one positive and one negative eigenvalues.

=W NN =

. (Degenerate) V2f(x) has either nonnegative or nonpositive eigenvalues, with some
eigenvalues equal to 0.

As we shall see later in Section 3, for the first three cases second order algorithms can
either find a direction to reduce the function value (in case of local maximum or strict
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saddle), or correct asserting that the current point is a local minimum. However, second
order algorithms cannot handle degenerate saddle points.

Degeneracy of Hessian indicates the presence of a gutter structure, where a set of
connected points all have the same value, and all are local minima, maxima or saddle
points (Dauphin et al., 2014). See for example Figure 1 (c) (d).

If the Hessian at a critical point = is p.s.d., even if it has 0 eigenvalues we can say the
point is a second order local minimum: for any y that is sufficiently close to x, we have
f(x) — f(y) = o(||]x — y||?). That is, although there might be a vector y that makes the
function value decrease, the amount of decrease is a lower order term compared to ||z —y||2.
In this paper we consider higher order local minimum:

Definition 3 (p-th order local minimum) A critical point x satisfies the p-th order
necessary condition for local minimum (which we shorten as x is a p-th order local min-
imum throughout the paper), if there exists constants C,e > 0 such that for every y with
ly — 2| <e,

fy) = f(z) = Clle — y|P*.

Every critical point is a first order local minimum, and every point that satisfies the
second order necessary condition (V f(x) = 0, V2f(x) = 0) is a second order local minimum.

2.2. Matrix and Tensor Notations

For a vector v € R", we use ||v] to denote its ¢ norm. For a matrix M € R"*", we use
| M| to denote its spectral (operator) norm. All the matrices we consider are symmetric
matrices, and they can be decomposed using eigen-decomposition:

n
M = E /\i’l}i’l);r.
=1

In this decomposition v;’s are orthonormal vectors, and A;’s are the eigenvalues of M. We
always assume A1 > Ao > ... > \,. We use \(M) to denote its largest eigenvalue and
An(M) to denote its smallest eigenvalue. By the property of symmetric matrices we also
know || M| = max{|A1(M)|, | A\ (M)|}. We use | M||r to denote the Frobenius norm of the

matrix || M| g = 4 /Ei,je[n] ij.
The third order derivative is represented by a n x n x n tensor 7. We use the following
multilinear notation to simplify the notations of tensors:

Definition 4 (Multilinear notations) Let T' € R™ "™ " be a third order tensor. Let
UeRY™" Ve Rnxng and W € R"™™ be three matrices, then the multilinear form
T(U,V,W) is a tensor in R™ 2813 that is equal to

[TV ) pgr = Y TijrUipViaWer
i,j,k€[n]

In particular, for vectors u, v, w € R", T'(u,v,w) is a number that relates linearly in u, v
and w (similar to u" Mv for a matrix); T(u,v,I) is a vector in R™ (similar to Mu for a
matrix); T'(u, I, I) is a matrix in R™*".
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The Frobenius norm of a tensor 7' is defined similarly as matrices: || T(|p = />, ; k€] T? i

The spectral norm (also called injective norm) of a tensor is defined as

1T = max T (u,v,w).
lull=1,llv]|=1,]lw|=1

We say a tensor is symmetric if T j x = Ty j x) for any permutation of the indices. For
symmetric tensors the spectral norm is also equal to ||T'[| = max, = T'(u,u,u). In both
cases it is NP-hard to compute the spectral norm of a tensor(Hillar and Lim, 2013).

We will often need to project a tensor 1" to a subspace P. Let P be the projection
matrix to the subspace P, we use the notation ProjpT" which denotes T'(P, P, P). Intuitively,
[T(P, P, P)lyvw = T(Pu, Pv, Pw), that is, the projected tensor applied to vector u,v, w is
equivalent to the original tensor applied to the projection of u, v, w.

3. Overview of Nestorov’s Cubic Regularization

In this section we review the guarantees of Nesterov’s Cubic Regularization algorithm(Nesterov
and Polyak, 2006). We will use this algorithm as a key step later in Section 5, and prove
analogous results for third order local minimum. Note that we can replace Cubic Regular-
ization with other second order algorithms such as trust region algorithms, we use Cubic
Regularization mostly to simplify the proof.

The algorithm requires the first two order derivatives exist and the following smoothness
constraint:

Assumption 1 (Lipschitz-Hessian)
Va,y, |[V2f(z) = V2 f(y)]| < Rllz — y].

At a point z, the algorithm tries to find a nearby point z that optimizes the degree two
Taylor’s expansion: f(z)+(Vf(z),z—z)+35(z—2) T (V2f(2))(2—z), with the cubic distance
%Hz — z||® as a regularizer. See Algorithm 1 for one iteration of the algorithm. The final
algorithm generates a sequence of points 2O 2 2@ where 2D = CubicReg(ac(i)).

Algorithm 1 CubicReg(Nesterov and Polyak, 2006)

Require: function f, current point z, Hessian smoothness R

Ensure: Next point z that satisfies Theorem 6.
Let z = argmin f(z) + (Vf(2),z — 2) + 3(z —2) (V2 f(2))(z — z) + %Hz — |3
return z

The optimization problem that Algorithm 1 tries to solve may seem difficult, as it has a
cubic regularizer ||z — z||*. However, Nesterov and Polyak (2006) showed that it is possible
to solve this optimization problem in polynomial time.

For each point, define u(z) to measure how close the point z is to satisfying the second
order optimality condition:

Definition 5 M(z):max{ %HVf(z)H,—%)\nVQf(z)}
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When 4(z) = 0 we know Vf(z) = 0 and V2f(z) = 0, which satisfies the second order
necessary conditions (and in fact implies that z is a second order local minimum). When
1(z) is small we can say that the point z approximately satisfies the second order optimality
condition.

For one step of the algorithm the following guarantees can be proven!

Theorem 6 (Nesterov and Polyak, 2006) Suppose z = CubicRegularize(x), then ||z —x| >
u(z) and f(2) < f(z) - Rz — o]}*/12.

Using Theorem 6, Nesterov and Polyak (2006) can get strong convergence results for
the sequence 20, 2z 2@

Theorem 7 (Nesterov and Polyak, 2006) If f(z) is bounded below by f(x*), then lim;_sqo p(z®) =
0, and for any t > 1 we have

min p(z®) < 5. (3(f(x(0)) _ f(x*))>1/3'

1<i<t 3 2tR

This theorem shows that within first ¢ iterations, we can find a point that “looks similar”
to a second order local minimum in the sense that gradient is small and Hessian does not
have a negative eigenvalue with large absolute value. It is also possible to prove stronger
guarantees for the limit points of the sequence:

Theorem 8 (Nesterov and Polyak, 2006) If the level set L(z(0) := {z|f(z) < f(z(O)} is
bounded, then the following limit exists

lim f(a:(i)) = f*,

i—00

The set X* of the limit points of this sequence is non-empty. Moreover this is a connected
set such that for any x € X* we have

f(x) = f*,Vf(z) =0,V3f(z) = 0.

Therefore the algorithm always converges to a set of points that are all second order
local minima.

4. Third Order Necessary Condition

In this section we present a condition for a point to be a third order local minimum, and
show that it is necessary and sufficient for a class of smooth functions. Proofs are deferred
to Appendix B.1.

All the functions we consider satisfies the following natural smoothness conditions

1. All of guarantees we stated here correspond to setting the regularizer R to be exactly equal to the
smoothness in Assumption 1.
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Assumption 2 (Lipschitz third Order) We assume the first three derivatives of f(x)
exist, and for any x,y € R",

IV2f(z) = V2 f(y)llr < Lllz —y].

Under this assumption, we state our conditions for a point to be a third order local minimum.

Definition 9 (Third-order necessary condition) A point x satisfy third-order neces-
sary condition, if

1. Vf(z)=0.

2. V2f(x) = 0.

3. For any u that satisfy u' (V2f(x))u =0, [V3f(2)](u,u,u) = 0.
We first note that this condition can be verified in polynomial time.

Claim 1 Conditions in Definition 9 can be verified in polynomial time given the gradients

Vf(x),Vif(x) and V3f(x).

Proof 1t is easy to check whether Vf(z) = 0 and V2f(x) = 0. We can also use SVD to
compute the subspace P such that u' (V2f(z))u = 0 if and only if u € P.

Now we can compute the projection of V2f(x) in the subspace P, and we claim the
third condition is violated if and only if the projection is nonzero.

If the projection is zero, then clearly [V3f(z)](u,u,u) is 0 for any u € P. On the other
hand, if projection Z is nonzero, let v be a uniform Gaussian vector that has unit variance
in all directions of u, then we know E[[[V3f(z)](u,u,u)]?] > || Z||% > 0, so there must exists
an u € P such that [V3f(z)](u,u,u) # 0. [ ]

Theorem 10 Given a function f that satisfies Assumption 2, a point x is third order
optimal if and only if it satisfies Condition 9.

Before proving the theorem, we first show a bound on f(y) and a Taylor’s expansion of
f at point x.

Lemma 11 For any x,y, we have

L
< —
- 24

The Lemma can be proved by integrating over the third order derivatives three times
and bounding the differences. Details are deferred to Appendix B.1.

This lemmas allow us to ignore the fourth order term ||y — z||* and focus on the order
3 Taylor expansion when ||y — x| is small. To prove Theorem 10, intuitively, the “only
if” direction (local minimum to necessary condition) is easy because if any condition in
Definition 9 is violated, we can use that particular derivative to find a direction that im-
proves the function value. For the “if” direction (necessary condition to third order local
minimum), the main challenge is to balance the contribution we get from the positive part
of the Hessian matrix and the third order derivatives. For details see Appendix B.1.

)= @)=V @), y=2) 5 (y=2) V2 @) (g2~ 5 @)y y—2,y-2)] < o lly=a]"
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5. Algorithm for Finding Third Order Optimal Points

We design an algorithm that is guaranteed to converge to a third order local minimum.
Throughout this section we assume both Assumptions 1 and 2 2.

The main intuition of the algorithm is similar to the proof of Theorem 10: the algorithm
tries to make improvements using first, second or third order information. However, the
nature of the third order condition makes it challenging for the algorithm to guarantee
progress.

Consider a potential local minimum point z. It is very easy to check whether V f(z) # 0
or Amin(V2f(x)) < 0, and to make progress using the corresponding directions. However,
to verify Condition 3 in Definition 9, we need to do it in the right subspace.

At the critical point, Condition 3 refers to a particular subspace which is the nullspace of
the Hessian matrix. However, if we consider a point y that is very close to this critical point
x, no matter how close they are the Hessian of y may still be positive definite (although it
must have really small eigenvalues near the nullspace of V2f(x)). The point y will appear
to satisfy Condition 3 in Definition 9 and the algorithm might incorrectly think y is close to
a local minimum, while the truth is y is only close to a saddle point. We do not want to the
algorithm to spend too much time around such points , so we need to identify a subspace
that may have some positive eigenvalues. In order to make sure we can find a vector the
contribution from third order term is larger than the second order term. Based on this
intuition we define competitive subspace below:

Definition 12 (eigensubspace) For any symmetric matriz M, let its eigendecomposition
be M = 1" Njwiv]' (where \;’s are eigenvalues and ||v;|| = 1), we use S.(M) to denote
the span of eigenvectors with eigenvalue at most 7. That is

S-(M) = span{vi|\; < 7}

Definition 13 (competitive subspace) For any Q > 0, and any point z, let the com-
petitive subspace S(z) be the largest eigensubspace S-(V2f(z)), such that if we let Cg(z) be
the norm of the third order derivatives in this subspace

Cq(2) = || Projs V2 F(2)| F.

then 7 < C3/12LQ*.
If no such subspace exists then let S(z) be empty and Cg(z) = 0.

Similar to p(z) as in Definition 5, Cg(2) can be viewed as how Condition 3 in Definition 9
is satisfied approximately. If both (z) and Cg(z) are 0 then the point z satisfies third order
necessary conditions.

Intuitively, competitive subspace is a subspace where the eigenvalues of the Hessian are
small, but the Frobenius norm of the third order derivative is large. Therefore we are likely
to make progress using the third order information. The parameters in Definition 13 are set
so that if there is a unit vector u € S(z) such that [V3f(2)](u, u,u) > \|Proj5(z)v3f(z)||p/Q
(see Theorem 16), then we can find a new point where the sum of second, third and fourth
order term can be bounded (see Lemma 17).

2. Note that we actually only cares about a level set £ = {z|f(z) < f(x?)}, as long as this set is bounded
Assumptions 1 follows from Assumption 2
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Remark 14 The competitive subspace in Definition 13 can be computed in polynomial time,

see Algorithm 4. The main idea is that we can compute the eigendecomposition of the Hes-

sian V2 f(2) = Y., Nwv,, and then there are only n different subspaces (span{vy}, span{v,_1,vn},
.y span{vy,va, ... v, }). We can enumerate over all of them, and check for which subspaces

the norm of the third order derivative is large.

Now we are ready to state the algorithm. The algorithm is a combination of the cubic
regularization algorithm and a third order step that tries to use the third order derivative
in order to improve the function value in the competitive subspace.

Remark 15 Note that the algorithm is stated in a way to simplify the proof and the third
order step may be slow in practice. In practice, we can run the cubic regularization algo-
rithm, and only apply the third order step when cubic regularization is not making enough
progress. This will make the algorithm always at least as fast as cubic reqularization.

Algorithm 2 Third Order Optimization
fori=0tot—1do
2()) = CubicReg(z).
Let e1 = [V ()],
Let S(z),Cq(z) be the competitive subspace of f(z) (Definition 13).
if Co(2) > Q(24¢1L)'/3 then
u = Approx(V3f(z),S).
(D) = () Cfig)u.
else
x(i+1) — Z(z)
end if
end for

Suppose we have the following approximation guarantee for Algorithm 3

Algorithm 3 Approximate Tensor Norms
Require: Tensor T, subspace S.
Ensure: unit vector u € S such that T'(u,u,u) > ||ProjsT||r/Q.

repeat
Let 4 be a random standard Gaussian in subspace S.
Let u=1a

until |T(u,u,u)| > ||ProjsT||r/Bn'~ for a fixed constant B
return w if T'(u,uw,u) > 0 and —u otherwise.

Theorem 16 There is a universal constant B such that the expected number of iterations
of Algorithm 3 is at most 2, and the output of Approx is a unit vector u that satisfies
T (u,u,u) > ||ProjsT||r/Q for Q@ = Bn'?.

10
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The proof of this theorem follows directly from anti-concentration (see Appendix B.2.
Notice that there are other algorithms that can potentially give better approximation (lower
value of Q) which will improve the rate of our algorithm. However in this paper we do not
try to optimize over dependencies over the dimension n, that is left as an open problem.

By the choice of the parameters in the algorithm, we can get the following guarantee
(which is analogous to Theorem 6):

Lemma 17 If Co(2) > Q(24e1L)'/3, w is a unit vector in S(z) and [V3f(2)](u,u,u) >
1 Projs,) V2 f(2)|F/Q. Let o’ = z — Co(2)/LQ - u. then we have

Co(2)*

f(‘I./) < f(Z) - 24L3Q4’

Proof Let e = Cg(z)/LQ, then by Lemma 11 we know

/ eC 2 4
f@) < f(z) —@—Fele—i-ege /2 + Le*/24.

2
Here €; = ||V f(z)]], and ez < % by the construction of the subspace.

By the choice of parameters, we know the terms eje, e2€2/2, Let /24 are all bounded by

3
< gféz) , therefore

63 z
f) < ) - 528D = 502

~ Co(2)?
24L3Q*

[
Using this Lemma, and Theorem 6 for cubic regularization, we can show that both
progress measure goes to 0 as the number of steps increase (this is analogous to Theorem 7).

Theorem 18 Suppose the algorithm starts at f(xo), and f has global min at f(z*). Then
in one of the t iterations we have

xo)—f(x* 1/3
1. p(z) < (12(f( (;%)t f( )) ]

% Colz) < max {Q(Mllvf(Z)HL)l/?’, Q (24L3(f<xg>—f<x*>>>1/4} ‘

Recall pu(z) = max{ FIVFER), —%)\nVQf(z)} is intuitively measuring how much
first and second order progress the algorithm can make. The value Cg(z) as defined in
Definition 13 is a measure of how much third order progress the algorithm can make.
The theorem shows both values goes to 0 as t increases (note that even the first term
Q(24||Vf(2)|| L)*/? in the bound for Cg(z) goes to 0 because the ||V f(z)|| goes to 0).
Proof By the guarantees of Theorem 6 and Lemma 17, we know the sequence of points
2@ 2O 2@ 2 has non-increasing function values. Also,

t

Y Fa®) = f@Y) < flxo) — f(2¥).

i=1

11
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So there must be an iteration where f(z() — f(z(~1) < M

* 1/3 . . *
If p(z) > (712”(“}3;]% )) , then Theorem 6 implies f(x(z_l))—f(z(z_l)) > 7f(x°);f(x ),
which is impossible.

* 1/4
On the other hand if Cg(z) > max {Q(24\|Vf(z)”L)1/3, Q (24L3(f($0)_f(x ))) / }, then

t

the third order step makes progress, and we know f(z0~Y) — f(z®) > M, which
is again impossible. |

We can also show that when t goes to infinity the algorithm converges to a third order
local minimum (similar to Theorem 8).

Theorem 19 Whent goes to infinity, the values f(x®) converge. If the level set L(f(xg)) =
{z|f(z) < f(z0)} is compact, then the sequence of points ), z2() has nonempty limit points,
and every limit point x satisfies the third order necessary conditions.

Proof By Theorem 6 and Lemma 17, we know the function value is non-increasing, and
it has a lowerbound f(z*), so the value must converge.

The existence of limit points is guaranteed by the compactness of the level set. The
only thing left to prove is that every limit point z must satisfy the third order necessary
conditions.

Notice that f(z()) — limiee (o > T332, G gggigr, 50 limy_yo0 u(2® = 0
and lim; o Co(2)) = 0. Also we know further lim;_,«, |2 — 2 || = 0. Therefore wlog a
limit point x is also a limit point of sequence z, and lim;_, ||V f(z)|| = 0. Also we know

H = V?f(x) is PSD, because otherwise points near z will have nonzero u(z(¥ and 2 cannot
be a limit point.

Now we only need to check the third order condition. Assume towards contradiction
that third order condition is not true. Then we know the Hessian has a subspace P with 0
eigenvalues, and the third order derivative has norm at least ¢ in this subspace. By matrix
perturbation theory, when z is very close to x, P is very close to S¢(z) for ¢ — 0. On the
other hand, the third order tensor also converges to V2 f(z) (by Lipschitz condition). Thus
Se(z) will eventually be a competitive subspace and C(2) is at least €/2 for all z. However
this is impossible as lim; s C’Q(z(i)) = 0. [ |

Remark 20 Note that not all third order local minimum can be the limit point for Algo-
rithm 2. This is because if f(x) has very large third order derivatives but relatively smaller
Hessian, even though the Hessian might be positive definite (so x is in fact a local min-
imum), Algorithm 2 may still find a non-empty competitive subspace, and will be able to
reduce the function value and escape from the saddle point. An example is for the function
f(x) = 2% — 10023 + 2, x = 0 is a local minimum but the algorithm can escape from that
and find the global minimum.

In the most general case it is hard to get a convergence rate for the algorithm because the
function may have higher order local minima. However, if the function has nice properties
then it is possible to prove polynomial rates of convergence.

12
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Definition 21 (strict third order saddle) We say a function is strict third order sad-
dle, if there exists constants a, c1, ca, c3,cq4 > 0 such that for any point x one of the following
18 true:

IVf(2)]l > e
Mn(f(z)) < —c
Co(f(x)) > cs.

There is a local minimum x* such that ||x — z*|| < ¢4 and the function is a-strongly
convex restricted to the region {z||x — z*|| < 2¢4}.

e v o~

This is a generalization of the strict saddle functions defined in Ge et al. (2015). Even
if a function has degenerate saddle points, it may still satisfy this condition.

Corollary 22 When t > poly(n, L, R, Q, f(x¢) — f(x*))max{(l/c1)1~5, (1/02)37 (1/03)4'5};

there must be a point 2V with i <t that is in case 4 in Definition 21.

Proof We use O to only focus on the polynomial dependency on ¢ and ignore polynomial
dependency on all other parameters.

By Theorem 18, we know there must be a z(*) which satisfies pu(2(? < O((1/t)*/?) and
Co(2) < O(max{(1/t)/4, ||V £(2)|['/*}).

By the Definition of p (Definition 5), we know ||V f(2)]| < O(u(2))? = O(t=%/?),
M(V2f(2) = =O(t1/3).

Using the fact that |V f(2)|| < O(u(2))? = O(t=2/3, we know

Co(z) < O(max{(1/6)/%, |V f(2)['/*}) = O(t/?).

Therefore, when ¢ > poly(n, L, R, @, /(o) — f(2*)) max{(1/e1)', (1/e2)?, (1/c3)5},
the point z must satisfy

L [Vf(2)]l < e

2. M(V2f(2)) < —e2;

3. Co(z) < cs.

Therefore the first three cases in Definition 21 cannot happen and z must be near a

local minimum. [ |

6. Hardness for Finding a fourth order Local Minimum

In this section we show it is hard to find a fourth order local minimum even if the function
we consider is very well-behaved.

Definition 23 (Well-behaved function) We say a function f is well-behaved if it is
infinite-order differentiable, and satisfies:

1. f(x) has a global minimizer at some point ||z|| < 1.

13
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2. f(z) has bounded first 5 derivatives for ||x| < 1.

3. For any direction ||z|| = 1, f(tx) is increasing for t > 1.

Clearly, all local minimizers of a well-behaved function lies within the unit ¢ ball, and
f(x) is smooth with bounded derivatives within the unit ¢5 ball. These functions also satisfy
Assumptions 1 and 2. All the algorithms mentioned in previous sections can work in this
case and find a local minimum up to order 3. However, this is not possible for fourth order.

Theorem 24 [t is NP-hard to find a fourth order local minimum of a function f(x), even
if f is guaranteed to be well-behaved.

The main idea of the proof comes from the fact that we cannot even verify the nonneg-
ativeness of a degree 4 polynomial (hence there are cases where we cannot verify whether a
point is a fourth order local minimum or not).

Theorem 25 Nesterov (2000); Hillar and Lim (2013) It is NP-hard to tell whether a degree
4 homogeneous polynomial f(z) is nonnegative.

Remark 26 The NP hardness for nonnegativeness of degree 4 polynomial has been proved
in several ways. In Nesterov (2000) the reduction is from the SUBSET SUM problem, which
results in a polynomial that can have exponentially large coefficients and does not rule out
FPTAS. However, the reduction in Hillar and Lim (2013) relies on the hardness of copositive
matrices, which in turn depends on the hardness of INDEPENDENT SET(Dickinson and
Gigben, 2014). This reduction gives a polynomial whose coefficients can be bounded by
poly(n), and a polynomial gap that rules out FPTAS. More precisely, this will rule out the
possibility of finding a point x such that for nearby y,

fy) > flx) = Cllz —y|I*,

where C is a inverse polynomial factor. So finding a 4-th order local min is hard even in
this approximation sense.

To prove Theorem 24 we only need to reduce the nonnegativeness problem in Theo-
rem 25 to the problem of finding a fourth order local minimum. We can convert a degree
4 polynomial to a well behaved function by adding a degree 6 regularizer ||z||®. We shall
show when the degree 4 polynomial is nonnegative the 0 point is the only fourth order local
minimum; when the degree 4 polynomial has negative directions then every fourth order
local minimum must have negative function value. The details are deferred to Section B.3.

7. Conclusion

Complicated structures of saddle points are a major problem for optimization algorithms.
In this paper we investigate the possibilities of using higher order derivatives in order to
avoid degenerate saddle points. We give the first algorithm that is guaranteed to find a 3rd
order local minimum, which can solve some problems caused by degenerate saddle points.
However, we also show that the same ideas cannot be easily generalized to higher orders.

14
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There are still many open problems related to degenerate saddle points and higher order
optimization algorithms. Are there interesting class of functions that satisfies the strict 3rd
order saddle property (Definition 21)? Can simple algorithms such as stochastic gradient
descent escape higher order saddle functions in polynomial time? Can we design a 3rd
order optimization algorithm for constrained optimization? We hope this paper inspires
more research in these directions and eventually design efficient optimization algorithms
whose performance do not suffer from degenerate saddle points.
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Appendix A. Degree 3 Polynomials and Third Order Conditions

Since the third order optimal points depend on the first three derivatives of the objective
function, it might be tempting to conjecture that for a degree 3 polynomial, a third order
local minimum is also a true local minimum. While this is in some sense true, optimizing
a degree 3 polynomial without any constraint is not a very interesting problem, because
either the polynomial is always equal to 0 or the answer is infinity. The problem becomes
more interesting when we add constraints. For example, let p(x) be a degree 3 homogeneous
polynomial, then we might want to optimize:

min  p(z) (1)
s.t. x| = 1.

As we mentioned before, this is exactly the problem of computing the spectral norm of a
symmetric tensor.

When the corresponding tensor is orthogonal (which means there are orthonormal vec-
tors vy, vz, ..., vp, such that p(z) = "1, Ai(vi, 2)3), previous works (see e.g.Ge et al. (2015))
showed that second order conditions are enough to ensure we find a local minimum for this
function, and all local minima are aligned with one of the components v, ..., vy,.

However, the above result is not true for general cubic polynomials on the sphere.

Claim 2 There is a degree 3 polynomial p(z) and a point x, such that x is a third order
local minimum for optimization problem (1) or (2), but it is not a local minimum.

Proof Consider the function p(z) = #3 + 1.5z123 + 1002323 and the point x = (—1,0,0).
It is not very hard to check that z is indeed a third order local minimum (when the problem
is constrained, we also only consider y such that |y|| = 1). In particular for Objective (2),
we can see that the third order condition is satisfied: the gradient is equal to 0, Hessian is
PSD with the only degenerate direction being (0, 1,0), and the projection of the third order
derivative in that direction is O (there is no x3 term).

However, this point is not a true local minimum, because we can consider points y. =
(—V1 — €2 — et e, —€%). When € goes to 0, these points can become arbitrarily close to ,
however the objective value p(y.) = p(z) — O(e*). [

We can convert the constrained cubic polynomial on the sphere in (1) to an uncon-
strained quartic polynomial through regularization

min p(z) + ° o] (2)

However, as we noted in Theorem 25, obtaining the local optima of a quartic polynomial is
NP-hard.

Appendix B. Omitted Proofs
B.1. Omitted Proofs in Section 4

Lemma 27 (Lemma 11 Restated) For any z,y, we have

S =2) VA () (y2) @)y gy )| < o

[f ()= f(2)=(VF(@), y—2)+3
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Proof The proof follows from integration from z to y repeatedly.
First we have

Vet uly - 2) = V@) + | [ 9oty - o) (- o)
By the Lipschitz condition on third order derivative, we know
193z + vy — 2)) — V2 (@) lp < Lollz — gl
Combining the two we have
V2 £ (o + uly — ) = V(@) + [V @)y — 2) + h(w),

where h(u) = [ [ (V3 f(z +v(y — 2)) — V3f(2))dv] (y — x), so [|h(u)||r < &z —y|%
Now we use the integral for the gradient of f:

Vi iy —2) = Vi) + | [ VG oty - 2] (- 0
~ V1) + - + | t buda] (v - ),

Let g(t) = [fg h(u)du] (y — z), by the bound on h(u) we know |g(t)|| < |z — y||*.

Finally, we have
1
1) = @) 4| [ V6o oty - 0] (- 2)
1 To?2 L3 ®3 !
=f(2) +(Vf(@)y—a) + 5y —2) 'V f(ﬂﬁ)(y—ﬂﬁ)ngv f(@)(y — =) +<UO g(t)dt] Y — ).

The last term is bounded by |y — z|| [ |lg(t)||dt < &z — y|/*. ]

Theorem 28 (Theorem 10 restated) Given a function f that satisfies Assumption 2, a
point x s third order optimal if and only if it satisfies Condition 9.

Proof (necessary condition — third order minimal) By Lemma 11 we know

f) > f@)+(Vf(x),y—z)+ %(y —2) Vf(x)(y— )+ évgf(fﬂ)(y —z)®% — illy —z||*.

Now let a be the smallest nonzero eigenvalue of V2f(z). Let U be nullspace of V2 f(x)
and V be the orthogonal subspace. We break V3 f(z) into two tensors G; and Gg, where
G is the projection to V@V @V, VeV ®U (and its symmetries), and G is the projection
to V® U ® U (and its symmetries). Note that V3 f(x) = G1 + G because the projection
on U®U ®U is 0 by the third condition. Let $ be the max injective norm of G; and Gb.

Now we know for any v € U and v € V,

1 2 /8 2 ﬂ 2 L 4
_ > = _ = _ B )
fletuto) = fz) 2 Sallv]” = Cllullloll® = Sllul®vll = o llu + o]
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Now, if € < 8/a, because ||u||2 < € it is easy to see the sum of first two terms is at least
2al[v]|3. Now we can take the mininum of

ol ~ Pl

The minimum is achieved when ||v|| = ||u||?>3/a and the minimum value is —||u||*5%/6a.
Therefore when ||u + v|| < 5/a we have

flx+u+v)— f(z) > — (52 + L) l[u+ vl|*.
- o 24
(third order minimal—necessary condition) Assume towards contradiction that the nec-
essary condition is not satisfied, but the point x is third order local optimal.
If the necessary condition is not satisfied, then one of the three cases happens:
In the first case the gradient V f(z) # 0. In this case, if we let L’ be an upperbound the
operator norms of the second and third order derivative, then we know

€3

ZL/ L 4L
fla+ V(@) < f(@) = IV F@IP + SNV @IR + IV @I + S @)

When €||Vf(x)|] <1 and e(2L'/3 + L/24) < 1/2, we have

f(@+ eV @) < f@) - SIVF@)P

Therefore the point cannot be a third order local minimum.
In the second case, V f(z) = 0, but A\pin V2f(z) < 0. Let ||ul| = 1 be a unit vector such
that u' (V2f(z))u = —c < 0. Let L' be the injective norm of V3f(x), then

2 37/ 4
ce el €L
< - —.
flz+eu) < f(x) 5 + 5 + 7
Therefore whenever € < min{\/3¢/L,3c/4L'} we have f(z+eu) < f(z)— %. The point
x cannot be a third order local minimum.
The third case is if Vf(z) = 0, V2f(x) is positive semidefinite, but there is a direction

|lu|| = 1 such that u" (V2f(x))u = 0, but [V3f(z)](u,u,u) # 0. Without loss of generality
we assume [V3f(x)](u,u,u) = ¢ > 0 (if it is negative we take —u), then

flz+eu) < f(z) — ce? /6 + Le* /24.

Therefore whenever ¢ < 2¢/L we have f(z + eu) < f(x) — ce3/12 so  cannot be a third
order optimal. [

B.2. Algorithm for Competitive Subspace, Proof of Theorem 16

Theorem 29 (Theorem 16 restated) There is a universal constant B such that the ex-
pected number of iterations of Algorithm 3 is at most 2, and the output of Approz is a unit
vector u that satisfies T'(u,u,u) > ||ProjsT|r/Q for Q = Bn'?.
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Algorithm 4 Algorithm for computing the competitive subspace
Require: Function f, point z, Hessian M = V2f(z), third order derivative T' = V3f(2),
approximation ratio @), Lipschitz Bound L,
Ensure: Competitive subpace S(z) and Cg(2).
Compute the eigendecomposition M = >"" | )\iviviT .
fori=1tondo
Let & = span{v;, viq1, ..., Un}.
Let Cg = ||ProjsT||F.
2

. C
if ﬁ > )\; then
return S, Cy.
end if
end for

return S =10,Cq = 0.

Proof We use the anti-concentration property for Gaussian random variables

Theorem 30 (anti-concentration(Carbery and Wright, 2001)) Letx € R™ be a Gaus-
sian variable x ~ N(0,I), for any polynomial p(x) of degree d, there exists a constant k
such that

Pr(jp(z)| < ey/Var[p(z)] < we'/?.

In our case d = 3 and we can choose some universal constant e such that the probability
of p(z) being small is bounded by 1/3. It is easy to check that the variance is lowerbounded
by the Frobenius norm squared, so

PI‘HT(@,’EL,’&N > 6HPr0jSTHF] > 2/3'

On the other hand with high probability we know the norm of the Gaussian 4 is at most
2y/n. Therefore with probability at least 1/2, |T(4, 4, 4)| > €||ProjsT||r and ||4] < 24/n,
therefore |T'(u, u,u)| > g-55[|ProjsT||r. Choosing B = 8/¢ implies the theorem. |

B.3. Proof of Theorem 24

Theorem 31 (Theorem 24 restated) It is NP-hard to find a fourth order local mini-
mum of a function f(x), even if f is guaranteed to be well-behaved.

Proof We reduce the problem of verifying nonnegativenss of degree 4 polynomial to the
problem of finding fourth order local minimum.

Given a degree 4 homogeneous polynomial f(x), we can write it as a symmetric fourth
order tensor T' € R™'. Without loss of generality we can rescale T' so that |T]|p < 1 and
therefore ||T'|| < 1.

Now we define the function g(z) = f(z) + ||z/|®. We first show that this function is
well-behaved.

Claim 3 g(z) is well-behaved.
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Proof Since g(x) is a polynomial with bounded coefficients, clearly it is infinite order
differentiable and satisfies condition 2. For condition 1, notice that g(z) = 0 and for all
|lz||2 > 1, we have g(x) > ||z||® — ||z|* > 0 so the global minimizer must be at a point within
the unit £ ball. Finally, for any ||z|| = 1, we know g(tx) = f(z)t* + t® which is always
increasing when ¢ > 1 since |f(z)| < 1. [

Next we show if f(x) is nonnegative, then 0 is the unique fourth order local minimizer.

Claim 4 If f(x) is nonnegative, then 0 is the unique fourth order local minimizer of g(x).

Proof Suppose z # 0 is a local minimizer of g(x) of order at least 1. Let u = x/||z||. We
consider the function g(tu) = f(u)t* + t5. Clearly the only first order local minimizer of
g(tu) is at t = 0. Therefore x cannot be a first order local minimizer of g(x). [

Finally, we show if f(z) has a negative direction, then all the local minimizer of g(z)
must have negative value in f.

Claim 5 If f(x) is negative for some x, then if x is a fourth order local minimum of g(x)
then f(z) < 0.

Proof Suppose z # 0 is a fourth order local minimum of g(x). Then at least t = 1
should be a fourth order local minimum of g(tz) = f(z)t* +t5||z||®. This is only possible if
f(z) <O0.
On the other hand, for = 0, suppose ||z|]| = 1 is a direction where f(z) < 0, then
f(z) — flx+t2) = f(2)t* — 5 = Q(#*), so z = 0 is not a fourth order local minimum. M
The theorem follows immediately from the three claims. |
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