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Abstract

Fast convergent and computationally inexpensive policy evaluation is an essential part of
reinforcement learning algorithms based on policy iteration. Algorithms such as LSTD,
LSPE, FPKF and NTD, have faster convergence rates but they are computationally slow.
On the other hand, there are algorithms that are computationally fast but with slower
convergence rate, among them are TD, RG, GTD2 and TDC. This paper presents a reg-
ularized Quasi Newton Temporal Difference learning algorithm which uses second-order
information while maintaining a fast convergence rate. In simple language, we combine the
idea of TD learning with quasi Newton algorithm SGD-QN. We explore the development
of QNTD algorithm and discuss its convergence properties. We support our ideas with
empirical results on four standard benchmarks in reinforcement learning literature with
two small problems, Random Walk and Boyan chain and two bigger problems, cart-pole
and linked-pole balancing. Empirical studies show that QNTD speeds up convergence and
provides better accuracy in comparison to the conventional TD.

Keywords: reinforcement learning, policy evaluation, Temporal Difference, quasi Newton
gradient descent

1. Introduction

Reinforcement leaning(RL) is a set of algorithms dealing with sequential decision making
problems usually with large state spaces. These kind of problems are usually modeled with
Markov Decision Processes(MDPs) and the goal is to find a policy which tells the agent
(decision maker) what to do in each state to get the maximum accumulated reward at the
end of his life. One of the main algorithms in RL is policy iteration. This algorithm consists
of a core part called policy evaluation which finds a quality criterion for each state (the value
function), showing how good the agent could get in the long run, starting from that state
and following a fixed policy. This phase is a key factor in the policy iteration algorithm
because the more accurate and faster it evaluates a policy, the better the second phase of
the policy iteration algorithm called policy improvement can find a new policy.

When the state space becomes large or continuous which is common in RL problems,
function approximation is used for the policy evaluation. Although various function ap-
proximation methods are used in policy evaluation, this paper focuses on linear methods.
Also, we focus on online policy evaluation where with a given fixed policy and an MDP,
data are received one by one and the learning algorithm has to incrementally adapt its
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evaluation for each state based on the newly received data. Temporal Difference Learn-
ing (Sutton, 1988) is a conventional learning algorithm for this goal. This algorithm works
well with linear function approximation and on-policy setting but may diverge in case of
non-linear function approximation(Tsitsiklis and van Roy, 1997) or off-policy setting(Baird,
1995). Computational complexity of this algorithm is of order O(n) where n is the size of
the feature vector that each state is represented with. The problems with Temporal Dif-
ference(TD) algorithm led to development of new Gradient TD leaning algorithms such
as GTD2 and TDC(Sutton et al., 2009) which are stable when used with non-linear func-
tion approximation or the off-policy setting but empirically, they have slower convergence
rate in problems that conventional TD algorithm converges(Maei, 2011). Alongside these
first-order algorithms, some second-order algorithms have been developed as well. Least
Squares Temporal Difference(LSTD)(Bradtke and Barto, 1996; Boyan, 2002) and Least
Squares Policy Evaluation(LSPE)(Nedic and Bersekas, 2003) are among them. They both
try to make use of Least Squares approach in standard regression but with different ap-
proaches in minimization. Another algorithm in this category is Newton TD(NTD)(Yao
et al., 2009) which directly preconditions the conventional TD update using its Hessian.
One more similar algorithm is Fixed-Point Kalman Filter(FPKF)(Choi and Roy, 2006) but
instead of using Hessian, it uses the covariance matrix as the second-order information in
the TD update. All of these algorithms have better rate of convergence than first-order
algorithms but they have time complexity O(n2). There has been some efforts in reducing
the computational complexity while keeping the accuracy of second-order methods. The
iLSTD algorithm(Geramifard et al., 2006) reduces the computational complexity of LSTD
to O(n) while performs better than conventional TD learning for sparse feature vectors.
Yao and Lie (2008) developed an algorithm called preconditioned TD (PTD) that gives a
unifying view on these algorithms and showed they are all the same algorithm but with
different preconditionings in their updates. Second-order algorithms also consists of prob-
abilistic approaches such as Gaussian Process Temporal Difference(GPTD) (Engle et al.,
2005).

In this paper we propose a regularized Quasi Newton Temporal Difference algorithm(
QNTD for short) which tries to make a compromise among conventional TD algorithm and
second-order stochastic gradient descent method NTD. We propose a diagonal approxima-
tion of the Hessian matrix of TD update with a regularization framework based on the
SGD-QN algorithm(Bordes et al., 2009, 2010). We then emphasize on the view that this
approximation could be seen as providing a separate learning rate for each element in gra-
dient vector of TD update and use it to analyze the convergence properties of the QNTD.
Finally we evaluate the performance of the proposed algorithm with empirical studies on
four standard benchmarks in RL literature: Random Walk, Boyan chain, cart-pole and
linked-pole balancing tasks.

2. Linear Value Function Approximation

Reinforcement Learning agent is usually modeled with a Markov Decision Process (MDP).
An MDP M is defined with tuple M = (S,A,R, P, γ) with state space S of size m (|S| = m),
set of possible actions A, a deterministic reward function R : S × A → < and stochastic
transition model P : S × A × S → < which at time t, takes the current state st, agent’s

160



Quasi Newton Temporal Difference Learning

current action at, and stochastically produces the next state st+1. Action at is produced
by a stochastic policy π : S × A → < which is the strategy for choosing among various
actions in each state of the MDP. γ ∈ (0, 1] is a discount factor to emphasize the impor-
tance of the immediate rewards. An MDP M together with a policy π form an uncon-
trolled Markov process called a Markov Reward Process(MRP) with transition probability
P π(st+1|st) =

∑
a P (st+1|st, at)π(at|st) and Reward function Rπ(st) =

∑
aR(st, at)π(at|st).

We assume that process of states in the MRP is ergodic and irreducible. So there exists a
a stationary distribution dπ where dπ(s) = limt→∞ P(st = s). dπ(s) could be interpreted as
the percentage of time the process stays in state s if the stochastic process is in run for an
infinite amount of time.

The value function V : S → < for an arbitrary state s is the expectation of accumulated
discounted rewards obtained in each transition starting from state s:

V (s) = E

{ ∞∑
i=0

γiR(si, ai)|s0 = s

}
. (1)

Equation (1) can be expanded with:

V = Rπ + γP πV := T πV

where V ∈ <m is the value vector of states. Rπ ∈ <m and P π ∈ <m×m are respectively
the expected reward vector and transition probability matrix of the MRP and T π is the
Bellman operator. One can find the fix point V with:

V = (I− γP π)−1Rπ.

Assuming no information on the Reward model Rπ and transition model P π, it is impractical
to find V . In addition, when m gets large or state space is continuous, computing the value
for each state becomes impossible and finding the value of an arbitrary state s, requires
function approximation. One common option is linear function approximation

Vθ(s) = φ(s)T θ (2)

where φ : S → <n is the feature map giving a compact representation of state s (n � m)
and θ ∈ <n is the parameter vector should be learned by sampling from the MRP.

2.1. Temporal Difference Learning

One natural way of finding optimal parameters in linear function approximation (2) is to
minimize the Mean Squared Error(MSE) function

MSE(θ) = ‖V − Vθ‖2D

where Vθ ∈ <n is the vector of linearly approximated values Vθ = θTΦ with the feature
matrix Φ = [φ1, φ2, · · · , φm] ∈ <n×m consisting of all feature vectors of states si ∈ S with
φi = φ(si). D ∈ <m×m is a diagonal matrix with dπ(si) on row and column i. MSE gives
more weight to the approximation error in value of a state with high visiting frequency.
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In practice, minimizing MSE seems impossible since we don’t have access to the true
values V . One alternative which takes advantage of the Bellman operator, is minimization
of Mean Square Projected Bellman Error(MSPBE):

MSPBE(θ) = ‖Vθ −ΠT πVθ‖2D

where Π ∈ <m×m is the projection operator given by

Π = Φ(ΦTDΦ)−1ΦTD.

TD Learning (Sutton, 1988) minimizes MSPBE objective indirectly using two nested ob-
jective functions (Dann et al., 2014). At time t, having the parameter θt, it first minimizes
the Fixed-Point Optimization problem

arg min
ω
‖Vω − Vθt‖2D

which means it simply sets ω = θt. Then it finds θt+1 by minimizing the Operator Error

arg min
θt+1

‖Vθt+1 − T πVω‖2D.

In transition from state st to st+1 with reward rπt and using first-order stochastic gradient
descent(see Section 3.1) , we get the TD update rule:

θt+1 = θt + αtδtφt (3)

where αt is a positive step-size, and δtφt is called the TD Update at time t, with TD error
δt given by

δt = δt(θt) = rπt + γφTt+1θt − φTt θt.

We can consider −δtφt as the gradient vector used in the stochastic gradient descent update
(3) , although it is not gradient of any objective function(Maei, 2011). NTD algorithm(Yao
et al., 2009) directly preconditions TD Update with Hessian matrix At = φt(γφt+1 − φt)T
given by update rule

θt+1 = θt − αtA−1t δtφt

where A−1t is recursively updated with an averaging hyper-parameter βt

A−1t+1 =
1

1− βt

(
A−1t −

βtA
−1
t φt(γφt+1 − φt)TA−1t

1− βt + βt(γφt+1 − φt)TA−1t φt

)
with αt = O(βt).

3. Quasi Newton Temporal Difference Learning

In this section we explain the stochastic gradient descent as an optimization method for
large scale problems. We review the SGD-QN algorithm(Bordes et al., 2009) and finally
derive the regularized QNTD algorithm similar to the derivation of SGD-QN.
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3.1. Stochastic Gradient Descent

In standard regression, examples are like (x, y) ∈ <n × < and objective is to minimize
the function f(θ) = E[g(x; θ)] + λ

2‖θ‖
2
2, where expectation is on distribution of incoming

data points. g(x; θ) is the loss of sample x with parameter vector θ and λ > 0 controls the
strength of regularization. This objective could be empirically approximated by m examples
with

f(θ) ≈ fm(θ) =
1

m

n∑
i=1

g(xi, θ) +
λ

2
‖θ‖22.

One way of minimizing this objective function is to use gradient descent update:

θt+1 = θt − αtB∇fm(θ)

where αt > 0 is the step-size hyper-parameter and B ∈ <n×n is a positive definite rescaling
matrix. This is Batch gradient Descent but sometimes we receive data in an online fashion
or we want to treat examples one by one and have to update the parameter vector with
each stochastic example. This gives Stochastic Gradient Descent(SGD) update rule:

θt+1 = θt − αtB [∇g(xt; θt) + λθt]. (4)

One necessary condition for convergence of stochastic gradient descent is the Robbins-Monro
condition(Robbins and Monro, 1951) for the step-size αt:

∞∑
i=0

αt =∞
∞∑
i=0

α2
t <∞. (5)

One option is to use αt = 1
t+t0

with constant t0 to control the norm of parameter vector in
early iterations(Bordes et al., 2009)
If we set B = λ−1I in Equation (4), we obtain first-order SGD and if we set B = H−1 with
Hessian H = ∇2fm(θ∗m) and θ∗m = arg min fm(θ), we get stochastic Newton update rule

θt+1 = θt −
1

t+ t0
H−1 [∇g(xt; θt) + λθt]. (6)

3.2. Derivation of QNTD Algorithm

In TD setting, we can rewrite Equation (6):

θt+1 = θt −
1

t+ t0
A−1 [−δtφt + λθt] (7)

where samples are pairs of (st, r
π
t , st+1) and gradient vector at time t is negative of TD

Update, ∇gt(st, rπt , st+1, θt) = −δtφt and H = A = Edπ [At] with At = φt(γφt+1 − φt)T .
Although update rule (7) uses the second-order information A and converges faster than
first-order conventional TD algorithm, it is computationally expensive and has time com-
plexity of order O(n2).
Following the SGD-QN derivation procedure taken in (Bordes et al., 2009), we can speed
up the newton update (7) by approximating A−1 with the Secant Equation:

θt+1 − θt ≈ A−1 (E[−δt+1(θt+1)φt+1]− E[−δt+1(θt)φt+1] + λθt+1 − λθt)
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and since we are using stochastic gradients, it can be approximated again with

θt+1 − θt ≈ A−1 (δt+1(θt)φt+1 − δt+1(θt+1)φt+1 + λ(θt+1 − θt) ) .

Finally, to make A−1 sparse, we can approximate it with a diagonal matrix B. This means
that at time t, we only need to compute diagonal elements r−1i,t of matrix A−1t with1

∀i ∈ 1, · · · , n ri,t =
[(δt+1(θt)− δt+1(θt+1))φt+1]i

[θt+1 − θt]i
+ λ (8)

and as proposed in (Bordes et al., 2010), we estimate diagonal elements of matrix 1
t+t0

A−1

with recursive averaging update:

∀i ∈ 1, · · · , n Bii,t+1 =
Bii,t

1 + ri,tBii,t
(9)

where Bii’s are diagonal elements of matrix B and when φt = 0 (ri,t = 0
0) we set ri,t = λ.

Finally, we can write the QNTD update rule

θt+1 = θt +Btδtφt. (10)

Like SGD-QN algorithm, regularization in QNTD is done by considering a separate
imaginary transition happening every skip iterations with loss function λskip

2 ‖θ‖
2
2. In ad-

dition, computation of diagonal matrix B at each iteration may make QNTD considerably
slower comparing to TD. This problem is overcome by updating diagonal elements of matrix
B at the same frequency that regularization happens, that is every skip iterations.

Algorithm 1 shows the QNTD pseudo-code. Lines (7-9) compute diagonal elements of
matrix B in the current iteration and in line (10) they are updated. Like regularization
update in line (18), line (10) is updated with a multiplicative factor skip. This is because
regularization and update of matrix B happen every skip iterations. When the algorithm
has to update matrix B in the next iteration, line (17) stores the current iteration’s param-
eters in an additional vector ω.

4. Convergence Analysis of QNTD

Before analyzing the convergence of QNTD, we first see this algorithm from a different
view which makes it easier to analyze. Note that we can rewrite update rule (10) for each
dimension i as first-order SGD with:

[θt+1]i = [θt]i + αi,t[δt(θt)φt]i with αi,t = Bii,t =

(
λt0 +

t−1∑
k=1

ri,k

)−1
(11)

where αi,t = Bii,t is the expansion of the recursive update (9) until time t (Bordes et al.,
2010). Equation (11) makes QNTD similar to TD algorithm but with a step-size scheduled
for each dimension using the second-order information.

1. Note that rπt is the stochastic reward at transition from st to st+1 following policy π and ri,t is the i’th
diagonal element of matrix A−1

t .
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Our convergence result depends on the following assumptions of TD analysis in (Tsitsiklis
and van Roy, 1997):

Assumption 1 The Markov state process, (s0, s1, s2, · · · ) is aperiodic and irreducible and
a unique stationary distribution exists for the process denoted by d, and Ed

[
rπt

2
]
<∞.

Assumption 2 Feature basis functions (each row of matrix Φ denoted by φ(k), k ∈
{1, · · · , n}) are linearly independent, and Ed

[
φ(k)2(st)

]
<∞ for every k.

Assumption 3 There exists a function f : S → <+ which for all s0 ∈ S and m ≥ 0

∞∑
t=0

∥∥E [φ(st)φ(st+m)T |s0
]
− Ed

[
φ(st)φ(st+m)T

]∥∥ ≤ f(s0)

and
∞∑
t=0

∥∥E [φ(st)r
π
t+m|s0

]
− Ed

[
φ(st)r

π
t+m

]∥∥ ≤ f(s0),

where ‖.‖ is the Euclidean norm. Also for any q > 1, there exists a constant µq such that
for all s0, t

E [f q(st)|s0] ≤ µqf q(s0).

We now state the following theorem which is mainly based on Theorem 1 by Tsitsiklis and
van Roy (1997):

Theorem 1 Consider the sequence θt defined in (11) together with line (9) of Algorithm
1. Then, under assumption 1-3 and Robbins-Monro condition in Equation (5), θt converges
to the minimum of MSPBE with probability one.

Proof. Based on (11), QNTD is TD with a step-size schedule. So, we only need to show
the step-size in QNTD update satisfies the Robbins-Monro condition and then follow the
TD convergence proof in (Tsitsiklis and van Roy, 1997). As shown by Bordes et al. (2010),
in Equation (11), when t gets large

αi,t =
r̄i
−1

λt0r̄i −1 + t
+ o(

1

t
) , (12)

where r̄i is the average of ri,t until time t. Since TD Update is not gradient of any convex
loss function and ratio ri,t computed in (8) may be negative, line (9) of Algorithm 1 makes
sure that ri,t is always greater than λ. Hence αi,t is positive and clearly satisfies Equation
(5) in each dimension i ∈ 1, · · · , n.

5. Empirical Results

In this part we assess the empirical results of the QNTD algorithm comparing to conven-
tional TD and NTD algorithms. Original TD and NTD algorithms are not regularized and
to have a fair comparison, we evaluate the unregularized version of QNTD by switching off
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Algorithm 1 Quasi Newton Temporal Difference Learning

Let P π be the transition probability distribution for an MRP and s0 is the initial state.
φ is the feature extraction function.

Require: λ ≥ 0, t0, skip
1: θ ← 0, count← skip
2: ω ← 0, updateB ← false , ∀i Bii ← (λt0)

−1

3: for t ∈ 0, 1, · · · do
Given state st , get st+1 ∼ P π(.|st) and reward rπt = Rπ(st)
Compute φt = φ(st), φt+1 = φ(st+1)

4: δt(θ)← rπt + γφTt+1θ − φTt θ
5: δt(ω)← rπt + γφTt+1ω − φTt ω
6: if updateB then
7: ∀i ri ← [(δt(ω)− δt(θ))φt]i/[θ − ω]i
8: ∀i ri ← ri + λ
9: ∀i ri ← max {λ,min{100λ, ri}}

10: ∀i Bii ← Bii(1 + skipBiiri)
−1

11: updateB ← false
12: end if
13: z ← θ
14: count← count− 1
15: if count ≤ 0 then
16: count← skip, updateB ← true
17: ω ← θ
18: θ ← θ − skipλBθ
19: end if
20: δt(z)← rπt + γφTt+1z − φTt z
21: θ ← θ +Bφtδt(z)
22: end for
23: return θ

lines (8) and (18) in Algorithm 1, while we still need line (9)(that is, in case of ri = 0
0 or

ri =∞). In all tests, step-sizes for TD and NTD are found in a search for fastest convergent
mean squared error and hyper-parameters of QNTD are set by hand.
Here we compare algorithms on four standard benchmarks in RL literature: two small
problems, Random Walk, Boyan chain and two bigger problems, cart-pole, linked-pole
balancing tasks.

First small problem is the 7- state Random Walk (Sutton and Baro, 1998). This chain
has 5 states arranged in a line with 2 terminal states at each end of the chain. Each episode
starts at the middle state and ends in one of the 2 absorbing states. Transition probabilities
to each of neighbor states are equal and all transition rewards are zero except the reward
of last transition to the right absorbing state which is one.
In standard version of this problem, features are Tabular with φi = φ(si) = ei where ei is a
zero vector of size 5 with one in its i’th position. In (Sutton et al., 2009) two other versions of
features introduced to evaluate the robustness of algorithm in situations where bad features
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make the approximation harder or the features are not enough for approximating the true
value function. One of them is Inverted Features which for example, represents the second
state with φ2 = (12 , 0,

1
2 ,

1
2 ,

1
2)T and the other is Dependent Features with φ1 = (1, 0, 0)T ,

φ2 = ( 1√
2
, 1√

2
, 0)T , φ3 = ( 1√

3
, 1√

3
, 1√

3
)T , φ4 = (0, 1√

2
, 1√

2
)T , φ5 = (0, 0, 1)T . Figure 1(a),

1(b), 1(c) compares TD, NTD and QNTD algorithms on Random Walk with these 3 feature
settings. In our findings, NTD does not give much better results in the dependent feature
settings while QNTD produces better results with better convergence rate than TD in all
3 settings .
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Figure 1: Root Mean Square Error(RMSE) in comparison of TD, NTD and QNTD on
small size problems, 7- state Random Walk and 14- state Boyan chain: for all
experiments we have set γ = 1. Hyper-parameter settings for each algorithm is
shown in the box of each panel. Random Walk results are averaged in 50 runs.
Boyan chain results are averaged in 20 runs.

Another standard benchmark in policy evaluation is the Boyan chain(Boyan, 2002). This
MRP has m states and each state is shown with a feature vector of size n. Each episode
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starts at the leftmost state and in each state transits to the next state or next two state
in right direction with equal probabilities. All transition rewards are -3 except for the the
transition from state m−1 to state m(rightmost transition) which is -2. In our experiment,
we used a version with m = 14 and n = 4. Figure 1(d) compares the the MSE results in
14- state Boyan chain problem where QNTD outperforms TD and NTD. Interestingly, here
NTD does not give better performance than TD. This result and not very good performance
of NTD in the Random Walk with Dependent Features, shows that NTD’s performance for
some problems may rely more on use of expressive independent feature representations for
states.

We compared QNTD and TD on two bigger problems, linearized cart-pole and linked-
pole balancing tasks. In our evaluations we used the Python code that comes with the
recent survey by Dann et al. (2014) and with the same settings in his paper. In these
experiments, we omitted NTD results due to NTD’s large computation time comparing to
TD and QNTD.

In the linearized cart-pole problem, a pole with mas m and length l should be balanced
in upright position on a cart with mass M which can move to right or left with a newton
force. Each state is represented with s = [ψ, ψ̇, x, ẋ]T where ψ is the angle of pole, ψ̇ is the
angular velocity of the pole, x is the cart position and ẋ is its velocity. Linearized system
dynamics of this task around ψ = 0 is given by

st+1 = st + ∆t


ψ̇t

3(M+m)ψ−3a+3bψ̇
4Ml−ml
ẋ

3mgψ+4a−4bψ̇
4M−m

+


0
0
0
z


where z is a Gaussian noise with deviation 0.01. ∆t is time between 2 time-steps and is
set to 0.1 second. As in (Dann et al., 2014) we set the length of the pole l = 0.6m, mass
of the Cart M = 0.5kg, mass of the pole m = 0.5kg, friction coefficient b = 0.1 N

ms and
gravitational constant g = 9.81m

s2
. Reward function is given by

R(s, a) = −100ψ2 − x2 − 1

10
a2.

Feature vector for each state s is represented with φ(s) = [1, s21, s1s2, s1s3, s1s4, s
2
2, · · · , s24, 1]T ∈

<11. Testing policy is set to the optimal policy obtained by dynamic programming and
γ = 0.95. Figure 2 compares TD and QNTD algorithm on the linearized cart-pole problem.
QNTD gives slightly better result but with better robustness shown in standard deviation
bars.

Another big problem we assessed performance of QNTD algorithm is the K-linked-pole
balancing task(Dann et al., 2014). This task is to balance K joined poles upright. Each
pole i has a rotational joint controlled with a motor torque ai. Each state is a 2K vector
s = [φ1, · · · , φK , φ̇1, · · · , φ̇K ]T where φi is the difference between the angle of i’th pole to
the upright position with angular velocity φ̇i. Feature vector for each state is represented
with a K(2K + 1) + 1 elements consisting of upper triangular elements of matrix ssT with
an extra 1. The dynamics of the linearized system is given by

st+1 =

[
I ∆tI

−∆tM−1U I

]
st + ∆t

[
0

M−1

]
a+ z
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Figure 2: Root Mean Square Error(RMSE) in comparison of TD and QNTD algorithm on
linearized cart-pole problem. results are averaged in 200 runs.

where M is a matrix with Mih = l2(K + 1 − max(i, h))m with length l = 5m and mass
m = 1kg for each link. Matrix U is a diagonal matrix with Uii = −gl(K + 1− i)m and z is
a vector of Gaussian noise. ∆t is set to 0.1 second. Reward function is

R(s, a) = −[φ1, · · · , φK ]T [φ1, · · · , φK ].

Testing policy is the optimal policy obtained by dynamic programming. In this experiment,
we set K = 10 and γ = 0.95. Figure 3 compares the performance of TD and QNTD
algorithm on the linearized 10-linked pole balancing problem.

It is important to note that in the QNTD algorithm tested on 10-linked-pole balancing
task, we observed absolute value of ratios ri,t that are passed to line (9) are usually between
103 to 107 and don’t lay in [λ, 100λ] for best hyper-parameter settings in Figure 3 (small λ’s).
This made effective value of ri,t to alternate between λ and 100λ. Same thing happened
for Random Walk with Tabular Features but for this task this is because of sparse feature
vectors producing ri,t = 0

0 or ri,t = −∞. To test QNTD without this effect, we evaluated
QNTD with normalized features on 10-linked-pole balancing. This let most of the ratios
ri,t computed in lines (7,8) get to the line (10) in Algorithm 1. Figure 4 shows performance
of QNTD on 10-linked-pole balancing with normalized features.

6. Conclusion and Future Works

In this paper we derived a regularized Quasi Newton TD algorithm. Diagonal approxi-
mation of Hessian matrix and its update happening every skip iterations, make QNTD
computationally faster than NTD. We looked at QNTD from a first-order SGD view and
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Figure 3: Root Mean Square Error(RMSE) in comparison of TD and QNTD algorithm on
linearized 10-linked-pole balancing problem. results are averaged in 30 runs.

analyzed convergence behavior of QNTD update rule. Finally, we provided performance
results of QNTD in comparison to TD on four RL benchmarks. Results confirmed that
QNTD outperforms TD in convergence rate, final accuracy and in robustness. Although
we derived QNTD based on TD(0), it could be extended to TD(λ). In addition, we can
extend it to Gradient TD learning algorithms such as TDC(QNTDC) to increase its speed
of convergence. As discussed, QNTD could be seen as an adaptive step-size TD learning
algorithm using second-order information to find best step-size for each update dimension.
Mahmood et al. (2012) developed Autostep which is an adaptive step-size algorithm. It
seems important to analyze the behavior of TD or TDC algorithm with Autostep (Dabney
and Barto, 2012) and compare it with QNTD or Quasi Newton TDC algorithm.
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