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Abstract

We consider a direct mail problem in which a system repeats the following process everyday
during some period: select a set of user-item pairs (u, i), send a recommendation mail
of item i to user u for each selected pair (u, i), and receive a response from each user.
We assume that each response can be obtained before the next process and through the
response, the system can know the user’s evaluation of the recommended item directly or
indirectly. Each pair (u, i) can be selected at most once during the period. If the total
number of selections is very small compared to the number of entries in the whole user-
item matrix, what selection strategy should be used to maximize the total sum of users’
evaluations during the period? We consider a UCB-like strategy for this problem, and
show two methods using the strategy. The effectiveness of our methods are demonstrated
by experiments using synthetic and real datasets.

Keywords: bandit problem, online learning, collaborative filtering, recommender systems

1. Introduction

Assume that you have a web site for members and are planning a promotion campaign of
new digital content service, in which you send an email of content’s recommendation to a
part of members every day during the period. Each email contains a link to the selling site
of the recommended content, and the information of user’s site access and content purchase
through the link can be obtained. The goal is to maximize the profit of selling through the
recommendation link during the campaign period under the condition that the number of
user-content pairs recommended each day is restricted to some number ℓ. To achieve the
goal, what set of users should be chosen and what content should be recommended to each
chosen user on the ith day of the n-day period for i = 1, 2, ..., n? We call this problem a
direct mail problem.

In this paper, we consider collaborative filtering approach to this problem, in which
information used for learning user’s preference is user’s response alone and no feature of
users and contents is used, where each user’s response can be converted to a profit value
represented by a real number.

The direct mail problem is a bandit problem (Auer et al., 2002), in which profit value r
of content j for user i can be obtained only through i’s response to the recommendation
of j. This means that each recommendation must be done taking into account not only
maximizing its profit but also obtaining the best training data for larger future profit. In
batch learning collaborative filtering (Goldberg et al., 1992), training data is given and max-
imizing the next recommendation profit only is considered. In active learning (Jin and Si,
2004), obtaining the best training data for larger future profit alone is counted. In general,
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the best data for learning does not coincide with the data with the highest rating, so ex-
ploration (necessary for learning) and exploitation (necessary for maximization of the next
profit) must be balanced in a bandit problem.

In stochastic setting, the most successful bandit algorithm is the UCB (Upper Confidence
Bound) algorithm proposed by Auer et al. (2002). The UCB algorithm uses the upper limit
of a confidence interval of an estimated profit as a selection index instead of the estimated
profit itself to balance exploration with exploitation. In this paper, as a UCB-like index of
a random variable X whose Posterior distribution is D, we use ED(X) +α

√

VD(X), where
ED(X) and VD(X) are the mean and variance of X with respect to D and α is a parameter
that balance exploration with exploitation. Concretely speaking, we consider a stochastic
matrix factorization model in which rating Rij of item (content) j by user i is assumed
to be generated according to a normal distribution with mean U⊺

i Vj , which is the inner
product of two latent vectors Ui and Vj. From 0-mean priors of Ui and Vj , and observations
of Rij for some (i, j), posteriors of Ui and Vj are approximated by normal distributions.
By assuming independence of Ui and Vj , the mean and variance of U⊺

i Vj with respect to
the approximated posteriors can be calculated. As methods for posterior approximation,
we propose two methods: approximation by variational bayes (VB) (Lim and Teh, 2007)
and approximation by probabilistic matrix factorization (PMF) (Mnih and Salakhutdinov,
2008).

According to our simulation results of the direct mail problem using one synthetic and
two real datasets, our bandit method by VB approximation with an appropriate value of α
outperformed VB. Our bandit method by PMF approximation also performed better than
PMF for all but one of the datasets. For one very biased real dataset, simple selection
of items with the highest average of observed ratings performed better than our bandit
methods, but the VB-approximate bandit method performed best for the synthetic and the
other real datasets. These results demonstrates effectiveness of our bandit methods for the
direct mail problem.

This paper is organized as follows. In the rest of this section, we describe work related to
our study. Basic stochastic matrix factorization is introduced in Sec. 2, and the direct mail
problem is defined in Sec. 3. We propose a UCB-like strategy for the problem in Sec. 4 and
two approximation methods necessary to use the strategy are explained in Sec. 5 and Sec. 6.
The relation between the two approximations are discussed in Sec. 7. The effectiveness of
our UCB-like strategy is empirically demonstrated through a simulation of the direct mail
problem using synthetic and real datasets in Sec. 8. Our conclusion and future work are
described in Sec. 9.

Summary of Contributions

• Our proposed method is the first bandit collaborative filtering method that determin-
istically selects user-item pairs using an index which depends on both the covariance
matrices of the posterior distributions of latent user and item vectors. The method
using Thompson sampling proposed by Zhao et al. (2013) is not deterministic method
that was used to select items for a user as a solution of the new user problem.
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• As methods to obtain something close to those covariance matrices, we proposed
approximation methods using VB and PMF, which enabled the implementation of
the above bandit collaborative method.

1.1. Related Work

Researches on both bandit problem (Auer et al., 2002) and collaborative filtering (Goldberg et al.,
1992) are very popular and a lot of work has been done so far. Recently, Zhao et al.
(2013) proposed iterative collaborative filtering which models the bandit-problem aspect of
collaborative filtering: iterations of recommendation and rating feedback while balancing
exploration for learning user’s preference and exploitation for maximization of the next feed-
backed rating. Though our direct mail problem is also a kind of iterative collaborative filter-
ing, they mainly considered user-centric scenario and assumed that the latent feature vector
of each item was already well-learnt while both the latent feature vectors of users and items
are treated equally and must be learnt in our setting. They dealt with user-centric scenario
because the main target of their study is cold-start problem in which recommender system
must recommend a new user some items that already have ratings enough. Under the as-
sumption that item feature vectors are already well-learnt, PMF (Mnih and Salakhutdinov,
2008) becomes ridge regression and its UCB-like version LinUCB (Li et al., 2010) is appli-
cable. In direct mail problem, however, LinUCB cannot be used because such assumption
does not seem appropriate. Among the bandit methods applied to iterative collaborative
filtering (Zhao et al., 2013), only Thompson sampling (Chapelle and Li, 2011) is applicable
to direct mail problem instead of our UCB-like strategy though the performance variance
may become large.

2. Basic Model of Stochastic Matrix Factorization

Assume that there are m users and n items, and users rate some items by real value. Let
U = {1, 2, ...,m} be the set of user ids and let V = {1, 2, ..., n} be the set of item ids. The
users’ ratings are represented by a partially observable m× n matrix R, whose (i, j)-entry
value is the rating of item j ∈ V by user i ∈ U , and the basic collaborative filtering task is
to predict the unknown entry values from the known entry values.

One of the most popular prediction method is matrix factorization (Koren et al., 2009)
in which R is approximated by a product of m× k matrix U⊺ and k × n matrix V , where
k is a small natural number and U⊺ denotes the transposed matrix of U . In this approach,
the task is to find matrices U and V such that the observable entry values of R are fit to
the corresponding entry values of U⊺V . Since the (i, j)-entry value Rij of R is predicted by
the inner product of two vectors Ui and Vj , which are the ith and jth columns of U and
V , respectively, this task can be seen as the task to find a vector Ui for each user i and a
vector Vj for each item j from the observable entry values of R.

Through this paper, we adopt a basic model of stochastic matrix factorization, which
is represented by the graphical model shown in Figure 1. In this model, the vector Ui for
each user i and the vector Vj for each item j are assumed to be independently generated
according to distributions DU (ΘU ) and DV (ΘV ), respectively, where ΘU and ΘV are lists
of the parameters of the distributions.
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Figure 1: Basic model of stochastic matrix factorization

Given a vector Ui for user i and a vector Vj for item j, we assume that the rating Rij is
generated according to the normal distribution with mean U⊺

i Vj and variance σ2, that is,

Rij |Ui, Vj ∼ N (U⊺

i Vj, σ
2).

3. Direct Mail Problem

We consider a kind of a recommendation problem as follows. There arem users and n items.
Every day during h-day period, we select ℓ user-item pairs (i, j) from mn-sized set U × V
and send user i an email with recommendation of item j for each selected pair (i, j). The
same user must not be selected more than once on the same day but the same item can1.
User’s feedback to the recommendation can be obtained as a form of its rating for each
email within the recommended day. (In real situation, a user’s behavior such as clicking
the link and buying the item may be converted to a rating.) The objective is maximization
of the sum of ℓh ratings that are feedbacked to the recommendations. The total number
ℓh of recommendations is assumed to be vary small compared to the number mn of all the
user-item pairs. In this paper, we call this problem a direct mail problem.

4. UCB-like Strategy for Direct Mail Problem

We consider the following UCB-like strategy for a direct mail problem. Assume the stochas-
tic matrix factorization model in Sec. 2. Let rij denote the observed value of Rij and let
O denote the set of observations (i, j, rij) obtained so far. Then, the posterior distribu-
tions Di

U (ΘU , O) of Ui can be different depending on user i and the posterior distributions

Dj
V (ΘV , O) of Vj can be also different depending on item j.
Let ui,vj denote the means of Ui, Vj and let ΣU,i,ΣV,j denote the covariance matrices

of Ui, Vj for the posterior distributions Di
U (ΘU , O) and Dj

V (ΘV , O), respectively. Then,
under the assumption that Ui and Vj are independent from each other on their posterior

1. We add this restriction because too many recommendations to the same person at the same time
is trivially undesirable. Some relaxation of this restriction, however, may improve recommendation
performance.

318



A UCB-Like Strategy of Collaborative Filtering

distributions,

E(U⊺

i Vj) = u
⊺

i vj and

V (U⊺

i Vj) = Tr(Σ⊺

U,iΣV,j +Σ⊺

U,ivjv
⊺

j + uiu
⊺

iΣV,j)

hold, where Tr(·) denotes the trace of a square matrix ‘·’. Unfortunately, the possibility that
the above independence assumption holds is little because an observation (i, j, rij) relates
Ui with Vj. So, we calculate E(U⊺

i Vj) and V (U⊺

i Vj) using the above expression not for
the exact joint posterior distribution of Ui and Vj , but for its approximation in which the
distributions of Ui and Vj are independent from each other.

The UCB (Upper Confidence Bound) strategy (Auer et al., 2002) uses the upper limit
of a confidence interval of an estimated rating as its selection index so as to increase the
chance of selecting an item with a small number of its past selections that causes a wide
confidence interval of its estimated rating. Applying this idea to the posterior distributions
of Ui and Vj , we propose the following index using E(U⊺

i Vj) and V (U⊺

i Vj) as a selection
index of direct mail problem:

u
⊺

i vj + α
√

Tr(Σ⊺

U,iΣV,j +Σ⊺

U,ivjv
⊺

j + uiu
⊺

iΣV,j), (1)

where α is the parameter that balance exploration and exploitation.
Note that Ω(k2) time is necessary for calculation of Index (1) while only O(k) time is

enough for the simple prediction by the inner product u
⊺

i vj . This difference, however, is
not significant when k is small.

5. Approximation by Variational Bayes

In order to use a UCB-like strategy, we have to find an approximation of the joint posterior
distribution of Ui and Vj in which the distributions of Ui and Vj are mutually independent.
This can be done by applying variational bayesian approach to stochastic matrix factoriza-
tion (Lim and Teh, 2007). For self-containedness, we explain the detail of the method in
the following.

In Figure 1, let ΘU = (σ2
U ) and ΘV = (σ2

V ), and let DU (ΘU ) = N (0, σ2
U I) and

DV (ΘV ) = N (0, σ2
V I), that is, assume that each Ui and Vj are generated according to

normal distributions with mean 0 and covariances σ2
UI and σ2

V I, respectively, where I
denotes the k × k identity matrix.

Let f(U, V |O,σ2, σ2
U , σ

2
V ) denote the probability density function of a pair of matrices U

and V . Consider the problem of finding probability density functions g(U) and g(V ) whose
product g(U)g(V ) approximates f(U, V |O,σ2, σ2

U , σ
2
V ). In variational bayesian approach,

such g(U) and g(V ) can be obtained by minimizing free energy

F(g(U)g(V )) = Eg(U)g(V )

[

ln
g(U)g(V )

f(U, V,O|σ2, σ2
U , σ

2
V )

]

,

which means minimizing Kullback-Leibler divergence

KL(g(U)g(V )||f(U, V |O,σ2, σ2
U , σ

2
V )) = Eg(U)g(V )

[

ln
g(U)g(V )

f(U, V |O,σ2, σ2
U , σ

2
V )

]

319



Nakamura

between the two distributions. The free energy can be written as

F(g(U)g(V )) = Eg(U)[ln g(U)] + Eg(V )[ln g(V )]− 1

2σ2

∑

(i,j)∈O

Eg(U)g(V )[(rij − U⊺

i Vj)
2]

− 1

2σ2
U

m
∑

i=1

Eg(U)[||Ui||2]−
1

2σ2
V

n
∑

j=1

Eg(V )[||Vj ||2]

−|O|
2

ln 2πσ2 − km

2
ln 2πσ2

U −
kn

2
ln 2πσ2

V .

Unfortunately, it is not known an efficient way of calculating distributions g(U) and g(V )
that attain the global minimum of F(g(U)g(V )). But we can efficiently calculate distribu-
tions g(U) and g(V ) that attain one of its local minima by alternating the following two
steps until convergence.

g(U)-Optimization Step

By optimizing g(U) with fixed g(V ) subject to
∫

g(U)dU = 1, we obtain

g(U) ∝
m
∏

i=1

exp

(

−1

2
(Ui − ui)

⊺Σ−1
U,i(Ui − ui)

)

,

where

ΣU,i=





1

σ2

∑

(i,j,rij)∈O

(ΣV,j + vjv
⊺

j ) +
1

σ2
U

I





−1

and (2)

ui = ΣU,i

∑

(i,j,rij)∈O

rijvj

σ2
. (3)

Here, vj and ΣV,j are the mean and the covariance matrix of Vj for the fixed distri-
bution g(V ).

g(V)-Optimization Step

By optimizing g(V ) with fixed g(U) subject to
∫

g(V )dV = 1, we obtain

g(V ) ∝
n
∏

j=1

exp

(

−1

2
(Vj − vj)

⊺Σ−1
V,j(Vj − vj)

)

,

where

ΣV,j=





1

σ2

∑

(i,j,rij)∈O

(ΣU,i + uiu
⊺

i ) +
1

σ2
V

I





−1

and (4)

vj = ΣV,j

∑

(i,j,rij)∈O

rijui

σ2
. (5)

Here, ΣU,i = Vg(U)[Ui] and ui = Eg(U)[Ui] for the fixed g(U).
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Let (u∗
i ,Σ

∗
U,i) (i ∈ U) and (v∗

j ,Σ
∗
V,j) (j ∈ V) be the converged parameters of g(U) and

g(V ). In the obtained distributions g(U) and g(V ), each Ui and Vj are independent from
each other and their distributions are normal distributions N (u∗

i ,Σ
∗
U,i) and N (v∗

j ,Σ
∗
V,j),

respectively. Thus, we can calculate UCB-like indeces (1) using those means and covariance
matrices.

In variational bayesian approach, we can also optimize parameters σ2
U , σ

2
V and σ2 for

fixed g(U) =
∏m

i=1N (ui,ΣU,i) and g(V ) =
∏n

j=1N (vj ,ΣV,j):

σ2
U =

1

km

m
∑

i=1

(Tr(ΣU,i) + u
⊺

iui) , (6)

σ2
V =

1

kn

n
∑

j=1

(

Tr(ΣV,j) + v
⊺

jvj

)

and (7)

σ2 =
1

|O|
∑

(i,j,rij)∈O

(

r2ij − 2riju
⊺

i vj +Tr[(ΣU,i + uiu
⊺

i )(ΣV,j + vjv
⊺

j )]
)

. (8)

The above estimations seems reasonable because σ2
U , σ

2
V and σ2 are estimated by

∑m
i=1 Eg(U)[||Ui||2]

km
,

∑n
j=1Eg(V )[||Vj ||2]

kn
and

∑

(i,j,rij)∈O
Eg(U)g(V )[(rij − U⊺

i Vj)
2]

|O| ,

respectively.

6. Approximation by PMF

In probabilistic matrix factorization (PMF) (Mnih and Salakhutdinov, 2008), U and V are
estimated using MAP (Maximum A Posteriori) estimation. We also explain the details of
the method in the following for the sake of self-containedness.

Assume that the prior distributions of Ui and Vj are N (0, σ2
U I) and N (0, σ2

V I), re-
spectively, for all i ∈ U and j ∈ V. Given a set of observations O, consider the posterior
probability density function

f(U, V |O,σ2, σ2
U , σ

2
V ) ∝

∏

(i,j,rij)∈O

e−
(rij−U

⊺

i
Vj )

2

2σ2

√
2πσ2

m
∏

i=1

e
−

||Ui||
2

2σ2
U

(2πσ2
U )

k/2

n
∏

j=1

e
−

||Vj ||
2

2σ2
V

(2πσ2
V )

k/2
.

Let (U∗, V ∗) be the estimated values of (U, V ) by MAP estimation, then

(U∗, V ∗) = argmin
(U,V )





∑

(i,j)∈O

(rij − U⊺

i Vj)
2

2σ2
+

m
∑

i=1

||Ui||2
2σ2

U

+

n
∑

j=1

||Vj ||2
2σ2

V





holds. We can easily see that both the f(U |V ∗, O, σ2, σ2
U , σ

2
V ) and f(V |U∗, O, σ2, σ2

U , σ
2
V )

are normal distributions and their covariance matrices can be calculated. Thus, we can use
the UCB-like selection index (1) with the assumption that

f(U, V |O,σ2, σ2
U , σ

2
V ) = f(U |V ∗, O, σ2, σ2

U , σ
2
V )f(V |U∗, O, σ2, σ2

U , σ
2
V )
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holds approximately.
Though no efficient way of calculating the MAP estimation (U∗, V ∗) is known, we can ef-

ficiently obtain matrices U and V that attain one of the local maxima of f(U, V |O,σ2, σ2
U , σ

2
V )

by alternating least square method, which alternates the following two steps until conver-
gence.

U-Optimization Step

By calculating the optimal value (u1,u2, ...,um) of U with fixed V = (v1,v2, ...,vn),
we obtain

f(U |(v1,v2, ...,vn), O, σ2, σ2
U , σ

2
V ) ∝

m
∏

i=1

exp

(

−1

2
(Ui − ui)

⊺Σ−1
U,i(Ui − ui)

)

,

where

ΣU,i =





1

σ2

∑

(i,j,rij)∈O

vjv
⊺

j +
1

σ2
U

I





−1

and (9)

ui = ΣU,i

∑

(i,j,rij)∈O

rijvj

σ2
. (10)

V-Optimization Step

By calculating the optimal value (v1,v2, ...,vn) of V with fixed U = (u1,u2, ...,um),
we obtain

f(V |(u1,u2, ...,um), O, σ2, σ2
U , σ

2
V ) ∝

n
∏

j=1

exp

(

−1

2
(Vj − vj)

⊺Σ−1
V,j(Vj − vj)

)

,

where

ΣV,j =





1

σ2

∑

(i,j,rij)∈O

uiu
⊺

i +
1

σ2
V

I





−1

and (11)

vj = ΣV,j

∑

(i,j,rij)∈O

rijui

σ2
. (12)

7. Relation between the Two Approximations

Though the derivations of the approximations by variational bayes and PMF are different,
the methods to calculate a locally optimal solution are quite similar. In fact, the both
methods alternate the calculation of the mean ui and covariance matrix ΣU,i of a normal
distribution over a vector Ui for fixed V ’s distribution or V , with the calculation of the
mean vj and covariance matrix ΣV,j of a normal distribution over a vector Vj for fixed U ’s
distribution or U until convergence. Furthermore, the ways of calculating those values are
almost the same; Eq. (3) and (5) are exactly the same as Eq. (10) and (12), and Eq. (2)
can be obtained from Eq. (9) only by replacing vjv

⊺

j with ΣV,j + vjv
⊺

j , and Eq. (4) can be
also obtained from Eq. (11) similarly.
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In the case with known V , that is, in the case that Vj ∼ N (vj ,0), where 0 is the 0-
matrix of k × k, both the approximation methods become the simple least square method.
In such case, UCB-like selection index (1) becomes

u
⊺

i vj + α
√

v
⊺

jΣU,ivj .

The bandit algorithm using this selection index is known as LinUCB (Li et al., 2010) in
which σ2 = σ2

U = 1 is used.
Instead of UCB-like method using Index (1), we can use Thompson sampling (Chapelle and Li,

2011). In fact, Zhao et al. (2013) proposed such a method using the approximation by PMF
though, in their experiments, it was outperformed by LinUCB with MAP-estimated fixed
latent item vectors in the new user setting. We cannot deny the possibility that Thompson
sampling performs well in our setting, but its performance is expected to vary more.

8. Experiments

8.1. Experimental Setting

We conducted experiments to check the effectiveness of UCB-like strategy for direct mail
problem using synthetic and real datasets.

We used the following three datasets.

SYN: A synthetic dataset generated as follows. First, we independently generated Ui ∈ R
5

and Vj ∈ R
5 for all i = 1, 2, ..., 1000 and j = 1, 2, ..., 1000 according to N (0, I), where

I is a 5 × 5 identity matrix. Then, Rij is generated according to N (U⊺

i Vj , 1) for all
i = 1, 2, ..., 1000 and j = 1, 2, ..., 1000. Thirty matrices R are generated by giving
different seeds to a random number generator for sampling from normal distributions.

Jester: Joke rating dataset collected between April 1999 - May 2003 by University of
California, Berkeley2. Rating scales are real values between −10 and 10. The number
of jokes are 100, and the dataset contains 14,116 users with no missing rating. We
used the 14,116 × 100 matrix R for such perfectly-rating users in our experiments.

LibimSeTi: Dataset of dating service called LibimSeTi3 dumped on April 4, 2006. Though
the original rating scales are {1, 2, ..., 10}, we shifted them by −5.5, that is, shifted to
{−4.5,−3.5, ..., 4.5}. We made a no-missing-entry matrix R from the original sparse
rating matrix by repeatedly deleting a row or column with the largest number of
missing entries. The matrix R used in the experiment is a 120 × 93 matrix which is
composed of ratings of 93 items rated by 120 users.

In the experiment, an initial set O0 of observations is given to a recommendation al-
gorithm first. We select O0 so as to make it contain at least one entry of every row and
at least one entry of every column. Such a selection with the smallest number of entries is
done by the procedure in Figure 2.

2. http://eigentaste.berkeley.edu/dataset/
3. http://www.occamslab.com/petricek/data/
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O0 ← ∅
if m > n then

for i = 1, 2, ...,m do

Randomly select item j among the items with the least number of observations in O0,
that is,

j = argmin
j′∈{1,2,...,n}

|{i′ : (i′, j′, ri′j′) ∈ O0}|,

where | · | is the number of elements in ‘·’.
O0 ← (i, j, rij)

else

for j = 1, 2, ..., n do

Randomly select user i among the users with the least number of observations in O0,
that is,

i = argmin
i′∈{1,2,...,m}

|{j′ : (i′, j′, ri′j′) ∈ O0}|.

O0 ← (i, j, rij)

Figure 2: Selection procedure of initial set O0 of observations

1. Set O = O0, where O0 is a set of observations that is selected by the procedure in
Figure 2.

2. Repeat the following round 100 times.

(a) Update the selection indeces using the current set O of observations.

(b) For each user i, find item ji with the maximum selection index among the ele-
ments of {j : (i, j, rij) 6∈ O}.

(c) Select the top 5% user-item pairs (i, ji) with the largest selection index from
{(i, ji) : i ∈ U}.

(d) Recommend item ji to user i for all the selected pairs (i, ji), and receive rating
riji as its feedback.

(e) Add the triplets (i, ji, riji) to O for all the selected pairs (i, ji).

Figure 3: Recommendation process simulation for performance evaluation

Recommendation process using each algorithm was simulated by the procedure shown
in Figure 3. The process is composed of 100 rounds and single item recommendation is
done to the selected 5% users in each round. The selection of user-item pairs are done
by a recommendation algorithm based on the set O of observations so far. For each user,
selection indeces for all the items whose ratings have not been observed so far are calculated
and the item with the highest index is selected as a recommendation candidate. Among all
the candidates, l of them are selected and the recommendation is done for the selected user-
item pairs. We set l to 5% of the number of users, that is, l = 0.05m. For all the selected
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Table 1: Statistics and the average ratings of the five methods for each dataset.
Dataset SYN Jester LibimSeTi

#user×#item 1000×1000 14116×100 120×93
(Shifted) range [−21.1, 19.5] [−10, 10] [−4.5, 4.5]
Average 0.00 1.03 0.12

Observed-rate Initial O 0.1% 1% 1.1%
Final O 0.6% 6% 6.5%

Average UCBVB 3.44(±0.08) 5.45(±0.01) 3.24(±0.07)
rating 〈α = 1.25〉 〈α = 0.5625〉 〈α = 0.5〉
(95% VB 2.88(±0.06) 5.26(±0.02) 3.07(±0.08)
confidence UCBPMF 3.41(±0.09) 4.31(±0.03) 3.57(±0.23)

interval) 〈α = 0.1875〉 〈α = 0.00195312〉 〈α = 0.375〉
PMF 3.19(±0.07) 4.34(±0.03) 2.96(±0.10)
POP 0.02(±0.01) 3.46(±0.02) 4.44(±0.01)

pairs (i, j), the triplets (i, j, rij) with ratings rij are added to O. Note that observed-rates
of the whole matrices by the initial and final O for each dataset are less than 1.1% and
6.5%, respectively. (See Table 1.)

To check the effectiveness of the UCB-like strategy, we ran five algorithms. Two matrix
factorization algorithms VB (Variational Bayes) and PMF, and their UCB-like versions
UCBVB and UCBPMF, respectively, were executed. Note that algorithms UCBVB and
UCBPMF are equivalent to VB and PMF, respectively, when α = 0 in Index (1). The
dimension k of vectors Ui and Vj was fixed to 5 for all the datasets and for all the matrix
factorization algorithms. The rest one is a very simple algorithm POP whose selection index
of an item is the average of its ratings observed so far and the same for all users.

The recommendation performance was evaluated by average rating over all the recom-
mended user-item pairs, and the learning curve for rounds was drawn using cumulative
average rating, which is the average rating over all the recommended items so far.

The convergence of matrix factorization algorithms was judged by whether average
Euclidean distance between current and previous 5-dimensional column vectors Ui and Vj

is smaller than 0.001. The optimization of the parameters σ2
U , σ

2
V and σ2 in variational

bayes, which are calculated by Eqs. (6), (7) and (8), was also applied to PMF. These
parameter optimization and the optimization of U and V were done alternately until the
sum of absolute differences between current and previous parameters is less than 0.1. The
cumulative average rating for each algorithm was averaged over thirty rating matrices for
SYN dataset and also averaged over thirty randomly generated initial O for other datasets.

In performance comparison, we used empirically nearly optimal values of the exploration-
exploitation balancing parameter α for the UCB-like strategies, which were found by Algo-
rithm SearchOptAlpha described in Appendix A using K = 30 and γ = 0.05.
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(c) LibimSeTi dataset

Figure 4: [Left] Curves of average rating averaged over thirty runs for the exploration-
exploitation balancing parameter α. The plotted points were the searched points
in Algorithm SearchOptAlpha described in Appendix A. Their 95% confidence
intervals are also shown. [Right] Curves of cumulative average rating for rounds.
The values are also averaged over thirty runs.
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8.2. Results

The left figures in Figure 4 are the curves of average rating over all the recommendations
for the values of α searched in Algorithm SearchOptAlpha. UCBPMF looks more sensi-
tive to the value of the parameter α. Algorithm SearchOptAlpha found better α-value
than 0 except for UCBPMF using Jester dataset, which means that UCBVB performed
better than VB for all the three datasets and so does UCBPMF except for one dataset
if appropriate values were set to α. The average ratings for the empirically-found nearly
optimal α and their 95% confidence intervals are shown in in Table 1. You can see that
the performance difference between VB and optimized UCBVB and that between PMF and
optimized UCBPMF are statistically significant in all the case that the UCB-like strategy
performed better. The right figures show the learning curves of five algorithms: VB, op-
timized UCBVB, PMF, optimized PMF and POP, where the learning curve is the curve
of the cumulative average ratings for rounds. In early rounds, UCBVB performed worst
among the four but its improvement was largest in the later rounds. The exploring tendency
of UCBPMF in early stage was not so high compared with UCBVB.

In total, the performances of UCBVB and UCBPMF are comparable, but the usability
of UCBVB seems better from the viewpoint of sensitivity to the parameter α.

As for comparison with POP, the four matrix factorization methods outperformed POP
for SYN and Jester datasets, but POP performed best for LibimSeTi dataset. LibimSeTi
is a very biased dataset; Among the 93 items, two items have the highest rating alone and
the rating standard deviations of 12 items are less than 0.01. It is very natural that POP
performs extremely well for such a biased dataset.

9. Conclusions

We proposed UCB-like methods of collaborative filtering using VB or PMF approximation
for direct mail problem. According to our experimental results, the UCB-like methods are
effective compared with original VB and PMF if we choose an appropriate exploration-
exploitation balancing parameter. Especially, the UCB-like method using VB approxima-
tion stably performed well. Experimental performance comparison with active learning
methods and Thompson sampling, and theoretical analyses of the proposed methods are
our future work.
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Appendix A. Algorithm for Tuning α

Consider a Gaussian distribution family {N (µ(α), σ2(α))|α ∈ [0,∞)} parameterized by α,
where µ, σ2 are positive mean and variance functions. Assume that the mean function µ
has a unique maximal point, and K samples of a random variable X ∼ N (µ(α), σ2(α))
can be obtained by sampling oracle Sampling(α,K) for any natural numbers K and any
non-negative real number α. Under these assumptions, we use Algorithm SearchOptAlpha
in Figure 5 to estimate the maximal point αmax of the mean function µ in our experiment
for tuning the exploration-exploitation balancing parameter α.

In Algorithm SearchOptAlpha, µ(α) is estimated by the sample mean x̄(α) over samples
x1, x2, ..., xK , which are obtained by oracle Sampling(α,K). Algorithm SearchOptAlpha
is a kind of a binary search algorithm. First, the algorithm find the range [αL, αU] that
contains the maximal point under the assumption of a unique maximal point. This task is
done by Function FindRange. Function FindRange tries to find a range [αL, αU] in which
a sample mean x̄(α) at α ∈ (αL, αU) is larger than x̄(αL) and x̄(αU) by doubling or halving
αU. It gives up to find such a range when the smaller one of x̄(αL) and x̄(αU) is larger
than the lower limit of 100(1 − γ)% confidence interval of the larger one x̄(αmax) of them,
and in such a case FindRange outputs αmax as a nearly optimal α, where γ ∈ [0, 1] is a
given confidence level. In the case that FindRange successes to find the range with an inner
maximal point, the range is narrowed to the first half if the estimated mean function value
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at the first quarter point is greater than that at the middle point, narrowed to the last
half if the estimated mean function value at the third quarter point is greater than that at
the middle point, and narrowed to the middle half otherwise, where the middle half is the
range from the first quarter point to the third quarter point. Algorithm SearchOptAlpha
stops when 100(1 − γ)% confidence interval by the sample mean estimator of µ(αmax) at
the middle point of the current range [αL, αU] includes both of the values x̄(αL) and x̄(αU),
and output αmax as a nearly optimal α. Note that 100(1 − γ)% confidence interval by the
sample mean estimator of µ(α) over K samples is

[

x̄(α)− tK−1(γ/2)
√

s2(α)/(K − 1), x̄(α) + tK−1(γ/2)
√

s2(α)/(K − 1)
]

,

where tK−1(γ/2) is the upper 100(γ/2) percentage point of Student’s t-distribution with
K − 1 degree of freedom and s2(α) is the sample variance over the K samples.
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Algorithm SearchOptAlpha

input: K: Number of samples, γ ∈ [0, 1]: Confidence level
output: Estimated maximal point αmax

(αL, αU, αmax, x̄(αL), x̄(αU), x̄(αmax), s
2(αmax))← FindRange()

while x̄(αmax)− tK−1(γ/2)
√

s2(αmax)/(K − 1) > min{x̄(αL), x̄(αU)} do
αLM ← (αL + αmax)/2, αUM ← (αmax + αU)/2
(x̄(αLM), s

2(αLM))← EstimateFromSamples(αLM,K)
(x̄(αUM), s

2(αUM))← EstimateFromSamples(αUM,K)
if x̄(αLM) > x̄(αmax) then
αU ← αmax, αmax ← αLM

else if x̄(αUM) > x̄(αmax) then
αL ← αmax, αmax ← αUM

else

αL ← αLM, αU ← αUM

return αmax

Function FindRange()
αL ← 0.0, αU ← 1.0
(x̄(αL), s

2(αL))← EstimateFromSamples(αL,K)
(x̄(αU), s

2(αU))← EstimateFromSamples(αU,K)
if x̄(αL) < x̄(αU) then
αmax ← αU, αU ← 2αU

(x̄(αU), s
2(αU))← EstimateFromSamples(αU,K)

while x̄(αmax) < x̄(αU) do
αL ← αmax, αmax ← αU

if x̄(αmax)− tK−1(γ/2)
√

s2(αmax)/(K − 1) < x̄(αL) then break

αU ← 2αU

(x̄(αU), s
2(αU))← EstimateFromSamples(αU,K)

else

αmax ← αU/2
(x̄(αmax), s

2(αmax))← EstimateFromSamples(αmax,K)
while x̄(αmax) < x̄(αL) do
αU ← αmax

if x̄(αL)− tK−1(γ/2)
√

s2(αL)/(K − 1) < x̄(αU) then
αmax ← αL, break

αmax ← αU/2
(x̄(αmax), s

2(αmax))← EstimateFromSamples(αmax,K)
return αL, αU, αmax, x̄(αL), x̄(αU), x̄(αmax), s

2(αmax)

Function EstimateFromSamples(α,K)
x1, x2, ..., xK ← Sampling(α,K)
x̄ = 1

K

∑K
i=1 xi

s2 = 1
K

∑K
i=1(xi − x̄)2

return x̄, s2

Figure 5: Pseudocode of Algorithm SearchOptAlpha
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