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Abstract

We study sparsity on a statistical simplex consisting of all categorical distributions. This
is different from the case in <m because such a simplex is a Riemannian manifold, a curved
space. A learner with sparse constraints would be likely to fall into its low-dimensional
boundaries. We present a novel analysis on the statistical simplex as a manifold with
boundary. We investigate the learning dynamics in between high-dimensional models in
the interior of the simplex and low-dimensional models on its boundaries. We study the
differentiability of the cost function and its natural gradient with respect to the Riemannian
structure.

We apply the proposed technique to social network analysis. Given a directed graph,
the task is to rank a subset of influencer nodes. Here, sparsity means that the top-ranked
nodes should present diversity in the sense of minimizing influence overlap. We present a
ranking algorithm based on the natural gradient. It can scale up to graph datasets with
millions of nodes. On real large networks, its top-ranked nodes are the most influential
among several commonly-used techniques.

Keywords: Sparsity, Ranking, Information Geometry

1. Introduction

Sparsity has been a main topic of machine learning (Tibshirani, 1996; Ng, 2004; Zhao and
Yu, 2006; Bach, 2008). The majority of previous works concentrated on studying sparsity
in an Euclidean space, where a model parameter α ∈ <m is constrained to be likely on
certain subspaces of <m through L1-type regularization or, equivalently, a Laplace prior
distribution of α. This results in a “simple” model, in the sense that only a few entries of
α are non-zero.

Recently, the notion of sparsity has been extended (Pilanci et al., 2012; Kyrillidis et al.,

2012) to the statistical simplex 1 Sm =
{

(η1, . . . , ηm) : ∀j, ηj ≥ 0;
∑m

j=1 ηj ≤ 1
}

, meaning

that only a small number of ηj ’s are non-zero. L1-norm-based techniques are not ideal
because (1) L1 norm depends on the coordinate system and thus is not an intrinsic measure;
(2) L1 norm in the η-coordinates already appears as a constraint. Pilanci et al. (2012)
proposed a relaxation of the minimization problem on the number of non-zero ηj ’s. Kyrillidis
et al. (2012) studied sparsity based on an Euclidean projection onto some sparse region

1. The upper script of a manifold, e.g. “m” in “Sm”, denotes the dimensionality.
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on Sm. In these methods, Sm is studied as a subset of the ambient Rm+1, and sparsity is
derived from the Euclidean geometry. However, in many cases, η ∈ Sm means a probability
distribution. Sm is not Euclidean but instead has a unique information geometry (Rao,
1945; Čencov, 1982; Amari and Nagaoka, 2000). To underhand sparsity in such a geometric
way and to study sparsity that is invariant under re-parametrization is of theoretical interest.

Based on existing methods, we present an information geometric analysis on the sta-
tistical simplex as a manifold with boundary. This is novel because past efforts mainly
focused on the interior of Sm. While a learner can jump in-between the boundary ∂Sm and
inside Sm (Ghahramani and Beal, 2000; Xu, 2009), the learning dynamics near ∂Sm are
not explicitly investigated. We discovered that the learning cost function is decomposed
into a smooth term and a non-smooth term, where smoothness is defined on the manifold
with boundary. The non-smooth term, as a coordinate-invariant regularization, helps to
create singularities near ∂Sm, where the gradient flow is always inward, i.e., from ∂Sm to
the interior of Sm.

As an applicative contribution, we investigate such sparsity in graph-based ranking (Page
et al., 1999). The task is to rank a subset of nodes in a social network, so that they can
maximally spread influence. This is reduced to inferring a probability distribution on the
graph nodes. Sparsity in this context means that a limited number of nodes have a non-
zero probability of being an influencer. This agrees with recent interests in graph-based
information retrieval to retrieve a diversity of nodes (Zhu et al., 2007). We propose a scal-
able implementation along with a novel usage of natural gradient (Amari, 1998). Through
experimenting on real large networks, we show that the proposed ranking most effectively
discovers important nodes to maximally cover the network.

The rest of this paper is organized as follows. Section 2 introduces some prerequisites
of information geometry, then presents an analysis on sparsity on statistical simplexes.
The theoretical results (theorems 3 and 4) are in subsection 2.2. Section 3 discusses an
application on social network ranking and the associated learning algorithm. Section 4
discusses related works and compares the proposed ranking with PageRank. Section 5
presents an experimental study on real large networks. Section 6 concludes and discusses
possible extensions.

2. Sparsity on Statistical Simplexes

An observable random variable X, either discrete or continuous, is associated with a latent

random binary vector Y ∈
{

(y1, . . . , ym) : ∀j, yj = 0 or 1;
∑m

j=1 yj ≤ 1
}

, with at most one

bit equal to “1” and following a discrete distribution. We assume that p(X |Y ) is given.
This simplified case lets us focus on the central issue, i.e. sparsity, and is useful for social
network analysis (to be introduced in section 3). Based on a set of independent and iden-
tically distributed observations (i.i.d.) X = {X1, . . . , Xn}, the problem is to infer a prior
distribution p(Y ), where Y should be sparse. Sparsity means that only a small subset of
bits in Y are activated, i.e., having a non-zero probability of being “1”, while the rest bits
are deactivated, i.e., always “0”.
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2.1. Prerequisites

p(Y ) is in the exponential family of distributions, as it can be written in the canonical form

p(Y |θ) = exp

 m∑
j=1

θjyj − ψ(θ)

 , (1)

where θ = (θ1, . . . , θm) are the canonical parameters ranging in <m, and ψ(θ) = log
(
1 +∑m

j=1 exp θj
)
. Another way of representing p(Y ) is by p(Y |η) =

∑m
j=1 yjηj+(1−

∑m
j=1 yj)η0,

where η = (η1, . . . , ηm) are the expectation parameters ranging in Sm − ∂Sm, and η0 =
1 −

∑m
j=1 ηj . The θ- and η-coordinate systems relate with each other by the Legendre

transformations (Amari and Nagaoka, 2000)

∂ψ

∂θ
= η,

∂ϕ

∂η
= θ, (2)

where ϕ(η) =
∑m

j=0 ηj log ηj is the negative entropy. Both ψ(θ) and ϕ(η) are strictly convex
functions with respect to θ ∈ <m and η ∈ Sm, respectively.

The statistical manifold consisting of all such p(Y ) is equipped with a Riemannian met-
ric (Lee, 2012), which can be intuitively understood as a local inner product defined on
each point and varying smoothly along the manifold. It was showed (Rao, 1945; Čencov,
1982) that Fisher Information Metric (FIM) gij(θ) = −E(∂2 log p/∂θ2) is the unique Rie-
mannian metric under some conditions, where E(·) is the expectation with respect to
p(Y |θ). By eqs. (1) and (2), gij(θ) = ∂2ψ/∂θ2 = ∂η/∂θ coincides with the Jacobi ma-
trix ∂η/∂θ of the coordinate transformation θ → η. Similarly, FIM with respect to the
η-coordinates is gij(η) = ∂2ϕ/∂η2 = ∂θ/∂η, which is the inverse of gij(θ). It can be
verified that g(θ) and g(η) are essentially the same metric by showing 〈a∂θ, b∂θ〉g(θ) =
〈∂η/∂θa∂η, ∂η/∂θb∂η〉g(η). a∂θ denotes the vector field (Lee, 2012)

∑m
j=1 aj∂θj , which

can be understood as real vectors in local linearizations of the Riemannian manifold Sm.
〈·, ·〉g(θ) denotes the inner product with respect to the Riemannian metric g(θ).

In this paper, FIM is used to compute the natural gradient (Amari and Nagaoka, 2000),
i.e. the gradient with respect to the Riemannian geometry, of a smooth function f on Sm.
By definition, the natural gradient of f is gradf = (gij(θ))−1∂f/∂θ · ∂θ = ∂f/∂η · ∂θ.
gradf is invariant to the choice of the coordinate system. For example, with respect to the
η-coordinates, gradf = (gij(η))−1∂f/∂η · ∂η = ∂f/∂θ · ∂η is exactly the same gradf up
to coordinate transformation.

Maximum-likelihood learning can be implemented (Amari, 1995) by
θi = θ + ci, ∀i = 1, . . . , n;
η̃ =

∑n
i=1 η

i/n;

minθ Eτ (θ), Eτ (θ) = ψ(θ) + τϕ(η̃)− θT η̃.
(3)

The first equation is the Bayes’ rule, where cij = log p(Xi |Yj = 1)−log p(Xi |Y = 0), and θi

denotes the posterior estimation with regard to Xi 2. The second equation summarizes the
posterior estimations into a new η̃ (or θ̃). The last line in eq. (3) minimizes the difference

2. One can re-write θi = θ + ci in the canonical form of Bayes’ rule in the η-coordinates.
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(a)

f = Csmall

f = Clarge

(b)

Figure 1: (a) The low-entropy region {η : −ϕ(η) ≤ C} in S2, where C ≈ 0.6; (b) A
constrained optimization min f(η), s.t. −ϕ(η) ≤ C. f(η) is showed by the blue
contours.

between θ and its image η̃ after the first and second equations, under the intuition that a
locally optimal θ should coincide with η̃. Note, E1 is exactly the Kullback-Leibler (KL)
divergence from η̃ to θ. This learning is supported by the following propositions.

Proposition 1 E1(θ) ≥ 0; E1(θ) = 0 if and only if θ is a stationary point of the log-
likelihood function L(θ) =

∑n
i=1 log p(Xi |θ).

Proposition 1 says that E1(θ) is an “indicator function”, reaching its minimum at, and
only at, the stationary points of L(θ). The proof is straightforward by writing L(θ) =∑n

i=1 log
∑

Y

(
p(Y |θ) p(Xi |Y )

)
and computing its differential according to eq. (1).

Proposition 2 (1) gradL = n(η̃ − η)∂η; (2) gradEτ =
(
η − η̃ + ∂η̃

∂θ (τ θ̃ − θ)
)
∂η.

Proposition 2, which can be derived from the definition of the natural gradient introduced
earlier and eqs. (2) and (3), gives the natural gradients of L(θ) and Eτ (θ). It shows
that minimizing E1(θ) instead of maximizing L(θ) benefits from another gradient term
pulling together θ and θ̃. This explains the faster convergence of learning as a two-body
problem (Amari, 1995). Here, the two bodies θ and η̃, which are marginal distributions
p(Y ), and the learning gradient flow are all in one simple space Sm. Equation (3) is just one
(representative) method in a widely-studied spectrum. Therefore, the information geometric
analysis in the following subsection 2.2 could be useful in more general contexts.

2.2. Sparsity on Statistical Simplexes

The η-coordinates expose a hierarchy of statistical manifolds. This allows us study singular
regions (Amari et al., 2006) and impose sparsity on Y . The closed simplex Sm is a manifold
with boundary (Lee, 2012), where any point has a neighborhood which is like an open
subset of Rm+ = {α ∈ <m : α1 ≥ 0}. There are “corners” in Sm, which do not satisfy such a
property. They are less interesting and will be ignored in subsequent discussions. A face of
Sm is a statistical manifold with exactly the same structure as Sm but one less dimension,
corresponding to the sparse case where some bit of Y is deactivated. This paper considers
the learning dynamics on Sm as a whole without excluding ∂Sm. A learner can go from
inside Sm to ∂Sm or the other way round.
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A natural idea to make Y sparse is to penalize the entropy −ϕ by setting τ < 1 in
eq. (3). This gives an intrinsic regularization as the entropy is invariant to the choice of
the coordinate system. This can be understood by the fact that ϕ(η) is the KL-divergence
from η to the simplex center plus some constant. To gain some intuitions, consider S2.
Figure 1(a) shows the low entropy region {η : −ϕ(η) ≤ C}, where C ≈ 0.6. Such a region
has some sharp corners, which can easily trap the optimizer of a constrained problem
min f(η), s.t. −ϕ(η) ≤ C, where f(η) is a smooth function on S2. This is only an intuitive
view in the η-coordinate system. Formally, we have to consider the smoothness of the
learning cost function Eτ in eq. (3). A smooth function f on the manifold with boundary
Sm means that the differentials of f continuously extend to an open neighbourhood of η in
<m for any η ∈ Sm. Even if η is a bit outside Sm, these differentials are still well-defined.
We have the following result 3.

Theorem 3 Assume that ∀j,∃i, s.t. p(Xi |Yj = 1) > 0. Then, (1) E1 is a smooth func-
tion on F = {η ∈ Sm | ∀i, p(Xi |η) > 0}; (2) ∀τ < 1, Eτ is continuous on F but non-
differentiable on {η ∈ F : ∃j, ηj = 0;∀i 6= j, ηi > 0}.

In the above theorem 3, the assumption means that any bit in Y is associated to at least one
observation Xi, otherwise it can be removed without affecting the system. F is a feasible
region consisting of all such η that “covers” all observations. If there is some redundant
bit(s) in Y that can be deactivated, then F ∩∂Sm 6= ∅. The smoothness of E1 does not rely
on the choice of the coordinate system and therefore reflects an intrinsic property. A learner
based on E1 is “unaware” of ∂Sm, meaning that it does not treat ∂Sm in a particular way.
During learning, it could go from inside Sm to ∂Sm or the other way round. Often, it tends
to go from ∂Sm to inside Sm, because a model inside Sm has a higher complexity and a
higher potential likelihood.

By making τ smaller than 1, Eτ becomes non-differentiable on ∂Sm. This reveals an
interesting relationship with sparsity on <m (Ng, 2004). L1 norm, which is non-differentiable
on {α ∈ <m : ∃j, αj = 0}, is used to enforce sparsity on <m. The entropy function −ϕ,
which is non-differentiable on ∂Sm, is used to enforce sparsity on Sm. The level sets of ϕ
have the form dϕ =

∑m
j=1 ∂ϕ/∂ηjdηj =

∑m
j=1 θjdηj = 0. This differential representation

is similar to the level sets of L2 norm in an Euclidean space. This helps to understand
why ϕ plays a similar role of a norm. Theorem 3 tells that the surface of Eτ is singular on
∂Sm, but it does not describe its gradient flow near ∂Sm inside Sm. This is covered by the
following theorem.

Theorem 4 If τ < 1, 〈gradEτ , ∂/∂ηj〉g →∞ as ηj → 0+ inside F .

Remark 5 Although the statement is based on η-coordinates, the natural gradient gradEτ
is invariant to the coordinate system. In another coordinate system ζ, gradEτ is still
“inward”, meaning it flows from ∂Sm to inside Sm.

As we are minimizing Eτ in eq. (3), learning is along the vector field −gradEτ . Theorem 4
says that whenever the learner approaches ∂Sm from inside Sm, and ηj becomes small
enough, it will go to ∂Sm. Therefore, there is a continuous “attractive region” near ∂Sm,

3. See the appendix at http://cui.unige.ch/~sun/acml2014supp.pdf for the proofs.
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where any η will be pulled into ∂Sm. The size of this region depends on τ . If τ is slightly
smaller than 1, the surface of Eτ is only bent down near ∂Sm. As τ turns smaller, the
attractive region widens. This also means that a learner can only reach ∂Sm from inside
Sm but not go from ∂Sm to inside Sm. From an algorithmic perspective, the problem scale
is reduced during optimization. Learning becomes more and more efficient. On the other
hand, any local optimum solution on ∂Sm also has such attraction to a leaner inside Sm. If
the learner falls into ∂Sm and deactivates a bit of Y that is in the global optimal solution,
there is no way to reverse it in subsequent learning. The optimization must carefully explore
the feasible region inside Sm before falling into ∂Sm.

Consider Eτ as a function of (θ, η̃) ∈ Sm×Sm and the case 0 ≤ τ < 1. By ∂Eτ/∂η̃ = 0,
we get τ θ̃ = θ. As the absolute value of θ is large near ∂Sm, minEτ causes an isotropic
scaling θ → η̃ towards ∂Sm in the θ-coordinate system. From a second-order view, the
Hessian of Eτ is

H =

[
g(θ) −I
−I τg(η̃)

]
, (4)

where g is FIM. Eτ is convex with respect to θ and η̃ individually. The joint convexity is
guaranteed if and only if τg(η̃) � g−1(θ), which is equivalent to τg(η̃) � g(η). By simple
derivations, |g(η)| turns large as η moves from the simplex center to ∂Sm. Therefore, the
joint convexity of Eτ means that η̃ should be closer to ∂Sm as compared to θ. This scaling
in the θ-coordinates forms a mechanism, making the two-body system to be likely to reach
∂Sm. Note, we do not consider the case τ < 0, when Eτ is concave with respect to η̃ and
easily causes trivial solutions without strong constraints.

3. Application to Graph-based Ranking

Consider a social network given by a directed graph G = (V; E), where V are the nodes,
and E ⊂ {(i, j) : i ∈ V; j ∈ V} are the links. Each link (i, j) ∈ E from node i to node
j is associated with a weight wij > 0. Usually, (i, j) means that j can influence i with
the strength wij . For example, in twitter, (i, j) means that i reads micro-blogs posted by
the individual j; in citation networks, (i, j) means that the article i is based on a previous
article j. A subset VI ⊂ V of size |VI | = m, referred to as the influencers, are considered as
potential candidates to emit influence. Their states of being chosen can be represented as an
m-dimensional latent binary vector Y as in section 2. Without loss of generality, we set VI to
be the set of nodes with at least one incoming link. On the other hand, a target population
VO ⊂ V, characterized by the random variable X, plays the role of receiving influence. By
default, we set VO to be all nodes in V with at least one out-going link. An influencer in VI
indexed by j (1 ≤ j ≤ m) can influence any node in VO indexed by i (1 ≤ i ≤ n) according
to a given influence matrix Fm×n. F gives the conditional distribution p(X |Y ) such that
∀j,∀i, Fji ≥ 0 and ∀j,

∑n
i=1 Fji = 1. F is usually sparse, pre-computed according to the

graph structure and the link weights. We let

Fji =

{
wij/

∑
i:i→j wij if (i, j) ∈ E ;

0 if otherwise,
(5)

meaning that an influencer j influences each of its predecessors with a strength proportional
to the link weight. Based on the modeling in section 2, a prior distribution η = (η1, . . . , ηm)
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can be learned, where ∀j, ηj is the probability of activating the influencer j. This η can be
used to rank the influencers while presenting diversity in the ranking results.

Ranking Consider an information diffusion process in a social network G. A piece of
information, e.g. marketing material, is first distributed to an influencer j then passed to
the network according to Fj•. In such a two-step scheme, maximizing the log-likelihood∑n

i=1 log p(Xi |η) means to maximize the influence coverage. The maximum likelihood
solution means an optimal scheme to allocate the information source. It tells that some
influencers with large weights are preferred among the others in distributing information. By
eq. (3), ηi means that given an influenced nodeXi, how likely such influence comes from each
influencer. Therefore, η̃ means the percentage of actual influenced nodes in {X1, . . . , Xn}
by each influencer. Minimizing E1 in eq. (3) means that the random influencer should be
placed according to its effective influence.

Diversifying The objective of diversification corresponds to sparsity of Y as discussed
in section 2. Making Y sparse, i.e. making certain influencers deactivated, helps to save
resources in real world applications. For example, only a limited number of marketing
personnels have to be deployed for broadcasting a piece of information.

In the following, we study several simple cases of the proposed optimization, so that one
can better understand the result ranking.

Proposition 6 Consider the influencers VI = V1∪V2∪· · · . ∀ı 6= , pred(Vı)∩pred(V) = ∅,
where pred(·) is the set of predecessors. Denote the optimal solution of eq. (3) on the whole
graph as η?. Denote the optimal solution on the sub-graph induced by Vl ∪ pred(Vl) as η?l .
Then ∀τ ≥ 0, ∀j ∈ Vl, η?j = η?lj |pred(Vl)|/|pred(VI)|.

The condition in proposition 6 means that G can be partitioned into sub-graphs so that any
two sub-graphs do not share a common influencer. Proposition 6 says that the distribution
of η?j among the sub-graphs is proportional to the size of the target population. A random
influencer is more likely in populated regions. In a sub-graph, if the number of influencers
is large but the target population is small, there will be more competitions among the
influencers, in the sense that only a small percentage of influencers will be activated. The
optimal η? can be obtained by individually solving eq. (3) on the sub-graphs and assembling
them based on proposition 6.

Proposition 7 ∀j, |upred(j)|/|VO| ≤ η̃j ≤ |pred(j)|/|VO|, where upred(j) means the iso-
lated predecessors of j having only j as their successor.

Proposition 7 gives an upper bound and a lower bound of η̃. Consider that η? and η̃?

should be similar, this gives an estimated range on the resulting η?. An influencer with at
least one isolated predecessor cannot be deactivated, because its isolated predecessor(s) can
only be influenced by it. An influencer j with many isolated predecessors is likely to have
a large value of η?j and a high rank.

3.1. Implementation

We implemented an optimizer for eq. (3), focusing on the case τ = 0 with very efficient
optimization. This is because E0 has the simplest expression and gives the most sparse
solution, which is preferred in our social analysis. We call this ranking method “diversify”.
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The optimizer is based on the natural gradient (Amari, 1998). Recall from section 2
that the natural gradient of a function is a vector field that is invariant to the choice of
the coordinate system. We choose the spherical coordinates β = (β0, β1, . . . , βm), so that
∀j = 0, . . . ,m, βj =

√
ηj . Lebanon (2003) proved that FIM is “equivalent” to the embedded

Euclidean geometry on the hyper-sphere {β}. We further have the following propositions.

Proposition 8 For any smooth function f on Sm,

gradf =
1

4
(I − ββT )

∂f

∂β
· ∂β =

1

2

m∑
j=0

βj

 ∂f

∂ηj
−

m∑
j=0

ηj
∂f

∂ηj

 ∂βj , (6)

where I is the identity matrix.

Proposition 9 ∀j, ∂E0/∂ηj = −
∑

i:i→j η
i
j(1 + log ηj −

∑m
j=0 η

i
j log ηj)/(nηj).

Equation (6) is exactly the projected gradient on the hypersphere {β} up to constant scaling.
Proposition 8 gives an easy way to apply and understand natural gradient. To optimize
any cost function f(η0, . . . , ηm) on Sm, one can regard η0, . . . , ηm as independent variables,
compute ∂f/∂ηj , ∀j = 0, . . . ,m, and then compute the natural gradient by proposition 8.

First, β0 is randomly initialized, so that the corresponding η0 is roughly uniform for all
influencers. Then we update βt+1 (t = 0, 1, . . . ) until convergence following the rule

βt+1 ← βt − γgradE0

‖βt − γgradE0‖
,

where γ > 0 is a small learning rate, ‖ · ‖ is 2-norm, and gradE0 is given by propositions 8
and 9. An intuitive explanation of the learning process is in subsection 4.2.

Despite that the proposed optimization is non-convex and hence does not guarantee a
global optimum solution, we find that its convergence is quite fast. To get a rough idea,
fig. 2 shows the evolution of E0 in the first 100 iterations on a DBLP collaboration network
and an autonomous system network. In both cases, the convergence is reached in ∼30
iterations. Such fast convergence guarantees scalability. By our C++ implementation, to
compute β on a graph of ∼1.5 million nodes only costs minutes on a normal PC.

0 20 40 60 80 100
#iterations
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Figure 2: E0 against the number of iterations
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4. Discussion on Related Works

4.1. Bayesian methods

From a Bayesian perspective (Bishop, 1995), the i.i.d. observations {Xi} induce on Sm
a posterior distribution p(η | {Xi}) ∝

∏
i

(∑
Y p(X

i |Y )p(Y |η)
)
p(η). It is natural and

interesting to view such a Bayesian inference on Sm as a manifold with boundary.
Consider the scenario to find an optimal η? ∈ Sm. The log-likelihood L =

∑
i log(

∑
Y

p(Xi |Y )p(Y |η)), or a learning cost function derived from L, is in general smooth on a
feasible region F ⊂ Sm, meaning that deactivating some bits in Y could bring down the
value of L but does not create singularities. The learning dynamics near ∂Sm largely
depend on the prior distribution p(η). Traditional maximum likelihood learning uses flat
priors, i.e. pU (η) ∝ 1, resulting in a learner who is unaware of ∂Sm. This is shown by the
smoothness of E1 in theorem 3. Jeffrey’s prior (1946) is proportional to the Riemannian
volume element (Lee, 2012) such that pJ(η) ∝ |g(η)|1/2. It is non-informative, treating

different points on Sm intrinsically equally. We give without proof that pJ(η) ∝
∏m
j=0 η

−1/2
j .

This leads to an inward flow that is similar to theorem 4 due to the non-smoothness of log t
at t = 0. Such a similarity could partially justify the setting τ < 1 used in this paper.
Because pJ(η) → ∞ as η → ∂Sm, pJ(η), as well as p(η | {Xi}), is not continuous on Sm.

It is easy to see that the prior used in this paper is pD(η) ∝
∏m
j=0 η

(1−τ)ηj
j

4. Similar to
pJ(η), it has a concave shape on Sm. The difference is that it dampens pJ(η) near ∂Sm
with a finite value on ∂Sm, meaning that sparsity instead of small values of ηj is preferred.
It yields a continuous p(η | {Xi}) on Sm, which is elegant in theory and establishes a global
Bayesian view on Sm.

The model Sm can be assessed by evaluating p({Xi}) =
∫
η∈Sm p({Xi} |η)p(η)dη. If

pJ(η) is used, the boundary regions occupy a large percentage of the total volume. For
example, the volume of the region {η ∈ Sm : ∃j, ηj < 0.05 or ηj > 0.95} is at least (1−0.9m)
times the total volume of Sm. pJ(η) as a non-informative prior emphasizes too much on
such regions. As a result, the model assessment is largely based on such η with many small
non-zero values of ηj ’s. This can be understood as a curse of dimensionality (Bellman, 1957)
on the parameter manifold. pD(η), as a weakly informative prior, puts focus on the center of
Sm with sufficient large ηj ’s. It could favor a simple model Sm over a complex model Sm+1,
if the maximum likelihood solution on Sm+1 is near ∂Sm+1, while the maximum likelihood
solution on Sm is near the center. This essentially agrees with the idea of sparsity.

This work is connected to previous studies on singularities on statistical manifolds,
where FIM is not well-defined (Amari et al., 2006; Cousseau et al., 2008; Park and Ozeki,
2009). Interestingly, we demonstrated that singularities can be helpful to learning, which
is in contrast to the cases where singularities make learning difficult (Amari et al., 2006).

4.2. Diversified Ranking in Information Retrieval

Several proposals have been made for modeling and encouraging diversity in ranking. An
extensive review of these works is proposed in (Raman et al., 2013). In summary, diversity
is encouraged in ranked lists by modeling novelty and performing re-ranking (Carbonell and

4. Actually pD is imposed on η̃ instead of η. We omit such a difference as η̃, just like η, is one of the two
bodies in the learning dynamics.
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7 8 9 10
11

Node InDegree PageRank Diversify

1 1 3.3% 0
2 7 38.4% 68.1%
3 1 34.3% 10.0%
4 1 3.9% 0
5 6 8.1% 21.9%
6 1 3.9% 0
7 0 1.6% 0
8 0 1.6% 0
9 0 1.6% 0
10 0 1.6% 0
11 0 1.6% 0

Figure 3: A toy network from http://en.wikipedia.org/wiki/PageRank

Goldstein, 1998) following the Cascade Model of user behavior (Clarke et al., 2011). Query
reformulation (Santos et al., 2010) also goes in the line of document re-ranking. Diversity
may be associated with the inclusion of risk in the document ranking process. Risk may be
viewed as ranking high novel but less-relevant documents (Wang and Zhu, 2009) or from
the point of view of satisfying user intent (Agrawal et al., 2009). Alternatively, diversity
may be embedded into the process of learning-to-rank by maximizing the expected user
satisfaction over probable rankings (Radlinski et al., 2008; Slivkins et al., 2013).

PageRank

The widely-applied PageRank (Page et al., 1999) can be formulated by replacing the first
two equations in eq. (3) with η̃ = ATη, where Aij = (1 − ν)/n + νδij/deg(i), δij = 1 if
(i, j) ∈ E and δij = 0 if otherwise, and ν = 0.85 is a damping parameter. In this case,
the problem can be solved with fixed point iterations η ← η̃. Comparatively, an updating
scheme 5 of η based on proposition 2 is given by

ηj ← (1− γ)ηj +
γ

n

n∑
i=1

(
1 + θj − θTηi

)
ηij , (7)

where γ is a learning rate. They both can be understood as a voting process. In PageRank,
each node j votes for its successors uniformly, weighted by the current αj . The amount
of votes received by each node j determines the new value of αj . In eq. (7), the voting
is neither uniform nor strictly positive. For each predecessors i of node j, if θj is smaller
than the threshold (θTηi − 1), then node i casts a negative vote to node j. In this way, i
chooses strong candidates from its successors and penalizes weak candidates. A compact
list of candidates can be elected. In the toy example in fig. 3, diversify only selects three
influencers, while most nodes are deactivated. For example, node 6 in the graph receives
zero weight, because its predecessor node 5 is already influenced by node 2.

5. This is only an intuitive view. The learning is in the β-coordinates as explained in section 3.1.
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Table 1: SNAP datasets used in the experiments
Dataset #nodes #edges Directed description

p2p-Gnutella04 10,876 39,994 Yes Gnutella peer to peer network
p2p-Gnutella05 8,846 31,839 Yes Gnutella peer to peer network
p2p-Gnutella06 8,717 31,525 Yes Gnutella peer to peer network
web-BerkStan 685,230 7,600,595 Yes Web graph of Berkeley and Stanford

soc-Pokec 1,632,803 30,622,564 Yes Pokec online social network
cit-Patents 3,774,768 16,518,948 Yes Citation network among US Patents
com-DBLP 317,080 1,049,866 No DBLP collaboration network

com-Amazon 334,863 925,872 No Amazon product co-purchase network
com-Youtube 1,134,890 2,987,624 No Youtube online social network

5. Experiments

In this section, we evaluate the proposed ranking algorithm on real data. We select several
medium-to-large networks from Stanford large network dataset collection (SNAP)6. The
datasets used cover various domains as shown in table 1.

5.1. Spread Information

We investigate how the ranking approaches can influence the network by spreading infor-
mation. We select 5 different algorithms: Random (random selection), Indegree (ranking
by indegree), Grasshopper (a graph-based ranking algorithm achieving both diversity and
centrality (Zhu et al., 2007)), PageRank (Page et al., 1999) and Diversify. For each al-
gorithm on each dataset, we extract the top-ranked nodes (seeds) and count the number
of nodes that can be influenced by them, that is, the number of nodes that link to these
seeds. This performance measurement makes sense in numerous applications, such as find-
ing valuable nodes for content distribution networks (CDN), or finding impactive patents
in patent-citation networks. Simply picking the mostly-linked nodes is likely to fail in such
tasks, because a pair of well-connected nodes often have high-overlap in their influence.

Figure 4 shows the number of influenced nodes against the number of seeds. It is clear
that the proposed algorithm most effectively covers the network, followed by Grasshopper,
PageRank and Indegree. Random performs the worst as expected. Grapsshopper selects
nodes in a greedy manner. To select each node requires a large matrix inversion. It fails
to operate in reasonable time on large datasets with millions of nodes, and thus no corre-
sponding result is shown.

The good performance of Diversify as compared to Grasshopper that is designed for
a similar purpose is explained as follows. Diversify is capable of global coordination: an
influencer with large indegree but bad cooperation can be kicked out. Grasshopper is a
greedy algorithm. If a bad influencer is already selected, there is no way to reverse it.
Diversify performs better in network coverage and computation efficiency.

6. https://snap.stanford.edu/data
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Figure 4: The percentage (y-axis) of unique nodes that link to the top-k nodes with respect
to k (x-axis)
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(b) Amazon
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(c) Youtube

Figure 5: The number of ground-truth communities (y-axis) (among the top 5000 commu-
nities on different social networks) covered by the top-k-ranked nodes against k
(x-axis), with k ranging from 100 to 10,000

5.2. Community Coverage in Social Networks

Consider social networks where the users form communities. In many applications, the goal
of ranking is to identify representative individuals (Chen et al., 2009; Sun et al., 2013), who
are both well-connected individually, and involve in diverse communities. For example, in
scientific collaboration networks, it is a common task to select researchers in distinct sub-
areas for organizing events. We use datasets with ground-truth communities and keep these
ground-truth from the ranking algorithms. We evaluate the ranking results by counting the
number of communities covered by the top-ranked nodes.

We select 3 social networks: 1) DBLP computer science collaboration network, where the
links represent co-authorships between authors, and the communities are defined by publica-
tion venue, etc. 2) Amazon product network, where the links represent frequently-occurred
co-purchases between products, and the communities are defined by product categories.
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3) Youtube social network, where the links are user friendships, and the communities are
user-created groups on this platform. For each dataset, 5000 high quality ground-truth
communities are known ahead (Yang and Leskovec, 2012). Unfortunately, we did not
find any publicly-available directed graph with ground-truth community information. The
proposed approach can handle these undirected graphs by replacing each edge with two
opposite-directed links. We remove Grasshopper from the comparison, because it does
not scale well on large datasets as shown in section 5.1. We compare another technique,
Degree-discount (Chen et al., 2009), a simple heuristic for undirected graphs, which can
effectively select nodes to maximize their influence spread.

Figure 5 shows the number of communities covered by the top-k-ranked nodes against
k, where k ranges from 100 to 10,000. We assume that for even larger values of k, the
community coverage is less interesting, because selecting more seeds usually implies costing
more resources. On small values of k, all methods perform similarly. The difference shows
up as k increases. We see that in general Diversify is among the top methods that cover
the largest number of communities. Degree-discount also achieves good performance
as compared to PageRank and Degree on the first two datasets. The good performance of
Random on the Amazon dataset is because the product-categories are small-size communities
which are likely to be disjoint. A large co-purchase number does not guarantee high coverage
of such communities. This is different from social networks, where popular individuals tend
to belong to more communities. However, the seed quality by Random is expected to be
lower than Diversify, because Diversify considers the link structure and selects nodes
with high degrees. On Youtube, the community distribution is much more sparse. Around
90% individuals are not signed up in any communities. If k is below 5,000, counting the
most active individuals by Indegree effectively covers different communities. On the range
from 5, 000 to 10, 000, Diversify still performs best (note that x-axis is log-scale).

5.3. Graph-based Movie Ranking

To apply the proposed method to a real-world ranking scenario, we select the MovieLens

dataset7 consisting of ∼10 million 5-star-ratings from ∼72,000 users to ∼10,000 movies. We
check whether each user gives at least 4.5 stars to each movie, resulting in a directed user-
rate-movie graph with 78,377 nodes and 2,129,834 edges. We also check whether each pair of
movies are simultaneously rated higher than 4.5 by at least 10 users. The largest connected
component gives an undirected movie-co-like graph with 5,316 nodes and 1,594,531 edges.

Table 2 shows the top-ranked movies based on the co-like graph 8. The top-15 by
PageRank concentrated on movies in the 1990s. There are two episodes of “Star Wars”,
which are similar in contents. Diversify presents a wider range in the sense of release-
time. It could therefore satisfy more users. It discovers non-English movies like “Wooden
Man’s Bridge”. An interesting observation is that it selects more old classical movies like
“Citizen Kane”. Such an observation is consistent when we vary the settings such as the
threshold of simultaneous co-likes (which is set to 10 in this experiment) used to construct
the co-like graph. Table 3 shows the coverage of the top-ranked movies. Movie coverage
is based on the number of movies directly linked to the top list in the movie-co-like graph.

7. The 10M dataset at http://grouplens.org/datasets/movielens/ is used.
8. See http://imdb.com for related information of the movies.
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Table 2: The top-15 movies on the MovieLens dataset based on co-like relationships. The
unique movies discovered by Diversify are displayed in bold.

Rank PageRank Diversify

1 Pulp Fiction (1994) Pulp Fiction (1994)
2 Shawshank Redemption (1994) Star Wars IV - A New Hope (1977)
3 Matrix (1999) Shawshank Redemption (1994)
4 Godfather (1972) Godfather (1972)
5 Star Wars IV - A New Hope (1977) Matrix (1999)
6 Silence of the Lambs (1991) Secret Agent (1996)
7 American Beauty (1999) Wooden Man’s Bride (1994)
8 Fargo (1996) Forrest Gump (1994)
9 Forrest Gump (1994) Fargo (1996)
10 Raiders of the Lost Ark (1981) Citizen Kane (1941)
11 Sixth Sense (1999) For the Moment (1994)
12 Schindler’s List (1993) Lord of the Rings: The Two Towers (2002)
13 Star Wars V (1980) Sixth Sense (1999)
14 Usual Suspects (1995) Dr. Strangelove (1964)
15 Fight Club (1999) American Beauty (1999)

Table 3: Movie coverage among 5,316 movies and user coverage among 68,860 users by
the top-ranked movies. The “Sparsity” column shows the percentage of movies
weighted greater than 10−7 based on the rankings in the co-like graph.

Movie Coverage User Coverage Sparsity
top-10 top-100 top-10 top-100

PageRank 5055 5236 50497 65639 100%

Diversify 5058 5301 52042 66182 2.45%

User coverage is based on the number of users linked to the top list in the user-rate-movie
graph. In both cases, Diversity is able to cover more movies or users. Unlike PageRank,
its ranking is sparse, meaning that the majority movies receive a score of zero. This could
be useful in scenarios such as purchasing a small number of representative movies.

6. Conclusion

We present an information geometric analysis on the sparsity on Sm. The discovery of the
inward flow near ∂Sm helps to understand the learning dynamics and the model variation.
We advocate a weakly informative prior derived from the negative entropy function. It is
continuous on Sm and is meaningful in Bayesian inference and model selection. We apply
the proposed sparsity technique on graph-based ranking problems to enforce diversity. It
scales to social graphs with tens of millions of nodes. In our experiments, the proposed
method most effectively covers social networks among several commonly-used techniques.
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