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Abstract

For the last few decades, learning based on multiple kernels, such as the ensemble kernel
regressor and the multiple kernel regressor, has attracted much attention in the field of
machine learning. Although its efficacy was revealed numerically in many works, its theo-
retical ground is not investigated sufficiently. In this paper, we discuss regression problems
with a class of kernels whose corresponding reproducing kernel Hilbert spaces have a com-
mon subspace with an invariant metric and show that the ensemble kernel regressor (the
mean of kernel regressors with those kernels) gives a better learning result than the mul-
tiple kernel regressor (the kernel regressor with the sum of those kernels) in terms of the
generalization ability of a model space.

Keywords: function estimation, ensemble kernel regressor, multiple kernel regressor, gen-
eralization ability,

1. Introduction

Learning based on kernel machines (Muller, Mika, Ratsch, Tsuda, and Scholkopf, 2001),
represented by the support vector machine (Vapnik, 1999) and the kernel ridge regressor
(Cristianini and Shawe-Taylor, 2000), is widely known as a powerful tool for various fields
of information science such as pattern recognition, regression estimation, and density esti-
mation. In general, an appropriate model selection is required in order to obtain a desirable
learning result by kernel machines. Although the model selection in a fixed model space,
such as selection of a regularization parameter, is sufficiently investigated in terms of the-
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oretical and practical senses (see (Sugiyama and Ogawa, 2001; Sugiyama, Kawanabe, and
Muller, 2004) for instance), the selection of a model space itself is not sufficiently inves-
tigated in terms of a theoretical sense, while practical algorithms for selection of a kernel
(or its parameters), such as cross-validation, are revealed. The difficulty of the theoretical
analyses for selection of a kernel (or its parameters) lies on the fact that the metrics of two
reproducing kernel Hilbert spaces (Aronszajn, 1950; Mercer, 1909) corresponding to two dif-
ferent kernels may differ in general, which means that we do not have a unified framework
to evaluate learning results obtained by different kernels. Recently, a novel framework for
evaluating the generalization errors of model spaces specified by different kernels was intro-
duced, in which the so-called invariant metric condition was imposed on the corresponding
reproducing kernel Hilbert spaces; and some theoretical results for the selection of a kernel
were obtained (Tanaka, Imai, Kudo, and Miyakoshi, 2008; Tanaka and Miyakoshi, 2010;
Tanaka, Imai, Kudo, and Miyakoshi, 2011; Tanaka, Takigawa, Imai, and Kudo, 2012).

For the last few decades, learning based on multiple kernels has attracted much attention
in this field, which can be regarded as one of model selection schemes. Learning machines
using multiple kernels can be divided into two main streams. One is the ensemble kernel
learning (see (Vapnik, 1999) for instance) that is a combination of kernel-based learning
machines; and the other is the multiple kernel learning (see (Sonnenburg, Ratsch, Schafer,
and Scholkopf, 2006) for instance) that is a learning machine based on a combination of
kernels. Although their efficacy was revealed numerically in many works, their theoretical
grounds were not discussed sufficiently. In this paper, we discuss regression problems with
a class of kernels whose corresponding reproducing kernel Hilbert spaces have a common
subspace with an invariant metric as the same with (Tanaka, Imai, Kudo, and Miyakoshi,
2008; Tanaka, Takigawa, Imai, and Kudo, 2012) and prove that the ensemble kernel regressor
yields a better learning result than the multiple kernel regressor under the invariant metric
condition in terms of the generalization ability of a model space.

2. Mathematical Preliminaries for The Theory of Reproducing Kernel
Hilbert Spaces

In this section, we give some mathematical preliminaries concerned with the theory of
reproducing kernel Hilbert spaces (Aronszajn, 1950; Mercer, 1909).

Definition 1 (Aronszajn, 1950) Let Rd be a d-dimensional real vector space and let H be
a class of functions defined on D ⊂ Rd, forming a Hilbert space of real-valued functions.
The function K(x, x̃), (x, x̃ ∈ D) is called a reproducing kernel of H, if

1. For every x̃ ∈ D, K(·, x̃) ∈ H.

2. For every x̃ ∈ D and every f(·) ∈ H,

f(x̃) = 〈f(·),K(·, x̃)〉H, (1)

where 〈·, ·〉H denotes the inner product of H.

The Hilbert space H that has a reproducing kernel is called a reproducing kernel Hilbert
space (RKHS). The reproducing property Eq.(1) enables us to treat a value of a function
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at a point in D. Note that reproducing kernels are positive definite (Aronszajn, 1950):

N∑
i,j=1

cicjK(xi,xj) ≥ 0, (2)

for any N ∈ N, c1, . . . , cN ∈ R, and x1, . . . ,xN ∈ D. In addition, K(x, x̃) = K(x̃,x)
holds for any x, x̃ ∈ D (Aronszajn, 1950). If a reproducing kernel K(x, x̃) exists, it is
unique (Aronszajn, 1950). Conversely, every positive definite function K(x, x̃) has the
unique corresponding RKHS (Aronszajn, 1950). Hereafter, the RKHS corresponding to a
reproducing kernel K(x, x̃) is denoted by HK . In the following contents, we simply use the
symbol K for a kernel by omitting (x, x̃) except the cases where it is needed. In this paper,
we assume that the RKHS is separable (Reed and Simon, 1980).

Next, we introduce the Schatten product (Schatten, 1960) that is a convenient tool to
reveal the reproducing property Eq.(1) of kernels.

Definition 2 (Schatten, 1960) Let H1 and H2 be Hilbert spaces. The Schatten product of
g ∈ H2 and h ∈ H1 is defined by

(g ⊗ h)f = 〈f, h〉H1g, f ∈ H1. (3)

Note that (g ⊗ h) is a linear operator from H1 onto H2. It is easy to show that the
following relations hold for h, v ∈ H1, g, u ∈ H2.

(h⊗ g)∗ = (g ⊗ h), (h⊗ g)(u⊗ v) = 〈u, g〉H2(h⊗ v), (4)

where the superscript ∗ denotes the adjoint operator.
We give some theorems concerned with sum and difference of reproducing kernels used

in the following contents.

Theorem 3 ((Aronszajn, 1950), p.353) If Ki is the reproducing kernel of the class Fi with
the norm || · ||i, then K = K1 +K2 is the reproducing kernel of the class F of all functions
f(·) = f1(·) + f2(·) with fi(·) ∈ Fi, and with the norm defined by

||f(·)||2 = min
[
||f1(·)||21 + ||f2(·)||22

]
, (5)

the minimum taken for all the decompositions f(·) = f1(·) + f2(·) with fi(·) ∈ Fi.

Theorem 4 ((Aronszajn, 1950), Theorem II) If K is the reproducing kernel of the class
F with the norm || · ||, and if the linear class F1 ⊂ F forms a Hilbert space with the norm
||·||1, such that ||f(·)||1 ≥ ||f(·)|| for any f(·) ∈ F1, then the class F1 possesses a reproducing
kernel K1 such that Kc = K −K1 is also a reproducing kernel.

Theorem 5 ((Aronszajn, 1950), Theorem I) If K and K1 are the reproducing kernels of
the classes of F and F1 with the norms || · ||, || · ||1, and if K −K1 is a reproducing kernel,
then F1 ⊂ F and ||f1(·)||1 ≥ ||f1(·)|| for every f1(·) ∈ F1.
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Theorem 6 ((Saitoh, 1997), Theorem 6) Let K1 and K2 be kernels, then

HK1 ⊂ HK2 (6)

holds, if and only if there exists a positive constant γ such that

γ2K2 −K1 (7)

is a kernel.

Theorem 3 guarantees that the RKHS corresponding to K = K1 +K2 includes HK1 and
HK2 and Theorems 4, 5 and 6 reveal the relationship between the difference of two kernels
and the corresponding RKHS’s (and their norms).

3. Formulation of Regression Problems

Let {(yi,xi)|i = 1, . . . , `} be a given training data set with yi ∈ R, xi ∈ Rd, satisfying

yi = f(xi) + ni, (8)

where f(·) denotes the unknown true function and ni denotes a zero-mean additive noise.
The aim of the regression problem considered in this paper is to estimate the unknown
function f(·) by using the given training data set and statistical properties of the noise.

In this paper, we assume that the unknown function f(·) belongs to the RKHS HK
corresponding to a certain kernel K. If f(·) ∈ HK , then Eq.(8) is rewritten as

yi = 〈f(·),K(·,xi)〉HK + ni, (9)

on the basis of the reproducing property of the kernels. Let y = [y1, . . . , y`]
′ and n =

[n1, . . . , n`]
′ with the superscript ′ denoting the transposition operator, then applying the

Schatten product to Eq.(9) yields

y =

(∑̀
k=1

[e
(`)
k ⊗K(·,xk)]

)
f(·) + n, (10)

where e
(`)
k denotes the `-dimensional unit vector whose k-th element is unity. For a conve-

nience of description, we write

AK,X =

(∑̀
k=1

[e
(`)
k ⊗K(·,xk)]

)
, (11)

where X = {x1, . . . ,x`}. Note that AK,X is a linear operator from HK onto R` and Eq.(10)
can be written by

y = AK,Xf(·) + n, (12)

which represents the relationship between the unknown true function f(·) and the output
vector y. Therefore, a regression problem can be interpreted as an inversion problem of the
linear equation Eq.(12) (Ogawa, 1995).
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4. Kernel Specific Generalization Ability and Some Known Results

In general, a learning result by kernel machines is represented by a linear combination of
K(·,xk), which implies that the learning result is an element in the range space of the linear
operator A∗K,X , written as R(A∗K,X), since

f̂(·) = A∗K,Xα =

(∑̀
k=1

[K(·,xk)⊗ e
(`)
k ]

)
α =

∑̀
k=1

αkK(·,xk) (13)

holds, where α = [α1, . . . , α`]
′ denotes an arbitrary vector in R`. The point at issue in this

paper is to discuss goodness of a model space, that is, the generalization error of R(A∗K,X)
which is independent from learning criteria. Therefore, we define the generalization error
of kernel machines specified by a kernel K and a set of input vectors X as the distance
between the unknown true function f(·) and R(A∗K,X) written as

J(f(·);K,X) = ||f(·)− PK,Xf(·)||2HK , (14)

where PK,X denotes the orthogonal projector ontoR(A∗K,X) and ||·||HK denotes the induced
norm of HK . Note that the orthogonality of PK,X is also specified by the metric of HK .
Selection of an element in R(A∗K,X) as a learning result is out of the scope of this paper
since the selection depends on learning criteria. We also ignore the observation noise in the
following contents since the noise does not affect Eq.(14).

Here, we give some propositions as preparations to evaluate Eq.(14).

Lemma 7 (Tanaka, Imai, Kudo, and Miyakoshi, 2008)

PK,X =
∑̀
i,j=1

(G+
K,X)ij [K(·,xi)⊗K(·,xj)] , (15)

where GK,X denotes the Grammian matrix of K with X and the superscript + denotes the
Moore-Penrose generalized inverse(Rao and Mitra, 1971).

From Lemma 7, the orthogonal projection of f(·) ∈ HK onto R(A∗K,X) is given as

PK,Xf(·) =
∑̀
i,j=1

f(xi)(G
+
K,X)ijK(·,xj), (16)

and this formula immediately yields the following lemma.

Lemma 8 (Tanaka, Imai, Kudo, and Miyakoshi, 2008) For any f(·) ∈ HK ,

||PK,Xf(·)||2HK = f ′G+
K,Xf (17)

holds, where f = [f(x1), . . . , f(x`)]
′.
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Note that f ∈ R(GK,X) holds, since R(AK,X) = R(AK,XA
∗
K,X) = R(GK,X) trivially

holds by Eq.(4).
Let K1 and Kc be kernels, then K2 = K1 + Kc is also a kernel whose corresponding

RKHS includes HK1 from Theorem 3. Since K1 = K2 −Kc holds, we have

||f(·)||2HK1
≥ ||f(·)||2HK2

(18)

for any f(·) ∈ HK1 from Theorem 5. In (Tanaka and Miyakoshi, 2010), the following
theorem concerned with the equality in Eq.(18) was introduced, which plays a crucial role
in the following contents.

Theorem 9 (Tanaka and Miyakoshi, 2010) Let K1 and Kc be kernels and let K2 = K1 +
Kc. The following three statements are equivalent each other.

1) For any f(·) ∈ HK1, ||f(·)||2HK1
= ||f(·)||2HK2

,

2) HK1 ∩HKc = {0},

3) For any f1(·) ∈ HK1 and for any f2(·) ∈ HKc, 〈f1(·), f2(·)〉HK2
= 0.

In the following contents, we omit the symbol X from Grammian matrices and projectors
since we adopt an arbitrarily fixed X for all cases.

5. Analyses on Ensemble and Multiple Kernel Regressors

We consider a class of kernels K = {K1, . . . ,Kn} and corresponding RKHS written as
HKi , (i ∈ {1, . . . , n}). We assume that

L = ∩ni=1HKi (19)

is a non-empty linear class and we discuss the regression problem for f(·) ∈ L in order for
PKpf(·), (p ∈ {1, . . . , n}) to be consistent in terms of the orthogonal projection 1. Under
these settings, we discuss two kernel regression schemes using all kernels in K. One is
the multiple kernel regressor based on a linear combination of given kernels with positive
weights determined by some criterion. The other is the ensemble kernel regressor which is
a convex combination of kernel regressors based on each kernels whose weights are specified
by boosting strategy for instance. As mentioned above, the strategies of combination in
the both schemes are quite different, which implies that it is difficult to analyze their
generalization ability in a unified way. Therefore, we analyze quite simple and special cases
in this paper as follows. Also note that we analyze the optimal results of both schemes in
noise free case, that is, the orthogonal projection of the unknown true function onto the
model space for simplicity of analysis, while the optimal result are not always achieved in
practical problems.

1. If f(·) 6∈ L, there may exist Kp by which the orthogonal projection can not be constructed from the
training data set.
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We define the multiple kernel regressor as that based on the sum of all kernels, written
as

Ku =
n∑
i=1

Ki. (20)

It is trivial that

Ku −Ki =
n∑

j=1,j 6=i
Kj . (21)

is also a kernel from Theorem 3, which implies that for any fixed i ∈ {1, . . . , n},

HKi ⊂ HKu , ||f(·)||HKi ≥ ||f(·)||HKu (22)

holds for any f(·) ∈ HKi from Theorem 5. The learning result by the multiple kernel
regressor is written as

f̂m(·) = PKuf(·)

=
∑̀
i,j=1

f(xi)(G
+
Ku

)ijKu(·,xj). (23)

We define the ensemble kernel regressor as the mean of the kernel regressors by the
individual kernels Ki, (i ∈ {1, . . . , n}). The learning result by the ensemble kernel regressor
is written as

f̂e(·) =
1

n

n∑
p=1

PKpf(·)

=
1

n

n∑
p=1

∑̀
i,j=1

f(xi)(G
+
Kp

)ijKp(·,xj). (24)

The generalization error, defined by Eq.(14), of the multiple kernel regressor Eq.(23) is
straightforwardly obtained by

Em = J(f(·);Ku, X) = ||f(·)− PKuf(·)||2HKu
= ||f ||2HKu − f

′G+
Ku
f (25)

from Lemma 8 and the Pythagorean theorem. Note that the evaluation by the norm ||·||HKu
is the best choice for the multiple kernel regressor since the orthogonality of PKu is specified
by the metric of HKu .

Next, we evaluate the generalization error of the ensemble kernel regressor Eq.(24) with
the same norm as Eq.(25), which is written as

Ee =

∥∥∥∥∥∥f(·)− 1

n

n∑
p=1

PKpf(·)

∥∥∥∥∥∥
2

HKu

. (26)

We give the following Lemmas to evaluate Eq.(26).
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Lemma 10 Let K be a kernel whose corresponding RKHS is separable, and let α be a
positive real number, then

HK = HαK (27)

as the class of functions. Moreover

α||f(·)||2HαK = ||f(·)||2HK (28)

holds for any f(·) ∈ HK .

Proof Let α1 and α2 be a real positive numbers satisfying α2 < α < α1, then,

α1K − (αK),
1

α2
(αK)−K

are also kernels. Therefore, Eq.(27) immediately holds from Theorem 6.
Since HK is separable, there exists a countable set {(βk, zk) | k ∈ N} for any f(·) ∈ HK

such that
f(·) =

∑
k∈N

βkK(·, zk).

Then, we have

||f(·)||2HK =
∑
i,j∈N

βiβjK(zi, zj).

On the other hand, we have

||f(·)||2HαK =

∥∥∥∥∥ 1

α

∑
k∈N

βkαK(·, zk)

∥∥∥∥∥
2

HαK

=
1

α2

∑
i,j∈N

βiβjαK(zi, zj) =
1

α

∑
i,j∈N

βiβjK(zi, zj)

=
1

α
||f(·)||2HK ,

which concludes the proof.

Lemma 11 Let Ki, (i ∈ {1, . . . , n}) be kernels and let Ku =
∑n

i=1Ki. For any function
f(·) =

∑n
i=1 fi(·) with fi(·) ∈ HKi,∥∥∥∥∥

n∑
i=1

fi(·)

∥∥∥∥∥
2

HKu

≤
n∑
i=1

‖fi(·)‖2HKi (29)

holds.

Proof This lemma is a trivial consequence of Theorem 3.

Here, we consider the following assumption.
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Assumption 12 There exists a linear class S ⊂ L such that

||f(·)||HKi = ||f(·)||HKj , (i, j ∈ {1, . . . , n}) (30)

for any f(·) ∈ S.

When Assumption 12 holds, there exists a kernel KS such that

Kc
i = Ki −KS , (i ∈ {1, . . . , n}) (31)

is also a kernel from Theorem 4. Hereafter, we use HKS instead of S since KS is guaranteed
to be a kernel. Note that

HKS ∩HKc
i

= {0} (32)

holds from Theorem 9. The importance of Assumption 12 will be discussed in Section 6.

Lemma 13 If Assumption 12 is satisfied,

Ee ≤ ||f(·)||2HKu −
1

n2

n∑
p=1

f ′G+
Kp
f (33)

holds for any f(·) ∈ HKS .

Proof From Lemma 10, Theorem 9 and Assumption 12, we have

||f(·)||2HKp = ||f(·)||2HKS = n||f(·)||2HnKS = n||f(·)||2HKu (34)

for any f(·) ∈ HKS since

Ku = nKS +

n∑
p=1

Kc
p

and HnKS ∩ HKc = {0} hold, where Kc =
∑n

p=1K
c
p. Therefore, from Lemma 11 and the

Pythagorean theorem, we have

Ee =

∥∥∥∥∥∥ 1

n

n∑
p=1

(
f(·)− PKpf(·)

)∥∥∥∥∥∥
2

HKu

≤ 1

n2

n∑
p=1

||f(·)− PKpf(·)||2HKp

=
1

n2

n∑
p=1

(||f(·)||2HKp − f
′G+

Kp
f)

= ||f(·)||2HKu −
1

n2

n∑
p=1

f ′G+
Kp
f ,

which concludes the proof.
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Lemma 14 Let Gi ∈ Rd×d, (i ∈ {1, . . . , n}) be non-negative definite real symmetric ma-
trices and let v ∈ ∩i=1R(Gi). Then,

v′

(
1

n2

n∑
i=1

G+
i −

(
n∑
i=1

Gi

)+)
v ≥ 0 (35)

holds.

Proof Let S =
∑n

i=1Gi and T = 1
n2

∑n
i=1G

+
i , then R(S) = R(S+) = R(T ) holds since

S and T are non-negative definite symmetric matrices. Therefore, we have

v′(T − S+)v

= v′S+S(T − S+)SS+v = v′S+(STS − S)S+v

= v′S+

(
1

n2

n∑
i=1

SG+
i S − S

)
S+v

and
n∑
i=1

SG+
i S − n

2S

=

n∑
i=1

(nGi + S − nGi)G+
i (nGi + S − nGi)− n2S

=

n∑
i=1

((S − nGi)G+
i (S − nGi) + nGiG

+
i (S − nGi) + n(S − nGi)G+

i Gi))

=

n∑
i=1

((S − nGi)G+
i (S − nGi) + n(GiG

+
i S + SG+

i Gi − 2nGi))

=
n∑
i=1

((S − nGi)G+
i (S − nGi) + n(GiG

+
i S + SG+

i Gi))− 2n2S.

Let

T1 =
n∑
i=1

(S − nGi)G+
i (S − nGi),

T2 = n
n∑
i=1

(GiG
+
i S + SG+

i Gi)− 2n2S,

then

v′S+T2S
+v

= n
n∑
i=1

v′(S+GiG
+
i +G+

i GiS
+)v − 2n2v′S+v

= n

n∑
i=1

2v′S+v − 2n2v′S+v

= 0

10
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holds, since v ∈ R(Gi) ⊂ R(S) for any i ∈ {1, . . . , n} and GiG
+
i = G+

i Gi is the orthogonal
projector onto R(Gi). Therefore, we have

v′(T − S+)v =
1

n2
v′S+T1S

+v ≥ 0,

since T1 is a non-negative definite symmetric matrix, which concludes the proof.

The next theorem is the main result of this paper.

Theorem 15 If Assumption 12 is satisfied,

Em − Ee ≥ 0 (36)

holds for any f(·) ∈ HKS .

Proof From the fact that f ∈ R(GKp) for any p ∈ {1, . . . , n} and Lemmas 13 and 14,

Em − Ee ≥ (||f ||2HKu − f
′G+

Ku
f)−

||f ||2HKu − 1

n2

n∑
p=1

f ′G+
Kp
f


=

1

n2

n∑
p=1

f ′G+
Kp
f − f ′G+

Ku
f ≥ 0

is obtained, which concludes the proof.

According to Theorem 15, it is concluded that the ensemble kernel regressor yields a
better result than the multiple kernel regressor under Assumption 12. Note that Assumption
12 is a quite strong condition. In fact, popular kernels, such as the Gaussian kernels with
various parameters, do not satisfy Assumption 12. Therefore, relaxation of Assumption 12
is one of important issues that should be undertaken.

6. Examples

In this section, we give simple examples confirming the importance of Assumption 12 in
Theorem 15. Let

K1(x, y) = 1 + xy

K2(x, y) = (1 + xy)2 = 1 + 2xy + x2y2

be polynomial kernels defined on R ×R. Note that dimHK1 = 2 and HK1 is spanned by
the functions b1(x) = 1 and b2(x) = x. Similarly, dimHK2 = 3 and HK2 is spanned by the
functions b1(x), b2(x), and b3(x) = x2. Therefore, the linear class L is spanned by b1(x) and
b2(x). Also note that Ku(x, y) = 2 + 3xy + x2y2. We investigate the generalization errors
Em and Ee for f(·) ∈ L. We adopt X = {1} as the input training data set in the following
contents.
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6.1. Example with Assumption 12

Let us consider the linear class spanned by b1(x), then any function in the class is represented
by f(x) = αb1(x) = α with α ∈ R. Since

f(x) = αK1(x, 0),

f(x) = αK2(x, 0),

we have ||f(x)||2HK1
= ||f(x)||2HK2

= α2, which implies that Assumption 12 is satisfied for

the linear class HKS spanned by b1(x). From Eq.(16), we have

f̂1(x) = PK1f(x) =
α

2
(1 + x),

f̂2(x) = PK2f(x) =
α

4
(1 + 2x+ x2),

as the learning results by K1 and K2, which implies that the learning result by the ensemble
kernel regressor is reduced to

f̂e(x) =
α

8
(3 + 4x+ x2). (37)

Similarly, the learning result by the multiple kernel regressor is reduced to

f̂m(x) =
α

6
(2 + 3x+ x2). (38)

Note that

de(x) = f̂e(x)− f(x) =
α

8
(3 + 4x+ x2)− α

=
α

8
(−5 + 4x+ x2)

= − α

48
Ku(x,−1)− 21α

48
Ku(x, 0) +

7α

48
Ku(x, 1)

dm(x) = f̂m(x)− f(x) =
α

6
(2 + 3x+ x2)− α

=
α

6
(−4 + 3x+ x2)

= −3α

6
Ku(x, 0) +

α

6
Ku(x, 1)

holds. By applying the fact that 〈Ku(·, x),Ku(·, y)〉HKu = Ku(x, y), derived from Eq.(1),
we have

Ee =
113

384
α2 ' 0.294α2,

Em =
1

3
α2 ' 0.333α2.

Accordingly, it is confirmed that the inequality Eq.(36) surely holds with Assumption 12 in
these settings.
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6.2. Example without Assumption 12

Let us consider the function f(x) = x ∈ L. Since

f(x) = −K1(x, 0) +K1(x, 1),

f(x) = −1

4
K2(x,−1) +

1

4
K2(x, 1),

we have ||f(x)||2HK1
= 1 and ||f(x)||2HK2

= 1/2, which implies that Assumption 12 does not

hold in this case. Since f(1) = 1, the learning results by the ensemble and the multiple
kernel regressors are the same with Eqs.(37) and (38) with α = 1. Note that

de(x) = f̂e(x)− f(x) =
1

8
(3 + 4x+ x2)− x

=
1

8
(3− 4x+ x2)

=
7

48
Ku(x,−1) +

3

48
Ku(x, 0)− 1

48
Ku(x, 1)

dm(x) = f̂m(x)− f(x) =
1

6
(2 + 3x+ x2)− x

=
1

6
(2− 3x+ x2)

=
1

6
Ku(x,−1)

holds, which yields

Ee =
65

384
' 0.169,

Em =
1

6
' 0.167,

and Ee > Em. Accordingly, it is confirmed that the inequality Eq.(36) does not hold without
Assumption 12 in such a simple setting with a popular polynomial kernel, which supports
the importance of Assumption 12.

7. Conclusion

In this paper, we discussed a class of kernels whose corresponding RKHS’s have a common
subspace with an invariant metric and proved that the ensemble kernel regressor with those
kernels gives a better result than the multiple kernel regressor with the sum of those kernels.
Relaxation of the assumption in the main theorem, extending the obtained result to practical
learning machines, such as the support vector machine and the kernel ridge regressor, and
similar analyses for variance of additive noise are ones of our future works that should be
undertaken.
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