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Abstract

This paper proposes a new fault detection and analysis approach which can leverage in-
complete prior information. Conventional data-driven approaches suffer from the problem
of overfitting and result in high rates of false positives, and model-driven approaches suffer
from a lack of specific information about complex systems. We overcome these problems
by modifying the denoising autoencoder (DA), a data-driven method, to form a new ap-
proach, called the structured denoising autoencoder (StrDA), which can utilize incomplete
prior information. The StrDA does not require specific information and can perform well
without overfitting. In particular, an empirical analysis with synthetic data revealed that
the StrDA performs better than the DA even when there is partially incorrect or abstract
information. An evaluation using real data from moving cars also showed that the StrDA
with incomplete knowledge outperformed conventional methods. Surprisingly, the StrDA
results were better even though the parameters of the conventional methods were tuned
using faulty data, which are normally unknown. In addition, the StrDA fault analysis was
able to extract the true causes of the faulty data; the other methods were unable to do
this. Thus, only our proposed method can explain why the faults occurred.

Keywords: Fault Detection and Analysis, Denoising Autoencoder, Semi-supervised Learn-
ing.

1. Introduction

To satisfy the need for highly reliable systems, it is necessary to test them in many intensive
situations. If any faults are detected, they are thoroughly analyzed by the experts to identify
the true cause, and then corrected. This procedure is important in wide variety of fields; for
example, aviation, plant and vehicle systems. However, due to the increasing complexity
of such systems, this analysis is becoming increasingly costly. One solution is to utilize the
data obtained from the systems to apply machine learning technologies. In this settings,
we are only given normal data to learn a model. Test data are then evaluated by the model
to detect faults, and these are then analyzed to identify their causes. We call this the
fault detection and analysis problem. The technologies for fault detection and analysis are
categorized and applicable to a one-class classification problem which includes, e.g., novelty
detection, event detection and change detection (Ding, 2008).
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To deal with fault detection and analysis problems, several data-driven methods have
been proposed, including principal component analysis, the one-class support vector ma-
chine, the local outlier factor, the artificial neural network, and others (Chandola et al.,
2009). However, these methods suffer from overfitting, which causes high rates of false
positives, and are thus unreliable. Prior knowledge can help us avoid such problems by al-
lowing us to construct specific models of the system using physical equations (Ding, 2008).
Unfortunately, as systems become more complex and extensive, building a model becomes
increasingly difficult.

Our motivation is to provide a simple way to incorporate prior knowledge without
building physical equations, considering that we still have some knowledge about the devices
to be monitored and faults to be detected even if it is not precise. For example, we often have
information about the interdependence of various attributes, e.g., between the acceleration
and the engine rotation. We also can approximate the characteristics of the faults which we
want to detect, based on the results of a sensory analysis. Our intuition is that using these
types of additional information can makes a model to focus on some important relations
in the data, which avoids fitting to trivial relations; data-driven approaches are difficult to
do it. Actually, faults are originated from the corruption of the physical relations in the
system and it is better to monitor only such the relations to detect and identify the faults
well. However, the problem is that these kinds of knowledge are often abstract or partially
incorrect. We do not have the detailed information about the model, which is used in the
model-based approaches.

The proposed method, the structured denoising autoencoder (StrDA), exploits incom-
plete prior knowledge to focus on some relations between variables and ignore others; we
simply set 1 to focus on and 0 to ignore the relations, and then impose this information
on the objective function of the denoising autoencoder (DA). The advantages of the pro-
posed function include controlling the denoising and forming a low-dimensional manifold in
which prior knowledge is included. An empirical analysis with synthetic data revealed that
the StrDA can obtain correct results even if only incomplete information is available. An
evaluation with real data showed that incomplete knowledge can improve the performance
of fault detection and analysis; the StrDA outperformed conventional methods which are
tuned with faulty data (for data which are normally unknown). We also note that the
StrDA fault analysis can determine the causes of the fault; the other methods cannot do
this.

2. Related Works

2.1. Contribution Analysis (CA)

CA is a common approach to fault analysis (Ge and Song, 2013). Given a faulty sample of
M observed variables x = {x1, . . . , xM} and the corresponding variables xr predicted by a
learned normal model, CA considers the errors e = {e1, . . . , eM} between them:

e = x− xr. (1)

The amount of error ei represents the contribution of the variable i ∈ 1 . . .M to the fault
and the variables are then ranked in the order of their contributions. CA determines the
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variable with higher contribution as a candidate for the cause (Figure 1). CA has been
shown to be successful in studies in multivariate statistical process control (MSPC; Ge
and Song (2013)). CA is generally applied with linear approaches since, unlike non-linear
models, these methods allow the computation of reconstruction errors.
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Figure 1: Contribution analysis.

2.2. Principal Component Analysis (PCA)

PCA is commonly used in connection with CA (Ge and Song, 2013). Given N i.i.d. samples
of normal observations {x1, . . . ,x(N)}T of the observed variables x, which are scaled to zero
mean and unit variance, PCA learns a linear transformation matrix W = {w1, . . . ,wd}T to
form d(≤M) principal components y = Wx, where y is a low-dimensional linear subspace
which represents the given training data. PCA projects a sample x to the subspace and
reconstructs it back to the observation space, as follows:

xr = WTWx = WTy, (2)

which is viewed as a prediction of the model with a reconstruction error vector e, which
can be written as

e = x−WTWx = x− xr. (3)

Here we can utilize e = {e1, . . . , eM} to conduct CA. We also use e to calculate the root-
mean-square error (RMS)

q =

√√√√ 1

M

M∑
i=1

ei, (4)

which we use as an anomaly score for detecting faults. Although PCA is simple and easy
to implement, it is a linear model, and thus when the data structure is complex, it does not
usually achieve high-performance fault detection and analysis.

2.3. Denoising Autoencoder (DA)

The DA is a regularized autoencoder for learning generalized features which are useful
for tasks such as classification (Bengio, 2009). Some researchers have also applied the
autoencoder to intrusion detection problems, as a nonlinear extension of PCA to learn the
non-linear data manifolds (Modi et al., 2013), which is closed to fault detection problems.

98



Structured Denoising Autoencoder for Fault Detection and Analysis

In DA, noise is added to the input vector x. There are various ways to add noise (Vincent
et al., 2010), but in this paper, we use Gaussian noise: xn = x+N (0, σI), where N (0, σI) is
an isotropic Gaussian noise with a shared variance σ. We then minimize the reconstruction
errors between the true input and the output of the DA. The objective function J(θ) is
given as

J(θ) =
N∑
p=1

1

2
||x(p) − x(p)

r ||22, (5)

x(p)
r = W2h

(p)
1 + b2, (6)

h
(p)
1 = g(W1x

(p)
n + b1), (7)

where p indicates the pth training sample, xr is the reconstructed value, θ = {W1,W2,b1,b2}
are the parameters of DA, and g(·) denotes the sigmoid function

g(x) =
1

1 + exp(−x)
. (8)

We can learn the parameters θ by using a back-propagation algorithm. The standard
autoencoder learns only a model in which the output takes the same value as the input
data. In contrast, the DA uses noisy data to learn the model in which the output should
be the same as the original normal data. This process requires that the model learns the
regularized features h1 and that it can output data which efficiently ignore trivial noise or
unknown faulty behavior. For fault detection and analysis, we compute xr by equation (6)
and (7) with the input x instead of xn. Then the reconstruction error e = x − xr is used
to conduct CA and calculate the RMS (4) as an anomaly score.

3. Structured Denoising Autoencoder (StrDA)

This section describes our proposed method. The StrDA utilizes incomplete prior informa-
tion about the structure of the given data and/or knowledge of the possible faults.

3.1. Setting the Prior Knowledge

To determine which relations of the variables to be focused on, we express the prior knowl-
edge by using an M ×M matrix α, defined as follows:

α = {αij ∈ {0, 1}|i, j ∈ 1, . . . ,M}. (9)

Note that α is a symmetric matrix thus αij = αji. When αij = 1, we focus on the
relation between ith and jth variables. On the other hand, when αij = 0, the relation
between the ith and jth variables is ignored. In this way, we can use α to select which
relations to be monitored (for example, see Figure 2). Note that we do not require precise
information in order to improve the fault detection and analysis performance (see Section
4.1 for further discussion). The operator can use incomplete information as long as it is
reasonably consistent. The following are examples of situations in which we have prior
knowledge of the importance of relations between variables:
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• The input/output structure of the variables can be assumed, such as from the accel-
erator position and engine rotation speed.

• We wish to focus on the relations between certain variables.

• Based on a sensory evaluation, we suspect certain variables.

If we know which relations are important, we can focus on and efficiently monitor only
the essential parts of the data. When no such information is available, we must use an
unsupervised model, which tends to cause overfitting of the training data. As we discuss
in Section 4.1, this prior information can be used to ignore unimportant parts of the data
distribution.

3.2. Structured Denoising Objective Function

We extend the DA to include the prior information α by modifying the objective function
(5). The proposed objective function is given by

J̃(θ) =
1

2

N∑
p=1

∑
i<j

{(
e
(p)
ij

)2
+
(
e
(p)
ji

)2}
, (10)

e
(p)
ij = x

(p)
r,i −

{
x
(p)
i + (1− αij)(x(p)n,i − x

(p)
i )
}
, (11)

where xn,i and xr,i are the ith variable of xn and xr. We can use the back-propagation
algorithm to optimize the parameters θ. We call (10) the structured denoising (SD) objective
function, and it reflects our prior information α. Recall that the DA uses reconstruction
errors for CA, and the RMS is computed as an anomaly score. Therefore, we control these
reconstruction errors in order to incorporate the given prior knowledge, and then proceed as
in the DA. Actually, the SD objective function controls the denoising with respect to each
combination of variables. For example, αij = 1 follows eij = xr,i−xi, which means that the
model should denoise correctly with respect to the i, jth variables. In the case of αij = 0,
eij = xr,i − xn,i indicates that the model does NOT denoise and reconstruct the same

value to the noisy input. Finally, in equation (10), the square distances (e
(p)
ij )2 + (e

(p)
ji )2 are

summed up with respect to all combinations of two variables. Consequently, the resulting
model can calculate just the reconstruction errors e = x−xr which exhibit differences with
respect to the important relations.

The geometrical interpretation of SD is helpful for understanding our proposed method.
We thus introduce PCA denoising and compare it with the proposed method. Figure 3(A)
shows PCA denoising. A subspace formed by the principal components learned from normal
data is used, and a sample is shown on the subspace. The noise orthogonal to the subspace
is removed (denoised) by the projection, and the result has the same value as the training
sample. In contrast, the noise is preserved if it was added in parallel to the subspace. Thus,
the PCA subspace determines the denoising direction. The relation between denoising and
the learned subspace suggests that α constrains the shape of the manifold learned from
StrDA by controlling the denoising structure. In Figure 3(B), we see that the sample is
correctly denoised with the i, jth variables because αij = 1, but it is not denoised with the
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Figure 2: Example of setting prior knowledge by using the matrix α. Given the input-
output relation of four variables {a, b, c, d}, we set the relation as important (αij =
1) if two variables are directly connected. Otherwise, we set it as unimportant
(αij = 0). This encourages the model to monitor only the direct input-output
relations. Actually, the faults should be originated from the corruption of direct
physical relations and it is better to ignore relations within {a, c} and {b, d} where
no direct connections exist.
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Figure 3: Comparison between PCA denoising and structured denoising.

k, lth variables because αkl = 0. These denoising criteria implicitly control the shape of the
resulting model.

Our approach based on the denoising autoencoder is different from Bayesian methods
in that our prior implicitly applies a prior distribution to the reconstruction errors, whereas
Bayesian approaches apply a prior distribution to the model parameters. However, the
power of regularization in the denoising is equal between variables because the objective
function adopts l2 norm of the errors that implies the isotropic Gaussian distribution. SD
can control the power of regularization and build a complex structured distribution to the
errors. Our model only requires setting 0 or 1 to obtain a structured prior distribution,
whereas Bayesian approaches often require expert knowledge. This is the advantage of our
model.

3.3. Fault Detection and Analysis using StrDA

The StrDA uses the same fault detection and analysis processes as are used in the DA. we
compute xr by equation (6) and (7) with the input x instead of xn. Then the reconstruction
error e = x − xr is used to conduct CA and calculate the RMS (4) as an anomaly score.
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Figure 4: Fault representation using a scatter plot.

The advantage of the StrDA over the DA is that the StrDA reflects prior knowledge in its
reconstruction errors, but the DA does not.

Fault representation is an important factor in fault analysis. The aim of our proposal
is to develop a method with high usability in a real situation. Even operators without
specific technical knowledge want to know what kinds of normal relations are corrupted
in a test sample. Thus, we should ensure that our results can be easily understood. One
option is to employ a scatter plot; we conduct CA on a given test sample, and the variables
are then ranked in the order of their contributions. We would then use the first and the
second ranked variables to plot the test sample and the normal data samples that were used
to learn the StrDA model (Figure 4). This plot shows how the test sample deviates from
normal data samples. This representation offers an intuitive understanding of how the test
sample is different from the normal relations with respect to the two selected variables.

It is often difficult to observe faults by analyzing individual samples. Changes occur
slowly due to system dynamics, the environment, individual drivers, and deterioration ef-
fects. We thus introduce another metric, the average contribution, which is calculated over
N ′ samples, as follows:

Cij =
1

N ′

N ′∑
p=1

√(
e
(p)
i

)2
+
(
e
(p)
j

)2
(12)

where e
(p)
i denotes the reconstruction error of ith variable with pth sample. Cij computes the

average l2 norm with respect to i, jth variable. We apply the same CA approach to Cij , such
that combinations of two variables which have a larger Cij will have higher contributions
to the faults that occur entirely within the test samples.

4. Experiments

This section shows the results of experiments using our proposed method. First, we pro-
duced synthetic data to evaluate the effect of using prior information. The evaluation
revealed that even only approximate prior information can improve the performance of
fault detection. Second, we used real driving data to evaluate our method in a realistic
and changing environment. The results show that our proposed method outperforms the
related approaches, both in fault detection and in analysis. Note that our method is gen-
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eral and applicable to any kind of one class classification settings where prior information
is available.

For the computational environment, we used Windows 7 (64-bit) with an Intel(R) Core(TM)

i7-3970X CPU @ 3.50 [GHz] and a 64.0 [GB] memory. All implementations were performed
by MATLAB R2012b.

4.1. Evaluation with Synthetic Data

The proposed StrDA was compared with the DA using synthetic data, in order to evaluate
the effect of utilizing prior information α. For both models, we set 200 as the number of
hidden variables, and for the input, we added σ = 0.5 isotropic Gaussian noise N (0, σI)
to the training dataset. The optimization was conducted by using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm.

The dataset was obtained in the following manner. We considered three multivariate
Gaussian distributions. Each distribution has zero mean and a di×di covariance matrix Σi

given by Σi = XT
i Xi, where Xi is a di × di semidefinite matrix in which each element was

randomly sampled by a [0, 1] uniform distribution. Σi was then adjusted to unit variance.
In our experiments, d1 = 10, d2 = 6, and d3 = 12. After sampling 1000 points from each
Gaussian distribution, we combined the points to make a 28-dimensional training dataset
(d = d1 + d2 + d3 = 28). This was used as the normal dataset. Another 1000 samples were
calculated from the distribution with a new covariance matrix Σ3, and this was used as the
dataset with pseudo faults. In this situation, the true difference between these two datasets
was the change in the covariance matrix Σ3.

To evaluate the effect of using prior information, several forms of α were considered.
Figure 5 shows the true dependency between each set of variables; black elements indicate
they are related, and otherwise, they are not. From lower left to upper right, the three
black segments denote the dependency of the respective Gaussian distributions with Σ1,
Σ2, and Σ3. We also set six squares S = {S1, S2, S3, S4, S5, S6} as

S1 = {(i, j) |i, j ∈ (1, . . . , 10)} , S2 = {(i, j) |i, j ∈ (11, . . . , 16)} ,
S3 = {(i, j) |i, j ∈ (17, . . . , 28)} , S4 = {(i, j) |i, j ∈ (11, . . . , 28)} , (13)

S5 = {(i, j) |i, j ∈ (11, . . . , 22)} , S6 = {(i, j) |i, j ∈ (1, . . . , 28)} .

These squares are indicated by a dashed line in Figure 5. Note that S3 is the change to be
detected. We selected one or more of these segments as the matrix α, e.g., Sα = S1, and
set these combinations as important, i.e., {αij = 1| (i, j) ∈ Sα}. We used the area under
the curve (AUC) of the receiver operating characteristics (ROC) to compare the accuracy
of fault detection for several different values of α. We randomly sampled the training and
the test data ten times each, and we then computed the average of the AUC.

The results are shown in Table 1, where |Sα ∩ S3|/|Sα| denotes the ratio of the true
segment Sα∩S3 to the selected segment Sα. The relation between |Sα∩S3|/|Sα| and the AUC
is helpful for understanding the effect of different values of α. The StrDA outperformed the
DA except when Sα = S1 and S2, and the best performance was obtained when Sα = S3,
i.e., when the prior information α was set to the true cause of the changes. The setting of
Sα = S1 ∪S2 ∪S3 also improved the AUC, which means that information about the normal
structure of the data contributes to the fault detection. Surprisingly, such an improvement
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was found even when Sα contained an incorrect segment (Sα = S4) or only part of the true
segment (Sα = S5). Finally, note that when all combinations were set to be important
(Sα = S6), the StrDA learned the data uniformly like an unsupervised approach, so that
the AUC is almost the same as it was with the DA. Overall, the StrDA improves the AUC
almost monotonically as the ratio |Sα ∩ S3|/|Sα| increases.

Figure 5: Relations between variables.

Table 1: Average AUC (synthetic data).
StrDA DA

Sα S1 S2 S3 S1 ∪ S2 ∪ S3 S4 S5 S6
AUC 0.5108 0.4598 0.8825 0.8369 0.8400 0.7935 0.7848 0.7805
|Sα∩S3|
|Sα| 0.0000 0.0000 1.0000 0.5143 0.4444 0.2500 0.1837 -

4.2. Evaluation with Real Driving Data

4.2.1. Evaluation Settings

We used driving data to evaluate the performance of both fault detection and analysis. The
problem considered here is to detect and analyze the changes in the driving environment.
Fault diagnosis equipment recorded information for the vehicle, and the data contained 43
attributes. The data were recorded at intervals of 0.5–1.0 [s]. The attributes are listed in
Table 2. We considered four driving conditions, as shown in Table 3. The Drive and the
Neutral are the transmission modes of the vehicle. In the Flat Road condition, the vehicle
ran on the same flat road with constant acceleration and deceleration. The vehicle goes
down slopes with the same acceleration and deceleration under the Downslope condition.
In the DtoN data, the transmission mode was changed to the Neutral when the vehicle
reached a specific speed with the Drive mode. In the Slow data, the vehicle speed was slowly
increased and decreased by the driver. The Normal data were considered the normal data,
and the data in the other three conditions were used as the faulty data to be detected. We
eliminated any discrete attributes which take only one or two values, and we then adjusted
the sampling rate to intervals of 0.5 [s] by using linear interpolation.
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The proposed method was compared with several conventional approaches: the mixture
of probabilistic principal component analysis (MPPCA, Chandola et al. (2009)), the one-
class support vector machine (OCSVM, Schölkopf et al. (2001)), the local outlier factor
(LOF, Breunig et al. (2000)), and the DA; see Table 4. The parameter settings for the
StrDA and DA were the same as those used in Section 4.1, except for α. To provide a fair
comparison, we used faulty datasets to tune the parameters of the MPPCA, OCSVM, and
LOF. In this case, the AUC of these conventional methods was maximized with respect to
the parameter sets shown in Table 4. For the MPPCA, we set the number of probabilistic
PCA to c and their dimension to d. The OCSVM was based on a νSVM with a Gaussian
kernel, given as

k(x(i),x(j)) = exp

(
−||x

(i) − x(j)||2

γ2

)
, (14)

where ν and γ are parameters. In the LOF, the parameter k determines the number of
nearest neighbors.

The value of α was determined by the experimental conditions listed in Table 3. For the
Slow data, it was expected that the driver changed the acceleration and deceleration patterns
as well as the vehicle speed; we therefore set as important the relations between attributes

Table 2: List of attributes.
No. Attributes No. Attributes

1 Shift Position 24 Objective Air/Fuel Ratio
2 Parking Brake 25 Air/Fuel Ratio
3 Sports Mode Switch 26 Purge Rate
4 Engine Stop Request 27 O2 Sensor Voltage
5 Idle Control 28 Ignition Timing
6 P Range Racing 29 Objective Exhaust Gas-
7 Warming Request Recirculation Valve Position
8 Electric W/P Motor Rotation 30 Stroke Sensor 1
9 Vehicular Speed Sensor 1 31 Stroke Sensor 2
10 Vehicular Speed Sensor 2 32 Accumulator Pressure
11 Accelerator Position 33 Front Rear G Sensor
12 Intake Air Volume 34 Regenerative Cooperation Brake
13 Required Throttle Position 35 Executed Regenerative Torque
14 Throttle Position (Sensor Value) 36 Required Regenerative Torque
15 Throttle Position (Directed Voltage) 37 Yaw Rate Sensor 1
16 Throttle Position 38 Yaw Rate Sensor 2
17 Engine Speed 39 Steering Angle Sensor
18 Required Engine Output 40 Lateral G Sensor
19 Objective Engine Speed 41 Yaw Rate Value
20 Real Engine Torque 42 Steering Angle Value
21 Idle Speed Control Flow 43 Zero-Point Corrected-
22 Idle Speed Control Position Steering Angle Sensor
23 Idle Speed Control Flow (Learned Value)
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Table 3: Driving datasets.
Name Condition Mode # of Samples

Normal Flat Road Drive 1450
Slow Flat Road Drive 737
DtoN Flat Road Neutral 418
Down Downslope Drive 92

Table 4: Conventional approaches and the parameter settings.
Approaches Parameters

StrDA d = 200, α shown in Figure 6
DA d = 200

MPPCA c = {2, 3, 4} , d = {2, . . . , 9}
OCSVM ν = {0.001, 0.005, 0.01, 0.05, . . . , 1} ,

γ = {0.001, 0.005, 0.01, 0.05, . . . , 1000}
LOF k = {2, . . . , 9}

Figure 6: Representation of the prior information α.

Nos. 9, 10, 11, 30, and 31, and all the other attributes; i.e., αij = 1 for i = 9, 10, 11, 30,
and 31. Note that the Stroke Sensor represents the braking input. For the DtoN data, we
set as important the relations between Nos. 9, 10, 11, 17, 20, 30, and 31, and all the other
attributes; i.e., αij = 1 for i = 9, 10, 11, 17, 20, 30, and 31; we did this because the responses
related to the power trains, i.e., the driver inputs, the engine rotation, the vehicular speed,
and the regenerative control, were expected to change. Finally, for the Down data, the
influence of the steep slope was expected to cause changes in the air/fuel ratio, braking,
and regeneration control. We thus set as important the relations between Nos. 25, 27, 30,
31, 33, 35, and 36, and all the other attributes; i.e., αij = 1 for i = 25, 27, 30, 31, 33, 35, and
36. Finally, we set αij = αji for each dataset because α should be symmetric. Figure 6
shows the various representations of α, where the black segments denote αij = 1.

4.2.2. Fault Detection Performance

We compared the performance for fault detection by using the AUC. The Normal data were
divided into two parts: 1000 samples were used for training the model, and the rest were
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Table 5: Average AUC (driving data).
StrDA DA MPPCA OCSVM LOF

Slow 0.8393 0.6887 0.7575 0.8193 0.8213
DtoN 0.8905 0.8289 0.8412 0.8527 0.8562
Down 0.9331 0.8632 0.9134 0.9268 0.8715

combined with each of the faulty datasets to form the test datasets. Note that the data
were randomly assigned to each part. The parameters for the MPPCA, OCSVM, and LOF
were tuned maximizing the AUC for the test data. The AUC was averaged over ten trials.

The results are shown in Table 5. The StrDA outperformed the other approaches with
each of the test datasets. These results are interesting because the StrDA used only the
training data with some incomplete prior information, while the other methods used the
true faulty data samples directly in order to obtain the best results. We note that structural
information is richer than label information. In practical situations, we rarely know a priori
that we have faulty samples, but we often know some (probably incomplete) information
about the structure of the normal data and/or the faulty behavior. Thus, the proposed
StrDA will be effective in practical use.

4.2.3. Fault Analysis Performance

The performance of the fault analyses were evaluated by using the Slow data, in which the
causes of the change is the driver input, i.e., the Accelerator Position and the Stroke Sensor.
We evaluated the ability of each method to 1) extract the true causes, and 2) represent the
changes of relationships between attributes which include the true cause. 2) is the key to
understand why they are the true causes. The evaluation was based on CA. Note that we
excluded the OCSVM here, because it is difficult to conduct CA on it. For the LOF, we
used the kth nearest neighbor as the reconstruction data. We applied CA to all samples
with the Slow data, using Equation (12). The results are shown in Figures 7–10. Each
result shows the best combination of eight attributes, and these are plotted for both the
training data (Normal) and the test data (Slow).

Figure 7 shows the results for the proposed StrDA. In the first three contributed combi-
nations, we found the apparent differences between the datasets even though the true cause
was not extracted. The other combinations extracted the driver inputs, i.e., the Stroke
Sensor, which represents braking and the Accelerator Position. These attributions were
the true causes of the changes. The scatter plots of these combinations clearly shows the
changes in the relations between the training and the test datasets. Based on these figures,
operators will be able to understand when there is a change of the relationship between
attributes. In this sense, the proposed StrDA contributes to the representation of such
changes. Among the conventional methods, the conventional DA, whose result is shown in
Figure 8, extracted the changes in the Purge Rate, which was not the true cause. The com-
binations did not show the strong relations, and thus the DA failed to identify the changes.
In this sense, the proposed StrDA, which is the DA with added prior information, improves
not only the detection of faults but also the analysis of the faults. With the MPPCA, as
shown in Figure 9, the changes were found in the No. 3 and No. 7 contributions, neither
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of which is a true cause; the results show a secondary effect, i.e., the true causes, the accel-
eration and deceleration, changed the behavior of the front/rear G and the vehicle speed,
which is shown in Figure 9. These kinds of effects often make fault analysis more difficult
because the secondary and/or tertiary effects can result in larger changes than those caused
by the true (primary) causes; data-driven unsupervised approaches often extract these kinds
of effects. The proposed StrDA can avoid this problem by using the prior information. The
LOF was unable to extract meaningful changes other than the Purge Rate, as shown in
Figure 10.

4.3. Evaluation of Dimensionality

The StrDA controls denoising by using the prior information α to determine the dimen-
sionality of the resulting model. This section shows empirically that the dimensionality of
the resulting model decreases as the number of important relations (αij = 1) decreases.

The Normal data in Table 3 were used for this evaluation. In this setting, the StrDA
learned models with eleven kinds of α, where {0, 10, . . . , 100} [%], respectively, were ran-
domly set to important (αij = 1). The dimensionality is measured by the saturation ratio,
which is the average fraction of saturated hidden units h1 per example (Rifai et al., 2011). A
smaller saturation ratio suggests a larger dimensionality. We regarded values below 0.05 or
above 0.95 as being saturated. Figure 11 shows the relation between the ratio of important
factors (αij = 1) and the saturation ratio. A decrease in the ratio of important relations
caused a reduction in the saturation ratio; this is equivalent to an increase in the dimension-
ality. A lower ratio of important factors requires the StrDA to denoise in fewer directions,
resulting in a model with less reduction of its dimensionality (details are in Section 3.2).
Finally, it almost converges to the identity mapping if there are no important relations.

5. Conclusion

This paper proposed a new approach, StrDA. The StrDA is an extension of the conventional
DA, and it utilizes prior information about the data structure. The objective function is
modified to include this information. Experiments using synthetic data suggest that using
the prior information can improve the detection of faults. We considered the problem
of detecting changes, and an evaluation with real driving data showed that the StrDA
outperformed the conventional approaches that had been tuned with faulty data. In the
fault analysis, the StrDA extracted and represented the true causes of the changes, which
the conventional approaches were unable to do. Thus, the proposed StrDA is effective for
detecting and analyzing faults. Such advantages are valid even when the prior information
is incomplete. We believe that our proposed method and presentation in a scatter plot will
simplify the detection and attribution of faults.
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Figure 7: Top eight contributed combinations determined by the StrDA, which successfully
extracted the true causes, i.e., Stroke Sensor and Accelerator Position, and the
changes in their relationships with the Vehicular Speed Sensor.

Figure 8: Top eight contributed combinations determined by the DA, which extracted only
the differences in the Purge Rate and failed to find true causes.
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Figure 9: Top eight contributed combinations determined by the MPPCA, which extracted
the effects of the true causes, i.e., Front Rear G Sensor and Vehicular Speed
Sensor. However, this is not practical information and could obscure the true
causes.

Figure 10: Top eight contributed combinations determined by the LOF. Only the differences
in Purge Rate were extracted, and it failed to find the true causes.
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Figure 11: Relation between saturation ratio [%] and α.
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