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Abstract

The problem we consider in this paper is reinforcement learning with value advice. In
this setting, the agent is given limited access to an oracle that can tell it the expected return
(value) of any state-action pair with respect to the optimal policy. The agent must use
this value to learn an explicit policy that performs well in the environment. We provide
an algorithm called RLAdvice, based on the imitation learning algorithm DAgger. We
illustrate the effectiveness of this method in the Arcade Learning Environment on three
different games, using value estimates from UCT as advice.

1. Introduction

Reinforcement learning (RL) agents (Sutton and Barto, 1998) learn how to act well via trial-
and-error interactions with an environment that provides a real-valued reward signal. An
RL agent has less information than in supervised learning, since the reward signal provides
only partial feedback. Additionally, the agent needs to make choices about which parts of the
environment to explore, leading to the famous exploration-exploitation problem. There has
been research into reducing the difficulty of the reinforcement learning problem, particularly
for large environments, by providing additional information to the agent in various forms.
The related fields of imitation learning, learning from demonstration, reinforcement learning
with policy advice, inverse reinforcement learning and transfer learning all fall into this
category.

This paper is an attempt to answer the following problem. We are given some class of
function approximators Q of our value function, and an oracle that provides the expected
return of any state-action pair under the optimal policy. We assume that we cannot always
use the oracle because of some constraints, for example, the oracle costs a lot of computation
time/memory or we lose access to the oracle at some point e.g. separate training/testing
stages. Thus we want to use the oracle information to find a policy defined by Q̂ ∈ Q that
performs well in the environment.

Motivation. The primary motivation of this approach comes from the need to extract
explicit policies from anytime algorithms such as UCT (Kocsis and Szepesvári, 2006) repre-
sented by a value function approximation in some feature space. The reasons for this need
are two-fold. Consider a problem that has two stages, training and testing. In the training
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stage, the algorithm may use UCT on the simulator for control, however in the testing
stage there may not be the computing resources or the time to run UCT. In such cases it is
useful to extract a reactive policy from UCT that will perform well without need for further
simulation. While UCT does not use features of the environment, an explicit policy will
rely on such features. A second use of an explicit reactive policy is to judge the usefulness
of a particular class of function approximators in representing a good (or optimal) policy
for a problem. If the learned policy extracted from UCT by our approach performs well,
it indicates that the approximators being used are capable of representing such a policy.
Thus, this method also provides a tool for evaluating classes of function approximators,
although there is no guarantee that it finds the best performing policy in the class.

A related problem is to imitate the oracle policy as closely as possible. Focusing on
this leads to a solution to our original problem. For example, we may simply treat it as a
regression problem with training samples being the features and the oracle return following
the oracle’s policy. Unfortunately, the regression model from this dataset results in a policy
that does not necessarily perform well. The intuition behind this failure is that the class of
function approximators cannot represent the value function of the oracle’s policy, and the
agent is learning according to the oracle’s state distribution rather than its own. In imitation
learning, an algorithm known as Dataset Aggregation (DAgger) (Ross and Bagnell, 2010)
deals with this problem, while still retaining the goal of imitating the oracle. Our proposed
solution to the original problem is a modification of DAgger to suit our setting. In practice,
the oracle may not be perfect, and one might want to continue learning after the training
phase is over.

Main contribution. The main contribution of this work is learning how to act well in
a reinforcement learning problem given access to an oracle that can provide the value of
any state-action pair in a training stage. We provide an algorithmic contribution in the
form of a modification of an existing imitation learning algorithm for this task, along with
a comparison of various methods. Our testing suite is the Arcade Learning Environment
which shows the scalability of our method. Using just a few episodes of data, we obtain
much better results than SARSA after 5000 episodes, although the settings are not directly
comparable.

This paper is organised as follows. Section 2 explains the background necessary for
the rest of the paper. Section 3 provides information on related work, primarily imitation
learning which while close in some senses, has a different objective. In Section 4 we formally
introduce our objective and our algorithmic solution. Section 5 describes the experimental
setup, methodology, and displays our results. In Section 6 we discuss the results. We
conclude in Section 7 and talk about some possible future work.

2. Background

Agent-Environment Framework. An agent acts in an Environment Env by choosing
from actions a ∈ A. It receives observations o ∈ O and real-valued rewards r ∈ R where
A,O and R are all finite. This observation-reward-action sequence happens in cycles in-
dexed by t = 0, 1, 2, .... The history of an agent at time t is ht which contains the sequence
of observation-reward-action tuples up to time t.
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Markov Decision Process (MDP). If Pr(otrt|ht, at) = Pr(otrt|ot−1at), the environment
is said to be a discrete MDP (Puterman, 1994). In this case, the observations form the state
space of the MDP. Formally an MDP is a tuple 〈S,A, T , γ, R〉 where S is the set of states,
A is the set of actions and R : S ×A ; R is the (possibly stochastic) reward function
which gives the (real-valued) reward gained by the agent after taking action a in state s.
T : S ×A× S → [0, 1] is the state-transition function. The agent’s goal is to maximise its
expected future discounted reward, where a geometric discount function with rate γ is used.
In an episodic setting, the discounted sum is truncated at the end of an episode. The value
of a state-action pair according to a policy (π) is given by Qπ(s, a) = Eπ{Rt|st = s, at = a}
where Rt =

∑tend
k=0 γ

krt+k+1 is the return and tend indicates the end of the episode containing
time t. In the non-episodic setting Rt =

∑∞
k=0 γ

krt+k+1. We want to find the optimal action-
value function Q∗ such that Q∗(s, a) = maxπ Q

π(s, a), since then the greedy policy with
respect to Q∗ is optimal, π∗(s) = arg maxaQ

∗(s, a).

Reinforcement learning algorithms. RL agents come in several flavours. One of the
biggest distinctions is between model-based and model-free agents. Model-based algorithms
explicitly learn a transition function and reward function, whereas model-free algorithms
learn the value function directly. This paper focuses on a model-free algorithm which
uses linear function approximation to scale to large state spaces. Commonly used model-
free methods include SARSA and Q-learning which are both temporal difference methods.
SARSA is an on-policy algorithm that uses the update rule Qπ(st, at) ← Qπ(st, at) + αδ
where δ = rt+1 + γQπ(st+1, at+1) − Qπ(st, at) is called the temporal difference and α is
known as the learning rate. The tabular setting describes the case where we represent the
value function by a table with entries corresponding to the value of each state-action pair.
However, when the state space is very large we need to represent the value function more
compactly via a suitable class of parameterized function approximators. A linear function
approximator over d-dimensional features φ : S × A → Rd approximates the value Q(s, a)
by w>φ(s, a) where w ∈ Rd is a weight vector we learn. The SARSA update rule is then
wi ← wi + αδφ(st, at) for all wi ∈ w.

UCT. Upper Confidence Bounds for Trees (UCT) by Kocsis and Szepesvári (2006) is a
Monte-Carlo Tree Search (MCTS) algorithm that uses UCB from the bandit setting for
exploration in the forward model setting. MCTS algorithms are expectimax searches using
a forward model with some heuristic for selecting actions to avoid expanding the full tree.
They run to some depth either determined by time or as a fixed constant, after which they
play out a predefined (often random) policy to estimate the remainder of the return. UCT
is used by us in the form of an oracle. We provide pseudo-code for it in Algorithm 1. Later
on, we also provide a modification to UCT in which it behaves as a reinforcement learning
algorithm in a deterministic environment, with the same great performance but terrible
computational efficiency.

Arcade Learning Environment (ALE). The reinforcement learning community has
lacked a set of general environments that can be used for testing new algorithms in a robust
manner. In Veness et al. (2011) a set of small challenging problems were provided, but
several algorithms (Daswani et al., 2013; Nguyen et al., 2012) can no longer be differentiated
based on them. The recently introduced ALE by Bellemare et al. (2013) attempts to address
this big gap in the field by utilising games made for the ATARI 2600 as a test bed for
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reinforcement learning algorithms. The environments in this setting are games made for
humans which can be relatively complex, but due to the space/processing limits of the
ATARI console, still computationally feasible for current RL techniques. The ALE consists
of an interface to Stella which is an open-source Atari 2600 games emulator.

This gives access to hundreds of games of this format, which range from side-scrollers,
to arcade games, shooters and puzzles. The interface provides access to the screen pixel
matrix and the internal state representation of the ATARI games themselves. This allows
for both reinforcement learning and planning algorithms to be tested, since the ability to
reset to a particular state is crucial for some planning algorithms like UCT.

3. Related Work

The related problem of imitating the oracle with full-information is briefly considered by
Ross (2013) as the full-information cost-to-go setting. However, they only look at the partial
information cost-to-go setting in detail. In the full information tabular setting, there is no
need for exploration since we know that the policy can be perfectly represented, and we
simply have a regression problem. However in our setting, due to the large state space, we
need function approximation which may mean that the value function of the policy cannot
be fully represented in the function approximation class. This reintroduces the exploration
problem, but in a different way. We have access to the oracle’s value function at any instant,
but this function may not be in the approximation class, so we need to explore in this space
and use the oracle’s value function as an optimistic guide.

Imitation learning. Traditionally an imitation learning problem is framed as a loss min-
imisation problem, rather than a reward maximisation problem. In the standard setting
we have an expert which provides the correct action a∗s = arg maxa∈AQ

∗(s, a). The learner
has no access to the return, and simply sees the action the oracle prescribes. The task is
now normally framed as minimising a surrogate loss based on the oracle’s policy, where the
surrogate loss is defined as a distance between the each action and the optimal one with
the simplest being a 0-1 loss.

In the partial information setting, the agent has some access to the expected return
but not for every action. Ross (2013) considers the case where the learner can have cost
information about only one of the actions by playing out a (agent or oracle) policy after
choosing an action. The decision of which action to learn about is made uniformly, but this
is suboptimal as they point out.

In the full information setting, where the agent has access to the value of every action in
a given state, it aims to imitate the oracle by choosing a policy arg maxπ

∑m
t=1Q(st, π(st)),

where we have m samples of the form {st, Q(st, ·)} and Qt(st, ·) is a vector of expected
returns for each action provided by an oracle (Ross, 2013). This above ideal policy imitates
the oracle within the approximation class. In practise, solving this problem for interesting
policy classes is computationally hard, and one approximates it by reducing it to a different,
preferably convex, optimisation problem.

Previous work on reinforcement learning with advice. There has been interest
in various formulations of the reinforcement learning with advice problem. Maclin and
Shavlik (1996) define a learner that can accept advice in the form of instructions in a
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simple imperative programming language. Wiewiora et al. (2003) define potential-based
advice which uses shaping functions defined over states and actions to give the agent hints
about whether a state-action pair is good or bad. Maclin et al. (2005) construct agents
that can accept advice in the form of bounds on the Q-value in certain parts of the state-
action space. Azar et al. (2013) look at regret bounds for the case where the agent is
given advice in the form of some set of (hopefully good) input policies. Most recently,
Taylor et al. (2014) define a teacher-student framework where both teacher and student are
reinforcement learning agents, and the teacher must choose when to give advice in the form
of recommended actions to the student. The advice is assumed to be budgeted. This work
is of interest to us, since the experiments are also performed on video games (Starcraft and
Pacman). However, none of these various advice settings address our particular problem.

Previous work on the ALE. Also of interest to us is previous work on the ALE. The initial
paper by Bellemare et al. (2013) extensively described the performance of a vanilla SARSA
implementation using a few classes of function approximators based features on the pixel
matrix and linear function approximation. These agents do not perform so well. However,
later papers use other function approximators that perform much better. For example,
Hausknecht et al. (2013) use neuro-evolutionary techniques and Mnih et al. (2013) use
convolution neural nets in a deep learning style, to learn features of the matrix. There has
also been work in the model-based setting by Bellemare et al. (2013) but these agents have
so far only been used for prediction rather than control, since it is still quite computationally
difficult to find a good policy using a model in such a large space. In our work, we focus
on trying to improve the performance on a particular feature set (BASS) using only linear
function approximation.

4. Algorithm

Ultimately we want the best policy within our approximation space. While this may not
be achievable in practice, it gives us a goal to aim for. We have d-dimensional features
φ : S × A → Rd over states and actions. Let us define a set of policies parameterised by
a weight vector v ∈ Rd as πv(s) = arg maxa v

>φ(s, a). Then the best policy within our
approximation space is given by

π∗v = arg max
πv

Qπv(s, πv(s)) (1)

In practise, we instead look for the best approximation to the optimal value function and
take the greedy policy with respect to that function, i.e.

w = arg min
v

∑
s,a

d(s, a)|v>φ(s, a)−Q∗(s, a)|2 (2)

where d : S ×A → R is a distribution over the state-action pairs induced by the behaviour
policy. We then choose π̂∗(s) = arg maxaw

>φ(s, a).
The algorithm (RLAdvice, Algorithm 2) we define is a modification of the Dataset

Aggregation algorithm (DAgger) (Ross and Bagnell, 2010) used in imitation learning in
various forms. RLAdvice retains the core idea from DAgger of aggregating samples derived
from the agent’s own policies. However, it collects different information and uses a different
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Algorithm 1: UCT (Kocsis and Szepesvári, 2006), pseudocode adapted from Bellemare
et al. (2013)

Input: search horizon m, simulations per step k, Environment Env with reset to state
ability.

Input: search tree Ψ, current state s.

search(s)
if Ψ is ∅ or root(Ψ) 6= s then

Ψ← empty search tree.
Ψ.root← s.

end
repeat

sample (Ψ, m)
until Ψ.root.visits = k ;
a← bestAction (Ψ).
prune (Ψ, a).
return (a)

Function sample(Ψ, m)
n← Ψ.root.
while n is not a leaf, m >depth(n) do

if action a has not yet been taken in node n then
reward ← emulate (n,a).
Create child node ca of n.
immediate-return(ca) ←reward.
Change the current node to ca, i.e. n← ca.

end
else

a← selectAction (n).
n← child(n,a).

end

end

Function emulate(n, a)
Input: Node n containing environment state, Action a
Env.resetToState(n.state).
Execute action a in Env and store reward in r.
if End of game then

Set node to leaf node.
end
return r
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objective function. In our setting, we use φ(st, a) := φ(st) and learn a separate weight
vector for each a. We add tuples of the form (φ(st), Q(st, a)) to the dataset Da for all a
and for each timestep t in the episode i, where Q(st, a) is provided by the oracle. In the
first episode, the agent follows the policy provided by the oracle, i.e. arg maxaQ(s, a). For
every following episode, the agent acts based on its own prediction which it obtains from the
current (action) value function approximation wai

>φ(s), and adds the corresponding tuples
to Da. The intuition behind using the agent’s own predicted policy over the oracle’s is that
the oracle policy might not be representable in the agent’s approximation space and the
agent might make mistakes that the oracle never makes. Due to the representation issue,
the agent might fail to learn not to end up in certain situations, which the oracle would
not visit, but knows how to act in. In order to learn about these situations, we use the
agent’s policy. Once an episode is over, the agent learns a new set of regression weights
(wai ) for each dataset Da, using the following regularised ε-insensitive objective optimised
with LIBLINEAR (Fan et al., 2008),

wai = arg min
v

1

2
v>v + C

∑
(φ(s),Q(s,a))∈Da

max{0, |v>φ(s)−Q(s, a)| − ε}2
 (3)

LIBLINEAR solves this as a support vector regression problem. ε specifies the accuracy
to which we minimise the loss for each data point and C is the regulariser. For the next
episode i+ 1, the agent follows the policy πi(s) = arg maxaw

a
i
>φ(s).

Algorithm 2: Reinforcement learning with value advice

Initialise D ← ∅.
Initialise π1(= π∗).
t = 0
for i = 1 to N do

while not end of episode do
foreach action a do

Obtain feature φ(st) and oracle expected return Q∗(st, a).
Add training sample {φ(st), Q

∗(st, a)} to Da.
end
Act according to πi.

end
foreach action a do

Learn new model Q̂ai := wai
>φ from Da using regression.

end

πi(·) = arg maxa Q̂
a
i (·) .

end

We believe the algorithm satisfies similar regret bounds to DAgger. The primary dif-
ference between RLAdvice and DAgger is that we generate a sequence of weights, for each
action, over our function approximation class, whereas DAgger directly generates a sequence
of policies. We can perform a similar analysis as by Ross and Bagnell (2010), viewing the
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Table 1: Experimental Parameters
Setting Parameter Value

ALE Environment Distribution False
Frame skip 5

UCT Exploration constant 0
Number of simulations 36

Horizon 50

BASS features Grid width 16
Grid height 14

Colours 8

RLAdvice Pong Regulariser 0.1
Space Invaders Regulariser 1.0

Atlantis Regulariser 1.0

SARSA-RLA Discount factor 0.999
Learning rate 0.5

Exploration constant 0.05

RLAdvice-SDCA Pong Regulariser 10
Pong stopping gap 0.0001

Space Invaders Regulariser 1.0
Space Invaders stopping gap 10

Atlantis Regulariser 100
Atlantis stopping gap 5000

data collected from each iteration of RLAdvice along with the corresponding loss over our
parameters as a single instance of an online learning problem. For ε = 0, the loss we use is
strongly convex, so the no-regret bounds for follow-the-leader apply. Note that such bounds
include a term which is the minimum loss we can achieve in our function approximation
class. The bound does not mean that we converge, the algorithm could conceivably oscillate
between approximations. If the class of approximators can approximate the optimal value
function well, then the oscillations will be between good approximators and therefore not a
problem. A problem occurs only if the class of approximators is weak.

5. Experiments

We have attempted to test various configurations of the algorithm to show what works and
what does not. Firstly, we show that using the oracle’s own trajectory does not work. Our
modification to DAgger using the oracle that provides the return works very well, providing
the best known results for Pong and Atlantis using this class of function approximators.
This result demonstrates that the class is capable of representing a good Pong playing policy.
On the other hand, we see no improvement over SARSA in the Space Invader results, which
might indicate that the problem here is the feature representation. We can thus see the
diagnostic use of this approach.
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The Oracle. As pointed out previously, our primary motivation is in extracting efficient
reactive policies from slow MCTS algorithms such as UCT, which can be computationally
expensive to use outside of a training phase. The oracle that we use is therefore UCT
with a specified horizon and number of simulations. As an aside, note that UCT itself
can be viewed as a reinforcement learning algorithm in a deterministic environment in the
following sense. It is possible to mimic the ability to reset to a particular state, by saving
in each node, the action sequence that led to that node. Then in order to evaluate a
child of a particular node, the agent simply has to reset to the start of the game either by
completing the current episode or by using an end game action, and then play out the saved
actions, followed by the action of the child it wishes to evaluate. We provide this replaced
emulate function in Algorithm 3. Given that the ALE is a deterministic environment, the
impressive UCT results of Bellemare et al. (2013) can be said to be reinforcement learning
results (albeit with a much higher number of trajectories used) rather than planning results
and this brings into critical light the weak SARSA results provided in that paper. It is
important to remember that even in this “reinforcement learning” mode, UCT still does
not learn either an explicit or complete policy, but just an action sequence. By testing our
algorithm on the ALE with UCT as our oracle in similar configurations to that used in
Bellemare et al. (2013) we are also trying to discover whether the fault lies with SARSA or
with the function approximation class.

Algorithm 3: The modified emulate function for UCT as an RL agent

Input: MCTS Node containing action sequence a1:l−1, Environment Env, Action a
Output: Reward for the execution of action a, after sequence a1:l−1

// The following loop can be replace by a call to reset game() if

available.

while not end of game do
Execute random action in Env.

end
Start new episode.
Execute all actions in Node action sequence (a1:l−1).
Execute latest action a in Env and store reward in r.
if End of game then

Set node to leaf node.
end
return r

Features. We use the feature class described in Bellemare et al. (2013) as Basic Abstraction
of Screen Shots (BASS). It consists of a tiling of the screen into blocks, with each block
containing indicator functions for each SECAM colour i.e. the function is on if a particular
colour was present in the block. BASS consists of these features along with the pairwise
AND of all those features. In the default setting of a 16x14 grid this results in a feature
space that contains 1,606,528 features.

Games. The legal action set for a game in the ALE contains all 18 actions that could
physically be pressed on an ATARI2600 controller. The minimal action set contains only
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the actions that are needed for a particular game. For computational reasons, we selected
games that have a minimal action set with size less than the number of legal actions (18).
We also wanted games that showed better than random performance on SARSA (on the
BASS feature set), as some indication of a linear function approximator being successful.
Another criterion was that games did not have to last the full 18,000 frames to end, since
that would increase both computation time and memory storage. Given those constraints,
we chose Pong and Atlantis. We also chose one game, Space Invaders, where picking a
constant action with some ε-random actions performed better than SARSA. There is some
indication here that the function approximator cannot represent the value function, and we
attempt to confirm that with our experiments.

Pong is a game with two paddles and a ball, a 2D version of table tennis. The aim
is to hit the ball back such that the opponent cannot reply. Our agent plays against the
hardcoded ATARI 2600 agent, which is pretty hard to beat even for a human. If the agent
scores it receives 1 point, and -1 point when the opponent scores. Thus the total score is
the difference between the agent’s score and the opponent’s score. The minimal action set
contains 6 actions.

Space Invaders involves shooting down columns of alien spaceships, while avoiding their
return fire. The enemy spaceships are arranged in columns, with lower rows worth lesser
points. The columns move from left to right and then back, with each movement to the
end advancing the spaceships further down the screen. The agent also has the option of
occasionally shooting down a special purple fighter for an extra 200 points. The game ends
when the agent loses 3 lives, or when the moving columns of spaceships get to the bottom
row. The minimal action set contains 6 actions.

Atlantis is also a shooter, but here the enemy spacecraft fly across the sky very quickly.
The agent is in charge of three fixed guns, a primary central one and two secondary guns
on the sides and is tasked with protecting the city of Atlantis. The agent must shoot down
as many enemy spacecraft as it can. The enemy spacecraft also occasionally attempt to use
lasers to take out the agent’s 3 guns and 4 other structures of Atlantis. Lost structures,
including the guns, can be regained by destroying enough enemy spaceships. The agent
loses when all structures are destroyed. The minimal action set contains 4 actions.

Methodology. A trial consists of running RLAdvice for N = 30 episodes. For each
environment we do 5 trials, and our graphs show these results with error bars suppressed for
clarity. We use LIBLINEAR to learn linear regression models after each iteration based on
the data accumulated so far. We used the default ε for LIBLINEAR, and chose regularisation
constant C based on trials on a small set of episodes in each environment, selecting from
{0.001, 0.01, 0.1, 1.0, 10.0}. We use the L2-regularised support vector regression algorithm
to solve our regression problem.

We also ran further experiments using RLAdvice with our own implementation of
Stochastic Dual Coordinate Ascent (SDCA) (Shalev-Shwartz and Zhang, 2013) minimis-
ing the L2-regularised square loss (ε = 0) for 100 episodes on Pong and Space Invaders, and
50 episodes on Atlantis, to examine the performance improvement given more data. We
used our own implementation in order to provide a warm-start to the regression routine
using the agent’s previous solution to speed-up the procedure for longer runs. Unfortu-
nately LIBLINEAR does not offer such an option. We found a large speed-up on our most
demanding domain, Atlantis, where the regression algorithm dominates computation time.
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The total time taken to learn weights for all actions on the final episode goes from 3 hours
to approximately 30 minutes, and our overall training time (for 30 episodes) goes from
approximately 74 hours to 40 hours.

Comparisons. We compare the following algorithms on Pong, Space Invaders and Atlantis
within the ALE framework. Note that we use the minimal action set for each environment.
This gets rid of superfluous actions for each environment. It also means that our experiments
are computationally less demanding both in memory and time, since we learn a model for
each action independently. The SARSA results are taken from Bellemare et al. (2013). Note
that RLAdvice-best and UCTRLA-best show the best total reward in any episode so far
for RLAdvice and UCTRL.

• SARSA (traditional reinforcement learning) [SARSA].

• RLAdvice using regression. We have the following variations,

– Training starting with a UCT policy and then iterating the model [RLAdvice].

– Training only with the UCT policies [UCTRLA]. We note that the UCTRLA
result on Atlantis is averaged over 2 trials rather than 5, due to the large com-
putation time required per trial (approximately 5 days).

• SARSA trained using the regression weights obtained from RLAdvice [SARSA-RLA].
The weight vector from the RLAdvice algorithm can be further improved on (in
theory) by using SARSA with these weights as the initialisation.

6. Discussion

The results obtained on Pong, Atlantis and Space Invaders demonstrate our two objectives.
It is intuitively clear that the class of function approximators we are using should be able
to represent the value functions of good Pong policies. We have pairwise features of grids of
SECAM colours. There are only three objects in the Pong domain, the two paddles and the
ball. The value function of states where the ball is approaching the agent can be represented
by the pairwise function of the agent’s paddle and the ball position. On Pong we perform
better with 30 episodes than the SARSA results over 5000 episodes (Figure 1(a)), noting
that we have more information through the oracle than SARSA does. This confirms our
intuition that good policies are representable within the class of function approximators,
but SARSA does not find them. The result using the oracle policy for training (UCTRLA)
confirms that using the oracle policy to train the RLAdvice agent does not work.

A further examination of the Pong behaviour requires observation of the video of an
RLAdvice agent playing Pong. http://mdaswani.me/rlavideos/ contains a playlist of
videos of the agent playing various games, including Pong at different stages during training.
The first thing one notices is the jitteriness of the agent (green, on the right). This can be
explained by the behaviour of the oracle UCT. Before the ball is very close to the agent, all
actions are nearly equal in reward, since the agent can always reach the position it needs
quite quickly. So the oracle acts randomly. Thus the agent inherits this jittery behaviour.

The agent makes mistakes when the data collected from previous episodes is insufficient
to learn a good value function approximation. As it makes mistakes, it collects data about
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Figure 1: Comparisons against RLAdvice using LIBLINEAR for 30 episodes

the values for the actions in those situations which improves the approximation in those
areas. This analysis also illustrates why learning from the oracle policy alone is not sat-
isfactory. If one looks at the video for a UCT agent playing Pong, the agent wins nearly
all the time, so the opponent does not even get to serve, or gets to serve only a few times.
Thus learning from this policy does not provide the agent with any data on how to return
a serve, and so UCTRLA fails on this task.

Our longer runs show much improvement (Figure 2(a)) with the best Pong result being
approximately -5 on average, a score of 21-16, comparable to a good human player.
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On Space Invaders, RLAdvice performs on average slightly worse than the SARSA
result. Here, our result suggests that perhaps the function approximation class we consider
is insufficient for doing much better than SARSA, but this is uncertain. An alternative
hypothesis is that both SARSA and RLAdvice are unable to find a good policy for an
unexplained reason. However, we have some intuition for why the value function may not
be representable by a linear combination of the pairwise BASS features. Space Invaders
is fairly chaotic, and has the same colour for shots fired by the enemy spaceships and for
the agent’s own. This makes it hard to distinguish between the two, even though the ALE
provides a colour averaging between every two frames. The much higher density of objects
in the domain compared to Pong, also makes it harder for the objects to be clearly defined,
resulting in feature vectors that look very similar for fairly different situations (such as
being hit and being missed by a laser beam). Longer runs on Space invaders show equally
poor results.

Atlantis is a more stationary game than the other two, with the agent controlling fixed
guns and trying to prevent the guns from being hit by enemy fire, while shooting down
enemy spaceships. The RLAdvice agent does quite well on the domain. This domain has
only four actions which means that UCT has better estimates of the action values since we
keep the number of simulations constant. The average best reward (Figure 1(b)) shows a
constant improvement in the best reward with no plateau. The longer run in Figure 2(b)
shows that the trend continues and the agent is now consistently better than SARSA.

An issue that we need to take into account, is the accuracy of the estimates of the
action-values provided by the oracle (UCT). There are two sources of error. One stems
from the number of simulations that we use to sample. The other is the UCB formula itself,
which does not select actions which seem to not have a high value within a few iterations.
While this exploration-exploitation strategy is useful when acting well in an environment
(and indeed solves it in the bandit setting), in our setting we need estimates for all actions,
not just the good ones. Pruning the amount of simulations spent on bad actions for the
oracle policy means that we have good value estimates for the good actions. The UCB
formula means that we will underestimate the value of the bad actions, which is better than
overestimation since it gives us a better margin for error.

The SARSA-RLA results are surprising. The agent is given a good model (for Pong
and Atlantis) to start with, and ends up playing worse after training using SARSA. We
tried various parameter settings, but apart from one trial of a good Pong result (-13.68)
the results are disappointing. The average SARSA-RLA Pong result at -16.29 is still better
than the average SARSA results, but the Atlantis results are substantially worse at 12015.
It seems that temporal difference methods (at the very least SARSA) might not work very
well on this task.

Computational issues. We can look at the computation time taken in various stages
of the algorithm. The experiments were primarily performed on a Intel Xeon X5650 (2.67
Ghz) with 12 cores and 141GB of RAM. Consider Space Invaders, in which the worst time
to perform regression for a given action is 30 minutes, and the average is not much better
around 20 minutes. Thus in 30 runs, using 6 actions the regression part cumulatively
contributes 5400 minutes to the running time. UCT on the other hand takes 40 minutes
cumulatively per episode (approximately 3 seconds for one call to UCT), meaning over 30
episodes this is around 1200 minutes. Other games have similar computational profiles. The
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Figure 2: Longer results using SDCA

Table 2: Timing data on Atlantis, the most computationally expensive game, using LIB-
LINEAR for RLAdvice and UCTRLA. The time for RLAdvice includes generating
the advice using UCT. The time for SARSA-RLA here is post-RLAdvice training
and would be comparable to time taken by standard SARSA.

Algorithm Training episodes Training time Testing time (per episode)

SARSA-RLA 5000 22.01 hours 1 second
RLAdvice 30 73.99 hours 1 second
UCTRLA 30 118.38 hours 1 second

UCT N/A N/A 3600 seconds

learning scales linearly with the number of possible actions, which adds a severe constraint
on the number of actions we can learn the value of using this method. On the other hand,
if we can speed up the regression process, we can significantly improve the running time of
the procedure.

In terms of memory, the usage is substantial. A single run of 30 iterations close to a
little over 10 GB of RAM on average. This memory is used in storing the feature vectors
for every screen visited, along with the current model for each action. The models are
approximately 200MB each, which is a small fraction of the total. The models essentially
contain a weight for each feature stored in a sparse format. Even though the sparsity of
feature vectors is high (around 1%), given 1.6 million features and trajectories in the order
of a few thousand frames is enough to add up to a large amount of RAM for each iteration.
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Stochastic Environments. Though the experiments were performed on a class of deter-
ministic environments, RLAdvice has no dependence on the determinism of the environ-
ment. In the case of randomised initial state in ALE, we can also use the policy trained on
the deterministic environment since it generalises according to the linear function approxi-
mator. Thus it is much more versatile than simply learning a fixed trajectory.

7. Conclusion

We introduced a modification of the DAgger agent for the reinforcement learning with ad-
vice problem. RLAdvice can be used to find explicit policies for anytime algorithms such
as UCT, and for checking the usefulness of a function approximation class. It shows im-
proved performance on the Pong and Atlantis domains in the Arcade Learning Environment
indicating that value functions of good policies are representable in the class, and similar
bad performance to SARSA on Space Invaders which suggests a problem with the function
approximation class.

Future Work. As pointed out in the paragraph on computational issues, the computation
time is dominated by the model learning. A suitable next step would be to consider a
budgeted advice setting where the agent must limit the number of calls it makes to the
oracle. This would save time via less UCT computations as well as a smaller number of
samples which results in quicker model learning.

Further work on the ALE should use different classes of function approximators, and
indeed this is being done (see Section 3). Ultimately, we would like algorithms that are able
to automatically find useful feature sets, and deep learning approaches (Mnih et al., 2013)
are promising.

The current work treats the oracle as a black box. However, instead of the oracle-learner
framework that we have here, it might be better to examine a teacher-learner setup as in
Taylor et al. (2014), where the teacher is attempting to optimise the policy it shows to the
agent. RLAdvice corrects flaws in its own policy, however this can still fail as seen in the
Pong example, where not enough data about a serve from one side of the screen results
in suboptimal behaviour. This could be prevented if the teacher was able to predict this
failure and show the learner the right data for the learner’s function approximation class.
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