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Abstract

Nonnegative Matrix Factorization (NMF) is a popular technique in a variety of fields due to
its component-based representation with physical interpretablity. NMF finds a nonnegative
hidden structures as oblique bases and coefficients. Recently, Orthogonal NMF (ONMF),
imposing an orthogonal constraint into NMF, has been gathering a great deal of attention.
ONMF is more appropriate for the clustering task because the resultant constrained matrix
consisting of the coefficients can be considered as an indicator matrix. All traditional
ONMF algorithms are based on multiplicative update rules or project gradient descent
method. However, these algorithms are slow in convergence compared with the state-of-
the-art algorithms used for regular NMF. This is because they update a matrix in each
iteration step. In this paper, therefore, we propose to update the current matrix column-
wisely using Hierarchical Alternating Least Squares (HALS) algorithm that is typically used
for NMF. The orthogonality and nonnegativity constraints are both utilized efficiently in
the column-wise update procedure. Through experiments on six real-life datasets, it was
shown that the proposed algorithm converges faster than the other conventional ONMF
algorithms due to a smaller number of iterations, although the theoretical complexity is
the same. It was also shown that the orthogonality is also attained in an earlier stage.

Keywords: Orthogonal Nonnegative Matrix Factorization, Orthogonal Factorization.

1. Introduction

Orthogonal Nonnegative Matrix Factorization (ONMF), firstly proposed by Ding et al.
(2006), factorizes a nonnegative matrix into two nonnegative matrices under the one-sided
orthogonal constraint imposed on the first factor matrix. That is, ONMF is a minimization
problem:

minF,G ‖X− FGT ‖2F ,

subject to F ≥ 0,G ≥ 0, FTF = I,

where X ∈ R
M×N , F ∈ R

M×J ,G ∈ R
N×J (J ≪ N,M) and I is the identity matrix. Here T

denotes the transpose and ‖ · ‖2F denotes the squared Frobenius norm (the sum of squared
elements). In this formulation, FTF = I is imposed as a condition, but the strict application
of both nonnegativity and orthogonality to bases is too strong. In fact, it yields a part of
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normal vectors in the standard basis. Therefore, in a practical sense, the optimization
problem should be stated as

min
F,G

‖X−FGT ‖2F + λ‖FTF− I‖ (1)

with a positive coefficient λ. This corresponds to a Lagrangian formulation. In practice, we
will see such a formulation in the following section.

As long as the authors’ knowledge, conventional algorithms for solving ONMF problems
are all based on matrix-wise alternating block coordinate descent. However, it is known that
matrix-wise update algorithms cannot effectively utilize the gradient of the objective func-
tion and result in slow convergence (Cichocki and Anh-Huy (2009), Kim and Park (2011)).
In NMF without orthogonal constraint, some state-of-the-art algorithms update F and G

column-wisely or element-wisely to gain faster convergence. In ONMF, however, it is diffi-
cult to incorporate the orthogonal constraint into column-wise or element-wise coordinate
descent updates.

In this paper, we propose a Fast Hierarchical Alternating Least Squares (HALS) algo-
rithm for ONMF. Our algorithm is based on a column-wise update algorithm proposed by
Cichocki and Anh-Huy (2009). To enable such a column-wise update, we derive a column-
wise orthogonal constraint. We explicitly utilize the nonnegativity in the orthogonal con-
straint.

The rest of this paper is organized as follows. We will summarize previously proposed
NMF algorithms and ONMF algorithms by connecting them to the corresponding opti-
mization criteria in Section 2. Then we will explain the HALS algorithm for standard NMF
(Cichocki and Anh-Huy (2009)) in Section 3. The way of utilizing HALS for ONMF will be
explained and the algorithm HALS ONMF will be proposed in Section 4. Section 5 will be
devoted for evaluation of the proposed algorithm on several real-life datasets. Conclusion
will be given in Section 6.

We will use a bold uppercase letter for a matrix, such as X, and an italic lowercase
letter for a vector such as x. Both Xij and xij stand for the (i, j)th element in a matrix
X. A vector 1J ∈ R

J shows the vector whose elements are of one’s.

2. Related Work

In this section, we provide a brief review of NMF and ONMF algorithms.

2.1. Nonnegative Matrix Factorization

NMF aims to find a nonnegative matrix F = [f1,f2, . . . ,fJ ] ∈ R
N×J
+ and another nonneg-

ative matrix G = [g1,g2, . . . ,gJ ] ∈ R
M×J
+ whose product approximates a given nonnegative

matrix X ∈ R
N×M
+ :

min
F,G

‖X− FGT ‖2F ,

subject to F ≥ 0,G ≥ 0. (2)

Since NMF problem is not convex both in F and G, and thus, various algorithms have
been proposed (Lee and Seung (2000), Cichocki et al. (2009), Kim and Park (2011) and
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Hsieh and Dhillon (2011)). They are categorized according to the way of updates as follows.

Matrix-wise update algorithms

Lee and Seung (2000) proposed a Multiplicative Update (MU) algorithm. This MU algo-
rithm is one of efficient algorithms for NMF proposed in the early stage, and thus, many
extensions followed (e.g.,Cai et al. (2011), Cichocki et al. (2009)). However, from the view-
point of convergence, they were not efficient (Kim et al. (2014)). Lin (2007) proposed a
Project Gradient Descent (PGD) algorithm for NMF. This algorithm solves NMF prob-
lem by solving a Nonnegative Least Squares (NLS) problem for each matrix alternatively
and has relatively faster convergence than MU algorithms. Their difference is that MU
algorithm uses a fixed step-size in the gradient descent method, while PGD uses a flexible
step-size. Nevertheless, PGD still needs more iteration than necessary.
Vector-wise update algorithms

Cichocki and Anh-Huy (2009) proposed a Hierarchical Alternating Least Squares (HALS)
algorithm. HALS algorithm solves a set of column-wise NLS problems for each column and
update F and G column-wisely. Since each of column-wise NLS problems can be solved at
high accuracy and efficiently, HALS converges very fast. Kim and Park (2011) proposed an
active-set like algorithm that also decomposes a matrix NLS problem into a set of column-
wise sub-problems. The difference between HALS and the active-set like method lies on
the way to solve a column-wise sub-problem. The former uses the gradient to solve a sub-
problem, while the latter uses active-set method to solve that. The active-set method has
two stages to solve that, first they find a feasible point, in standard NMF, it is a nonneg-
ative point. Second they minimize a column-wise NLS problem with keeping feasibility.
These algorithms can be thought as the state-of-the-art algorithms, because they converge
empirically faster than matrix-wise update algorithm. However, the addition of constraints
such as FTF = I is difficult in such column-wise updates. Especially, the latter active-set
like algorithm is difficult to work with equality constraints.
Element-wise update algorithms

Hsieh and Dhillon (2011) proposed an element-wise update algorithm called a Greedy Co-
ordinate Descent (GCD) algorithm. To the authors’ knowledge, it is the fastest algorithm
for NMF. The GCD algorithm takes a greedy strategy to decrease the value of the objective
function. It selects and updates the most contributable variables for minimization. The
reason for the lower computational cost is that it does not update unnecessary elements.
Unfortunately, GCD algorithm cannot work with such a constraint that affects all elements
of one column as the same time, such as the graph regularized constraint that minimizes
α(tr(FTLF)) where L is a graph Laplacian matrix of XTX. The GCD relies on the fact
that, with fixed G, updating an element fij of F changes only the gradients of elements in
the same row f i· because the gradient in F is given by (−2XG+2FGTG). In more detail,
GCD iteratively selects and updates the most contributable variable fij in the ith row. The
GCD is not applicable for ONMF because the orthogonal condition requires an interaction
between different rows.
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2.2. Orthogonal NMF

An additional orthogonal constraint, FTF = I, is imposed in ONMF. At first, we briefly
review the first ONMF algorithm proposed by Ding et al. (2006) and reveal the problem
behind ONMF.

The goal of ONMF is to find a nonnegative orthogonal matrix F and a nonnegative
matrix G minimizing the following objective function with a Lagrangian multiplier λ,

L(F,G) = ‖X− FGT ‖2F +Tr[λ(FTF−D)], (3)

where D is a diagonal matrix and Tr is the trace.1 The KKT complementary condition
gives

(−2XG+ 2FGTG+ 2Fλ)njF
2
nj = 0, n = 1, 2, . . . , N, j = 1, 2, . . . J. (4)

Then the update rule of the constrained matrix F is derived as

Fnj ← Fnj

√

(XG)nj

[F(GTG+ λ)]nj
. (5)

The point is in the way to determine the value of Lagrange multiplier λ. Since it is not easy
to solve this problem for every value of λ, Ding et al. (2006) ignored the nonnegativity and
relied only on FTF = I to have a unique value of λ. By multiplying FT from the left in (5),
we have

λ = FTXG−GTG.

Thus, we have the final update form of (5) as

Fnj ← Fnj

√

(XG)nj

(FFTXG)nj
.

Note that their formulation with the specific value of λ does not strictly satisfy the
orthogonality. Rather it is advantageous in avoiding the zero-lock problem appearing both
in ONMF and NMF: Once an element becomes zero in the middle of iterations, the element
will not be recasted in the following steps (see the multiplicative update rule (5)). Besides,
when the orthogonality constraint is strictly posed with nonnegativity, each row vector of
F must have only one non-zero value. That is, any algorithm using a multiplicative update
rule falls easily into the zero-lock problem. Therefore, ONMF algorithms put the first
priority on the approximation while loosening the degree of the orthogonality.

An orthogonal NMF algorithm can be seen as an algorithm that balances the trade-off
between the orthogonality and the approximation with a weighting parameter as seen in (1).
We dare not categorize ONMF algorithms by the type of updates because all conventional
ONMF algorithms are based only on matrix-wise updates. Rather, those algorithm should
be categorized according to if it employs a weighting parameter or not. If an algorithm
minimizes an objective function with a weighting parameter α and the value of α is not ap-
propriately chosen, then the algorithm would fail in either approximation or orthogonality.
Such a failure are often reported in past experimental results Li et al. (2010), Mirzal (2014)

1. Hereafter, we will not state the nonnegative constraint explicitly.
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Table 1: A summary of categorization of ONMF algorithms
Author(Year) Updates Weighting Parameter

Matrix Vector (YES/NO)
Ding et al. (2006) MU NO

Yoo and Choi (2008) MU NO

Li et al. (2010) MU YES
Pompili et al. (2012) PGD YES

Mirzal (2014) MU YES
This paper HALS NO

and Pompili et al. (2012).
Without weighting parameter

The first ONMF algorithm was based on MU algorithm (Ding et al. (2006)). This algo-
rithm does not need a weighting parameter. They solves approximately the Lagrangian (1)
instead as we reviewed. Yoo and Choi (2008) also proposed another MU based algorithm.
They used the gradient on the Stiefel manifold that is a set of all orthogonal matrices. The
gradient on the Stiefel manifold is compatible with MU algorithm because the manifold
constrains every matrix to be orthogonal and the employed MU algorithm guarantees non-
negative values.2

With weighting parameter

Mirzal (2014) proposed a convergent algorithm that is also based on MU algorithm in prac-
tice. He proposed two algorithms, one of which is the same as the one by Li et al. (2010).
The first algorithm introduces a weighting parameter α instead of the Lagrangian multiplier
λ in (1) (Li et al. (2010)). The second algorithm is a convergent algorithm. The conver-
gence of the algorithm is proved, but this algorithm needs high computational cost. In
this algorithm, the zero-lock problem was forcibly avoided by replacing zero values with a
small positive value ǫ. There are algorithms that put the first priority on nonngetivity than
orthogonality. Pompili et al. (2012) tackled directly the zero-lock problem. They use Aug-
mented Lagrangian method. In more detail, they used the gradient on the Stiefel manifold
that is the set of orthogonal matrices and explicitly introduced a Lagrangian multiplier ψ
for nonnegativity. The initial value of Lagrangian was approximated to avoid the zero-lock
problem. They increase the value of ψ gradually to strengthen the nonnegativity. As a
result, the nonnegativity was not strictly guaranteed in the algorithm. More worsely, it has
three parameters to be set appropriately for orthogonality, nonnegativity and the step size.

In total, there are mainly two problems on these ONMF algorithms. One problem is dif-
ficulty to introduce orthogonal constraint FTF = I in the corresponding NMF algorithms.
This prevents to extend the state-of-the-art NMF algorithms to the corresponding ONMF
ones. The other is the zero-lock problem. This problem prevents us from using Lagrangian
and alternatively forces us to take a balance between orthogonality and nonnegativity ap-
propriately.

2. In general, the resultant constrained matrix by Yoo and Choi (2008) also will not satisfy the strict
orthogonality because MU algorithm is the gradient descent with the fixed step size, and thus, it may
undershoot or overshoot.
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3. Hierarchical Alternating Least Squares Algorithm for NMF

The key idea of HALS is an efficient decomposition of residual. Suppose that all the elements
of matrices F and G are fixed except for the jth columns f j and gj. Since FGT =
∑J

j=1 f jg
T
j , the objective function (2) can be minimized by finding more appropriate f j

and gj such as

min
f

j
,g

j

Jj = ‖X
(j) − f jg

T
j ‖

2
F (6)

where X(j) = X −
∑

k 6=j fkg
T
k is a residue. Since f j affects only gj, HALS alternatively

minimizes (6) for j = 1, 2, . . . , J, 1, 2, . . ., keeping the nonnegative constraints, f j ≥ 0 and
gj ≥ 0. This objective function (6) with nonnegative constraints can be considered as an
NLS problem. HALS solves the set of such NLS problems.

In order to find a stationary point, the gradients of (6) in f j and gj are calculated:

0 =
∂Jj
∂f j

= f jg
T
j gj −X(j)gj, and (7)

0 =
∂Jj
∂gj

= gjf
T
j f j −X(j)Tf j . (8)

Hence, we have the following update rules:

fj ←
1

gjTgj

[X(j)gj ]+, (9)

gj ←
1

fj
Tf j

[X(j)Tf j]+, (10)

where [x]+ = max(ǫ, x) (ǫ is a sufficiently small and positive value).
In addition, we may normalize so as to ‖f j‖

2
2 = 1 after updating. Assuming this

normalization we may remove gT
j gj and fT

j f j from (9) and (10), respectively. Now the
update rules (9) and (10) becomes simpler:

fj ← [X(j)gj]+, and

gj ← [X(j)Tf j]+.

Since X(j) = X−
∑

k 6=j fkg
T
k = X−FGT + f jg

T
j , we finally obtain the following column-

wise update rules:

fj ← [(XG)j − F(GTG)j + f jg
T
j gj]+, and

gj ← [(XTF)j −G(FTF)j + gjf
T
j f j]+.

Note thatXG andGTG do not change their values while updating vectors f j (j = 1, . . . , J).

Therefore HALS computes XG and GTG before updating those vectors. Similarly, we pre-
calculate XTF and FTF before updating gj (j = 1, . . . , J).3 This is the HALS algorithm
usable for regular NMF.

3. Sometimes it is called Fast HALS
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4. Hierarchical ALS algorithm for ONMF

Since f j affects the other columns in FTF, the orthogonal constraint cannot be directly
introduced in the HALS algorithm above. In this paper, we exploit a simple fact that if
the sum of nonnegative values is zero then all the values are zero. Since the orthogonal
condition FTF = I means fT

k f j = 0 for every k 6= j, a single condition
∑

k 6=j f
T
k f j = 0 for

fixed j is equivalent to the former J − 1 conditions. That is, one matrix condition FTF = I

is equivalently replaced with 2J column-wise constraints of fT
j f j = 1 and

∑

k 6=j f
T
k f j = 0

for every j. As will be shown, the newly derived column-wise constraints can be updated
with O(M) for each column (M is the the number of rows of X to be factorized).

4.1. Column-wise Orthogonal Constraint

Now it suffices to impose the conditions

F(j)Tf j =
∑

k 6=j

fT
k f j = 0, j = 1, 2, . . . , J, (11)

in addition to the normalization to ‖f j‖
2 = fT

j f j = 1. Thus we introduce constraint

F(j)Tf j = 0 (j = 1, 2, . . . , J) into (3) as the column-wise orthogonal constraint. The
positivity of the elements is preserved with the ǫ-truncate function [ ]+.

4.2. Derivation of Hierarchical ALS Algorithm for Orthogonal NMF

With the derived column-wise constraint (11), the localized objective function is formulated
as a Lagrangian:

L(f j ,gj, λj) = ‖X(j) − f jg
T
j ‖

2
F + λj(F

(j)Tf j), where

X(j) = X−
∑

k 6=j

fkg
T
k ,

F(j) =
∑

k 6=j

fk, λj ≥ 0.

The gradient is given as

∂L

∂f j

= −2X(j)gj + 2f jg
T
j gj + λjF

(j). (12)

By solving ∂L/∂f j = 0 and forcibly keeping the nonnegativity, we obtain the update rule

under assumption of normalization of fT
j f j=1 as post-processing,

f j ← [X(j)gj −
λj
2
F(j)]+. (13)

Unfortunately, the setting of the value of λ still remains as a problem. In this study, we
take the same way as Ding et al. (2006) did. By multiplying F(j) from the left in (12) and
using F(j)Tf j = 0, we obtain

λj =
2F(j)TX(j)gj

F(j)TF(j)
.
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Table 2: Arithmetic operations necessary for each updating.

#Operation Complexity
Method (year) addition/subtraction multiplication division sqrt overall
Ding et al. (2006) MNJ + 2NJ2 MNJ + 2NJ2 +NJ NJ NJ O(MNJ)
Yoo and Choi (2008) MNJ + 2NJ2 MNJ + 2NJ2 +NJ NJ – O(MNJ)
Li et al. (2010) MNJ + (M + 3N)J2 + 3NJ MNJ + (M + 3N)J2 + 2NJ NJ – O(MNJ)
Mirzal (2014) MNJ + (M + 3N)J2 + 5NJ MNJ + (M + 3N)J2 + 3NJ NJ – O(MNJ)
This paper MNJ + (M +N)J2 + 4NJ MNJ + (M +N)J2 + 5NJ J – O(MNJ)

Hence (13) becomes

f j ← [X(j)gj −
F(j)TX(j)gj

F(j)TF(j)
F(j)]+.

Since the orthogonal constraint F(j)Tf j = 0 does not affect gj , we can use the same update
rule of HALS-NMF, that is, with (10),

f j ← [X(j)gj −
F(j)TX(j)gj

F(j)TF(j)
F(j)]+, and

gj ← [X(j)Tf j ]+.

Using X(j) = X−
∑

p 6=l fpg
T
p = X− FGT + f jg

T
j , we have the final form of updating

rules:

f j ← [h−
F(j)Th

F(j)TF(j)
F(j)]+, and

gj ← [(XTF)j −G(FTF)j + gjf
T
j f j]+, where

h = (XG)j − F(GTG)j + f jg
T
j gj .

The zero-lock problem is resolved by [ ]+ operation as Mirzal (2014) does. The proposed
HALS ONMF algorithm is shown in Algorithm 1.

4.3. Computational Complexity

We compared the computational complexities of ONMF algorithms including ours. The
asymptotic worst-case computational complexities are all the same, that is, O(MNJ), where
M and N are the number of rows and columns of X, respectively, and J is the number of
components, equivalently the number of columns of F. They are somewhat different in the
number of operations as seen in Table 2.4 The proposed HALS ONMF is beneficial only
if M ≪ N and J is large enough. However, the actual speed of these algorithms strongly
depends on the number of iterations until convergence. As will be shown, the number of
iterations is much smaller in the proposed algorithm than those of the other algorithms.

4. We omit Pompili’s PGD based ONMF in Table 2. Because the PGD scheme needs linear search with a
fixed step-size and, thus, the speed depends on the other type of iterations. They reported their ONMF
needs a higher computational cost than traditional ONMF algorithms.
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Algorithm 1 Fast HALS-Orthogonal NMF

Input: Nonnegative matrix X, Number of components J
Output: Decomposing nonnegative matrices F andG such thatX ≃ FGT and FTF ∼= I.

Initialize F and G arbitrary.
U = F1J

repeat

A = XG

B = GTG

for j = 1 to J do

F(j) = U− f j

h = Aj − FBj +Bjjf j

f j = [h− F
(j)
h

F
(j)T

F
(j)F

(j)]+

f j = f j/ ‖ f j ‖
2

U = F(j) + f j

end for

C = XTF

D = FTF

for j = 1 to J do

gj ← [Cj −GDj +Djjgj]+
end for

until Convergence criterion is satisfied.

Table 3: Datasets used in the experiments. Here #nnz is the number of non-zero values.
Dataset Size #nnz type

20Newsgroup 61188 × 18774 2435219 Document
TDT 36771 × 9394 1224135 Document
RCV 29992 × 9625 730879 Document
Reuters21678 18993 × 8293 389455 Document
MNIST 784× 70000 10505375 Image
Mlens 71567 × 65133 10000054 Rating

5. Experiments

5.1. Datasets

We compared the performance of those algorithms on six datasets ranging from document
datasets to rating datasets. The summary of datasets is shown in Table 3.5

5. These datasets are downloadable datasets from http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
(Cai et al. (2009)).
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Figure 1: Comparison of ONMF algorithms. The proposed HALS algorithm converges
faster than the other two conventional algorithms.

5.2. Performance Evaluation

We evaluated the degree of approximation and the degree of orthogonality by two indices:

Normalized Residual Value:
‖ X− FGT ‖2F
‖ X ‖2F

, and (14)

Orthogonality: ‖FTF− I‖2F . (15)

The smaller value of the measure, the better the algorithm is. We compared our algorithm
with conventional two ONMF algorithms without a weighting parameter. We ignored any
ONMF algorithm requiring a weighting parameter because of an additional high cost neces-
sary for determining the value through trial and error. We compared the proposed ONMF
algorithms (HALS) with dONMF algorithm (Ding et al. (2006)) and sONMF algorithm
(Yoo and Choi (2008)). We employed the same evaluation setting as in Li et al. (2012).
The average measure value over 10 trials with different initial values is reported here. We
fixed the number of iterations to 100 for all algorithms. We evaluated the computation time
(seconds), the normalized residual value (14), and the degree of orthogonality (15).

Figure 1 shows the values of normalized residual for J = 30 (the number of components).
The proposed HALS converges faster than the other two algorithms. The HALS converges
before 200 seconds on all datasets due to the smaller number of iterations. This is because of
the efficiency of minimization is guaranteed in each NLS problem. The vector-wise update
algorithms, for each vector, find the best solution by one updating ((7) and (8)) for each
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Figure 2: Iteration number until convergence in three algorithms. The proposed HALS
algorithm converges around 40 iterations.

of column-wise NLS problems. Figure 2 shows the number of iterations consumed until
reaching a pre-determined accuracy. It is difficult to specify a necessary accuracy, but
HALS converges around 40 iterations that is much smaller than the others. Figure 3 shows
the degree of orthogonality for J = 30. The HALS archived a high degree of orthogonality
earlier than those of the other two, though the final degree of orthogonality is a little less
than those of the other two algorithms.

6. Conclusion

In this paper we have proposed a fast algorithm for solving the one-sided orthogonal non-
negative matrix factorization problems. Orthogonal NMF algorithms proposed so far were
slow in convergence because they are based on multiplicative update algorithm or project
gradient descent, both of which require matrix-wise updates. Therefore, we have proposed a
column-wise update algorithm. To incorporate the orthogonality condition and the nonneg-
ativity condition in the column-wise updating rule, we have derived another but equivalent
set of conditions. Experiments on six real-life datasets showed that the proposed algorithm
is faster in convergence while keeping a satisfactory level of orthogonality.
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Figure 3: Orthogonality attained by three ONMF algorithms. The proposed HALS algo-
rithm converges faster than the other two conventional algorithms, but the final
state is worse than the other two.
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