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Abstract

Training support vector machines (SVM) with indefinite kernels has recently attracted
attention in the machine learning community. This is partly due to the fact that many
similarity functions that arise in practice are not symmetric positive semidefinite, i.e. the
Mercer condition is not satisfied, or the Mercer condition is difficult to verify. Previous
work on training SVM with indefinite kernels has generally fallen into three categories: (1)
positive semidefinite kernel approximation, (2) non-convex optimization, and (3) learning in
Krein spaces. All approaches are not fully satisfactory. They have either introduced sources
of inconsistency in handling training and test examples using kernel approximation, settled
for approximate local minimum solutions using non-convex optimization, or produced non-
sparse solutions. In this paper, we establish both theoretically and experimentally that the
1-norm SVM, proposed more than 10 years ago for embedded feature selection, is a better
solution for extending SVM to indefinite kernels. More specifically, 1-norm SVM can be
interpreted as a structural risk minimization method that seeks a decision boundary with
large similarity margin in the original space. It uses a linear programming formulation that
remains convex even if the kernel matrix is indefinite, and hence can always be solved quite
efficiently. Also, it uses the indefinite similarity function (or distance) directly without any
transformation, and, hence, it always treats both training and test examples consistently.
Finally, it achieves the highest accuracy among all methods that train SVM with indefinite
kernels with a statistically significant evidence while also retaining sparsity of the support
vector set.

Keywords: Support vector machines, Indefinite kernels, Similarity-based classification,
Supervised learning, Linear programming

1. Introduction

Support vector machines (SVM) is one of the most popular classification algorithms today.
It is inspired by deep theoretical foundations, which make use of the Vapnik-Chervonenkis
(VC) dimension to establish the generalization ability of such family of classifiers (Vapnik,
1999; Burges, 1998). However, SVM has its limitations, which motivated development of
numerous variants including the Distance Weighted Discrimination algorithm (DWD) to
deal with the “data piling” phenomenon observed in large dimensions (Marron et al., 2007)
and second order cone programming (SOCP) techniques for handling uncertain or missing
values assuming availability of second order moments of data (Shivaswamy et al., 2006).
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SVM WITH INDEFINITE KERNELS

One fundamental limiting factor in SVM is the need for positive semidefinite (PSD)
kernels. This follows from the fact that SVM is usually solved in its dual form:

1
minimize iaTYKYa—lTa (1)
e
subject to 0 < a<C1, yTa=0

Here, Y = diag(y), where y € {—1, +1}" is a vector of m class labels, while C' is a tradeoff
constant. In the dual-form in Eq 1, the kernel matrix K has to be symmetric positive
semidefinite, i.e. satisfies the Mercer condition, in order to guarantee convexity of the
optimization problem and the existence of a reproducing Hilbert kernel space (RHKS).

In real-life applications, however, many similarity functions exist that are either indefi-
nite or for which the Mercer condition is difficult to verify. For example, one can incorporate
the longest common subsequence in defining distance between genetic sequences, use BLAST
similarity score between protein sequences, use set operations such as union/intersection in
defining similarity between transactions, use human-judged similarities between concepts
and words, use the symmetrized Kullback-Leibler divergence between probability distribu-
tions, use dynamic time warping for time series, or use the tangent distance and shape
matching distance in computer vision (Chen et al., 2009a; Wu et al., 2005; Ying et al., 2009;
Haasdonk, 2005). Extending SVM to indefinite kernels will greatly expand its applicability.

Recent work on training SVM with indefinite kernels has generally fallen into three cat-
egories: (1) positive semidefinite (PSD) kernel approximation, (2) non-convex optimization,
and (3) learning in Krein spaces. In the PSD kernel approximation approach, the kernel
matrix of training examples is altered so that it becomes PSD. One example is the denoise
method, which sets all negative eigenvalues to zero. The motivation behind such approach
is to assume that negative eigenvalues are caused by noise (Pekalska et al., 2001). A sec-
ond example is the flip method, which flips sign of the negative eigenvalues. This method
aims at retaining some of the information coded in those negative eigenvalues (Pekalska
et al., 2001; Graepel et al., 1999). A third example is to formulate a max-min optimization
problem that both seeks support vectors as well as a PSD kernel that approximates the
indefinite similarity matrix. The latter approach was introduced by Luss and d’Aspremont
in 2007 with improvements in training time reported in the following years (Chen and Ye,
2008; Luss and dAspremont, 2009; Chen et al., 2009b).

All the kernel approximation methods above guarantee that the optimization problem
remains convex during training. During testing, however, the original indefinite kernel func-
tion is used. Hence, training and test examples are treated inconsistently. In addition, such
methods are only useful when the similarity matrix is approximable by a PSD matrix. For
other similarity functions such as the sigmoid kernel that can occasionally yield a nega-
tive semidefinite matrix for certain values of its hyperparameters, the kernel approximation
approach cannot be utilized.

In the second approach, non-convex optimization methods are used. For example, SMO-
type decomposition might be used in finding a local minimum with indefinite similarity func-
tions (Lin and Lin, 2003). Haasdonk interprets this as a method of minimizing the distance
between reduced convex hulls in a pseudo-Euclidean space (Haasdonk, 2005). However,
because such approach can terminate at a local minimum, it does not guarantee learning
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(Chen et al., 2009a). Similar to the previous approach, this method only works well if the
similarity matrix is approximately PSD.

The third approach that has been proposed in the literature is to extend SVM into
Krein spaces, in which a reproducing kernel is decomposed into the sum of one positive
semidefinite kernel and one negative semidefinite kernel (Ong et al., 2004; Loosli et al.,
2013). Instead of minimizing regularized risk, the objective function is now stabilized.
One fairly recent algorithm that has been proposed to solve the stabilization problem is
called eigen-decomposition SVM (ESVM) (Loosli et al., 2013). While this algorithm has
been shown to outperform all previous methods, its primary drawback is that it does not
produce sparse solutions, hence the entire list of training examples are often needed during
prediction.

The main contribution of this paper is to establish both theoretically and experimentally
that the 1-norm SVM (Zhu et al., 2004), which was proposed more than 10 years ago, is a
better solution for extending SVM to indefinite kernels. More specifically, 1-norm SVM can
be interpreted as a structural risk minimization method that seeks a decision boundary with
large similarity margin in the original space. It uses a linear programming (LP) formulation
that remains convex even if the kernel matrix is indefinite, and hence can always be solved
quite efficiently. It uses the indefinite similarity function (or distance) directly without any
transformation, and, hence, it always treats both training and test examples consistently. In
addition, it achieves the highest accuracy among all methods that train SVM with indefinite
kernels, with a statistically significant evidence, while also retaining sparsity of the support
vector set. Further details are provided in Section 3.

In the literature, 1-norm SVM is often used as an embedded feature selection method,
where learning and feature selection are performed simultaneously (Bradley and Mangasar-
ian, 1998; Zhu et al., 2004; Fung and Mangasarian, 2004; Zou, 2007; Hilario and Kalousis,
2008; Liu et al., 2010). It was studied in (Zhu et al., 2004), where it was argued that
1-norm SVM has an advantage over standard 2-norm SVM when there are redundant noise
features. To the knowledge of the authors, the advantage of using 1-norm SVM in handling
indefinite kernels has never been established in the literature.

The rest of the paper is structured as follows. First, we describe the 1-norm SVM and
how it can be adapted to handle binary classification with indefinite kernels. We provide
two motivations behind its formulation; namely that it can be interpreted as a method of
finding a decision boundary with a large similarity margin and that it can be interpreted
as a method of structural risk minimization. After that, we present experimental results
using both synthetic and real datasets, which validate the advantage of using 1-norm SVM
in handling indefinite kernels over all other methods.

2. Material and Methods

Given a training set of m examples {(z;, yi)}i=1,... m, where z; € X and y; € {—1, +1}, we
would like to use the training set to infer a classifier of the form §(z) = sign(f(z)) for some
function f(-) : X — R. The standard SVM formulation uses the decision rule obtained by
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the Representer Theorem (Scholkopf and Smola, 2002):
m
F@)=b+ yiai K(xi, x), (2)
i=1

for some offset b € R and a reproducing kernel K : X x X — R. Here, b and «; are the
solutions to the optimization problem in (1). The original formulation of 1-norm support
vector machines (Zhu et al., 2004), on the other hand, uses a dictionary of basis functions
D = {hi(-), ha(-), ...}, where h;(-) : X = R, and considers classification using:

Fle) =b+ 30 - hla) Q

In the above expression for f(-), the basis functions h;(-) are fixed and the only variables to
be optimized are b and A;. Zhu et al. (2004) proposed the following optimization problem
for finding the weights A\ (Eq 5 in (Zhu et al., 2004))*:

m
N
e 3140 Y6

subject to y; - (b+z Njchi(z) >1-§
J
& >0, foralli=1,2,...,m

Here, C' is a tradeoff parameter between regularization and fitting. We will provide sev-
eral motivations behind such formulation shortly. To utilize the above method in handling
indefinite kernels, we set h;(-) = y; S(xj, ), where S(zj, -) : X — R measures similarity
to example x;. In addition, we impose the non-negativity constraint A; > 0 to ensure that
any example x; can be representative to its own class y; only. This gives us the following
linear program (LP):

m m
mi}r\ligmgze Z AN+ C Z &
Y i=1 i=1

subject to QA+by>1—¢
A€ 20

(4)

Here, y € {—1, +1}™ is a vector of class labels for all m training examples and @ € R™*™
is given by :
Qij = yiyj S(xi, j)
The above formulation is a simple LP that can be solved quite efficiently using, for
example, the Gurobi solver (Gurobi Optimization, 2012). Note that unlike the standard
formulation of SVM, the LP formulation above remains convex even when the matrix @ is

1. In (Zhu et al., 2004) Eq 5, the Hinge loss is used explicitly in the objective function, which is equivalent
to the use of slack variables in our formulation.

2. To reiterate, the similarity function S : X x X — R is determined by the application at hand, and not
by the learning system. Therefore, we assume a similarity function is given, and do not address whether
or not it is suitable for the learning task.
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not PSD because both the objective function and inequality constraints are linear in the
optimization variables (), £, b). Once the above optimization problem is solved, we classify
a new example z; using the rule:

Je = sign{b+ Y yi \i S(wi, 24)} (5)

=1

The decision rule in Eq 5 can be motivated in several ways. For instance, it is identical
to the decision rule obtained by the Representer Theorem in Eq 2. Moreover, it has been
established that decision rules of the form given above are capable of universal function
approximation when the similarity function S : X x X — R is radial, i.e. a function of
distance (Park and Sandberg, 1991).

The 1-norm SVM algorithm can be interpreted as an [;-regularized SVM applied to the
empirical kernel map. Given a training set {(x;, ¥;)}i=1,..,m, one can introduce the new
mapping:

(I)() = (yl S(xla ')7 s Ym S(:L’m, )) X = ij

which is similar to the empirical kernel map (Scholkopf and Smola, 2002) except for the
presence of class labels. The 1-norm SVM seeks a separating hyperplane in the new space
() with || - ||; regularization, hence the name. Although it is possible to learn the weights
A in the new space ®(-) using other approaches, such as SVM with || - ||2 regularization,
we focus on the approach employed by 1-norm SVM chiefly because it produces sparse
solutions. To reiterate, the central claim of this paper is that 1-norm SVM is the best
method to learn with indefinite kernels while also retaining sparsity of the support vector
set 3.

Training examples x; with A\; > 0 are analogous to the support vectors in standard SVM,
and we will refer to them as support vectors here as well. As depicted in Figure 1, each
support vector is ‘carefully’ placed in the plane to guard a region dominated by its respective
class. In practice, because the regularization term in the objective function minimizes the
1-norm of A, the vector A tends to be sparse and the number of support vectors tends to be
small.

Next, we provide two motivations for using the formulation in (4). First, we show that
the 1-norm SVM can be interpreted as a method of finding a decision boundary with a large
similarity margin in the original space. Second, we show that the objective function in (4)
can be interpreted as a method of minimizing an upper bound on expected test error rate.

2.1. Large similarity margins

Given a similarity function S(z;, z;) : X x X — R between examples x; and z;, we can
define similarity between an example z; and a class y = [ to be a weighted sum of similarities

3. Sparse solutions are important for at least two reasons. First, only a small subset of the training set is
needed during prediction, and hence prediction can be carried out quite efficiently. Second, minimizing
the number of support vectors can be interpreted as a method of minimizing an upper bound on expected
test error rate (see for example Eq 93 in (Burges, 1998) in the case of SVM and the discussion in Section
2.2 in the case of 1-norm SVM).
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Figure 1: In this figure, two classes are shown in RED and BLUE. The solid markers are the
support vectors, where size is proportional to the weights A;. Classification regions
for RED and BLUE classes are shown in YELLOW and GREEN respectively

with all of its examples. In other words, we may write:
S, 1) =Y N S(ws, ) - Iy =1}
i=1

to denote class similarity between z; and a class y = [. Here, the weight \; represents
importance of the example x; to its class y;. In addition, we can introduce an offset b that
quantifies prior preference. Such offset plays a role that is similar to the prior in Bayesian
methods, the activation threshold in neural networks, and the offset in SVM. Thus, we
consider classification using the rule:

O = sign{S(xy, +1) — S(xy, —1) + b}, (6)

which is identical to the classification rule of 1-norm SVM given in Eq 5. Moreover, we
define the similarity margin M; for example x; in the usual sense:

My = S(x¢, ye) — S(we, —ye) +ye b

Maximizing the minimum similarity margin can be formulated as a linear program (LP).
First, we write:

maximize M

subject to  S(x;, yi) — S(x;, —yi) +y; b > M, (for all i)
A>0

However, the decision rule given by Eq. (6) does not change when we multiply the weights
A by any fixed positive constant including constants that are arbitrarily large. This is
because the decision rule only looks into the sign of its argument. In particular, we can
always rescale the weights A to be arbitrarily large, for which M — oo. This degree of
freedom implies that we need to maximize the ratio M/||A|| instead of maximizing M in
absolute terms. Here, any norm ||-|| suffices but the 1-norm is preferred because it produces
sparse solutions and because it gives better accuracy in practice.

Since our objective is to maximize the ratio M/||A||1, we can fix M = 1 and minimize
[|Al]1. In addition, to avoid over-fitting outliers or noisy samples and to be able to handle
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the case of non-separable classes, soft-margin constraints are needed as well. This results
in the LP formulation of the 1-norm SVM given earlier in (4). Hence, 1-norm SVM can
be interpreted as a method of finding a decision boundary with a large similarity margin
in the original space. Such interpretation holds regardless of whether or not the similarity
function is PSD. Thus, we expect 1-norm SVM to work well even for indefinite kernels.

2.2. True error rate bound

Similar to the original SVM, one can interpret 1-norm SVM as a method of striking a
balance between estimation bias and variance.

Lemma 1 Suppose m training examples were used to build the 1-norm SVM classifier in
(4). Let epoo be the expected leave-one-out validation error rate on the same training set.
Then:

A
oo < Il Ll -
m m

Here, ||z||o denotes the number of non-zero entries in z.

Proof Let \* and £* be the optimal solutions to the 1-norm SVM in (4). If £ = AF =0,
then the i-th training example was classified correctly and it will continue to be classified
correctly if it is the only example removed from the training set. The latter statement holds
because removing the i-th example from the training set is equivalent to adding the new
constraint \; = & = 0 to the formulation (4), which is the original optimal value of A} and
&, Because the new feasibility region is a subset of the original feasibility region and it
contains the original optimal solution, the optimal solution remains unchanged. Hence:

* * * *
o< X0 [l  [1A"llo + 11§ Ho’
m m

€Lo
where o is the Hadamard (elementwise) product. [ |
Corollary 2 Let e;s; be the true error rate (true risk) when 1-norm SVM is trained on a

randomly selected training set Sy, with m training examples. Then, the expected test error
rate satisfies:

E A E
5. Xl , Es,ligllo

Es,, ,[etst] < o -

(8)
Here, expectation of the test error rate is taken over all possible training sets of size m — 1

whereas remaining expectations are taken over all possible training sets of size m.

Proof By the Luntz-Brailovsky theorem (Luntz and Brailovsky, 1969; Vapnik and Chapelle,
2000), we have:
Es,._1letst] = Es,, [eLool, (9)

where erop is the leave-one-out validation error. Using Eq 9 and Lemma 1 yields the de-
sired result. |
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The tradeoff in Eq 8 is analogous to the classical tradeoff in estimation between bias
and variance (Hastie et al., 2001). On one hand, one can fit the training set perfectly,
e.g. by using radial similarity functions with sufficiently large bandwidth that effectively
turn 1-norm SVM into a 1-NN classifier, but the fraction of support vectors becomes at
its worst, hence high variance. On the other hand, one can choose a very small number
of support vectors but this tends to increase the training error rate, hence high bias. In
the 1-norm SVM formulation in (4), the cost function penalizes both training error (bias)
and the number of support vectors (variance) simultaneously by penalizing the || - ||; of
slack variables ¢ and weights A. Because minimizing || - ||; promotes sparsity (Boyd and
Vandenberghe, 2004), Corollary 2 states that the 1-norm SVM can be interpreted as a
method of minimizing expected true risk.

3. Experiments and Results

In this section, we present experimental results of applying 1-norm SVM to synthetic and
real-world classification problems, and demonstrate its effectiveness in handling indefinite
similarity functions.

3.1. Synthetic Datasets.

First, 1-norm SVM was tested on six synthetic datasets depicted in Figure 2. In these
datasets, the radial basis function (RBF) S(z;, ;) = exp{—~||z; — z;||3} was used, where
the bandwidth parameter v was selected using a grid search on a separate validation set.
Figure 3 plots test error rate as a function of training set size m, with the Bayes rate for
each classification problem indicated in the legend bar. As shown in Figure 3, test error rate
approaches the optimal Bayes rate for sufficiently large training sets in all six classification
problems. This test verifies that 1-norm SVM is capable of producing accurate decision
boundary for various complex mixtures of classes.

Problem 1 Problem 2 Problem 3
Horseshoe Disjoint Regions Complete Overlap
Ot
- a Y
A L B G
ok Gy FoPtey s
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iy + ] + o &g oo+
e o e o+ P
b e ¥
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Problem 4 Problem 5 Problem 6
Rings Partial Overlap Hyperplanes
g 5° Tt
4 0™ F . o B . PR
Sg it e PR, B + "
o g | o C oo EREm R . o
ot B gh %@tﬁ;Jr lﬁ;:u P oo”
oo B o+ g | g Te® &
o > i EeTE fH4ha  om
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Figure 2: The six synthetic datasets that are used in evaluating 1-norm SVM.

3.2. Real Datasets.

For real datasets, we compared performance of 1-norm SVM against popular classification
algorithms for both PSD and non-PSD similarity functions. We will first describe the
datasets and test methodology, and discuss test results after that.
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Test Error Rate (%)

10 - 10"
1 2 10°

10
Number of Training Examples per Class

Figure 3: Performance of 1-norm SVM on the six synthetic datasets. Each error rate,

plotted in a log-scale, is an average of five i.i.d training/test sets. P1,..., P6
stands for Problem 1,..., Problem 6 shown in Figure 2. The optimal Bayes rates
are indicated in the legends bar. In the y-axis, each grid line between 10% and
10**1 is to be read as 1 x 107, 2 x 10%,...9 x 10%. For example, the grid lines
from 10! to 10? correspond to the values 10, 20, ..., 80, 90.

3.2.1. DATASETS:

The following datasets and similarity functions are used.

(A) IMDB: This is a graph-based dataset that contains movies released between 1996

and 2001 (Macskassy and Provost, 2007). Class label identifies whether the opening
weekend box-office receipts exceeded $2 million. An edge weight between two movies
is the number of common production companies, actors, producers, or directors. In
our implementation, all edge weights were normalized to fall in the range [0, 1]. The
following similarity functions are used:

(a) PSD: The Jaccard index S; ; = o W{Wi o, Wik op oo w; i, is edge weight.

T > max{w; g, wj K}’

(b) Non-PSD: Edge weight S; j = w; ; and S;; = 1.

Word-Sim-353: This dataset contains human-judged similarities between English
words (Finkelstein et al., 2002). All similarities are again normalized to fall in the
range [0, 1] and self-similarity is set to unity. We grouped words into two categories:
‘living’ vs. ‘non-living’, and used the two similarity functions specified earlier for the
IMDB dataset. Examples of the ‘living’ class include children, Maradona, brother,
carnivore, and mammal.

Caltech-101: This dataset contains images of various objects (Fei-Fei et al., 2004).
We grouped images of ‘Big Cats’, ‘Winged Insects’, and ‘Flowers’ into three classes
and trained three separate binary classifiers between every pair of classes. Each image
was converted into a histogram using the two MATLAB commands rgb2gray and
imhist and used Laplace normalization. This effectively represents the i-th image by
a probability distribution p;. We, then, used the following two similarity functions:

(a) PSD: Intersection (a.k.a. overlapping coefficient) S; ; = >, min{p; , pj}-
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(b) Non-PSD: We used S;; = max{0, 1 — 0.1 x D(p;||p;)}, where D(p;||p;) is the
symmetrized Kullback-Leibler divergence .

(D) Splice: This is a biological sequence classification dataset (Noordewier et al., 1991)

that was downloaded from the UCI repository (Blake and Merz, 1998). Each example
is a 60-letter DNA sequence. We performed classification between the two classes EI
and IE. The similarity functions are:

(a) PSD: We used the implementation of string kernels given in (Soman et al., 2009).
Because string kernels can grow quite rapidly, we normalized using the cosine

. . . . P 7],‘7
similarity: S; ; = oo

(b) Non-PSD: We used the longest-common-subsequence (LCS) between two strings.
Because each string is 60 letters in length, we set S; j; = LCS(z;, x;)/60.

(E) CNAE-9: This is a text classification dataset available at the UCI repository, where

each text is represented using bag-of-words. The dataset contains 9 classes and we
randomly selected five binary classification problems: 1-vs-5, 5-vs-4, 6-vs-8, 3-vs-9,
and 2-vs-7 °. These are represented by P1 through P5 in Table 1 respectively. The
two similarity functions are:

(a) PSD: The cosine similarity S;; = xlTixj, which is commonly used for text
J AR
classification tasks (Chen et al., 2009a).
(b) Non-PSD: The second similarity function used is a variant to the first. Specifically,

T
we have S; ; = |

v U — 3 . .
IR where vy, = min{z; 5, ;1 }.

(F) Ionosphere, Australian, Breast Cancer, Haberman, and Diabetes: These are

five binary classification problems with numeric features available at the UCI reposi-
tory. We used the following similarity functions:

(a) PSD: The RBF kernel S; ; = e~ w13

(b) Non-PSD: The sigmoid kernel S; ; = tanh{~ - 2! x; + 7}, which is popular due to
its origins in neural networks. To ensure that the kernel matrix is not PSD, we
fixed r = —1 6.

3.2.2. TEST METHODOLOGY AND RESULTS:

When the similarity function is PSD, we compared performance of 1-norm SVM vs. stan-
dard SVM. For each dataset, the value of the tradeoff constant C' was selected using 5-fold
cross validation for C' € {2, 4, 8, 16, 32}. When the RBF kernel is used, the bandwidth ~
is also selected using 5-fold cross validation in the grid v € {2715, 214 271 1}, SVM
was implemented using the LIBSVM library (Chang and Lin, 2001), whereas 1-norm SVM

4.
5.

6.

The reason behind choosing 0.1 is because 95% of pairwise distances are less than 10.

We perfomred a random permutation of the set of integers {1,2,...,9}. Each pair of adjacent labels was
used as a binary classification problem, where the 9*® label is trainied vs. the 1°¢.

It has been shown that the sigmoid kernel is PSD only if » > 0 (Burges, 1999). However, using r < 0
tends to perform better (Lin and Lin, 2003).

41



ALABDULMOHSIN GAO ZHANG

was implemented using the Gurobi solver (Gurobi Optimization, 2012). In all classification
problems, we reported the average test error rate of five random training-to-test splits, with
a training-to-split ratio of 4:1. The same split is always used in both SVM and 1-norm
SVM.

When the similarity function is non-PSD, we compared performance of 1-norm SVM
against the three popular methods proposed previously in the literature:

1. Non-convex optimization: This was implemented using the LIBSVM library with its
-t 4 option. When the similarity matrix is non-PSD, the LIBSVM package seeks a
stationary point using non-convex optimization (Lin and Lin, 2003).

2. Kernel Approzimation: PSD kernel approximation was tested using three approaches:
(1) the denoise method, (2) the flip method, and (3) the indefinite SVM formulation
proposed by Luss and d’Aspremont (Luss and dAspremont, 2009). The denoise and
flip methods were implemented by supplying the modified (PSD) kernel matrix to
LIBSVM using the -t 4 option. The indefinite SVM method was tested using the
implementation available for download at the authors’ website.

3. SVM in Krien Spaces: SVM in Krien spaces was implemented using the ESVM al-
gorithm described in (Loosli et al., 2013). ESVM comprises of two main steps: (1)
eigen-decomposition, and (2) SVM training. LIBSVM was used for the SVM training
step.

In all methods, hyper-parameters were selected using cross validation and grid search,
implemented separately for each individual method. Test results are shown in Table 1. All
results reported here are based on the best selected hyper-parameters of these methods.

4. Discussion

As shown in columns 2 and 3 of Table 1, when the similarity function is PSD, performance
of 1-norm SVM is comparable to that of SVM. When running statistical significance tests,
we find no statistically significant evidence that one method outperforms the other at the
95% confidence level. For example, the two-tailed Wilcoxon’s signed rank test (Demsar,
2006) gives a value of p = 0.155. This validation verifies that 1-norm SVM is a viable
algorithm for binary classification even when the similarity function is positive semidefinite
(PSD). Such experimental evidence agrees with earlier conclusions (Zhu et al., 2004).

For non-PSD kernels, on the other hand, we compare the error rate of 1-norm SVM
(shown in column 5 of Table 1) with the other methods (in columns 6-10). The rows in
Table 1 are ordered by the value of 5 shown in column 4, which is a measure of how indefinite
the similarity matrix is. In particular, a value of 8 = 0 corresponds to positive semidefinite
matrices while 8 = 1 corresponds to negative semidefinite matrices. As shown in the
table, 1-norm SVM and ESVM (i.e. SVM in Krein spaces) both outperform all remaining
classification methods in nearly all the datasets. Performance of ESVM, however, is very
similar to that of 1-norm SVM, which is quite intriguing given the very different approaches
employed by the two algorithms!

Nevertheless, unlike ESVM whose solution is quite dense, the 1-norm SVM method
yields very sparse solutions so that prediction time is faster. In fact, 1-norm SVM yields
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Table 2: The number of support vectors (SVs) used by 1-norm SVM and ESVM for the 16

classification problems with indefinite similarity functions.

DATASETS NO. OF TRAINING No. OoF SVs No. oF SVs
EXAMPLES IN 1-NORM SVM IN ESVM
IMDB 1441 630 1438
WORD-S1M-353 437 26 436
CALTECH-101-P2 368 39 386
CALTECH-101-P3 379 47 379
CALTECH-101-P1 387 35 386
SPLICE 1527 224 1527
CNAE-9-P1 240 2 233
CNAE-9-P5 240 21 240
CNAE-9-P3 240 23 238
CNAE-9-P2 240 2 235
CNAE-9-P4 240 23 240
IONOSPHERE 351 39 351
AUSTRALIAN 690 7 690
BREAST CANCER 699 20 699
HABERMAN 398 28 398
DIABETES 768 13 768

solutions that are often 10-20 times, sometimes even 100 times, sparser than ESVM. Table
2 lists the number of support vectors used by both methods.

Last but not the least, in order to verify statistical significance at the 95% confidence
level, we used Holm’s step-down procedure for multiple comparisons applied to the two-
tailed Wilcoxon’s signed rank test (Demsar, 2006; Holm, 1979). More specifically, each
null hypothesis H; asserts that 1-norm SVM and the i-th alternative classifier have similar
performance. When H; is tested using the two-tailed Wilcoxon’s signed rank test, the
resulting p values are shown in Table 3. Using a confidence level of 95% in Holm’s step
down procedure, we find that the null hypothesis is rejected for non-convex optimization and
all kernel approximation methods. This confirms that 1-norm SVM outperforms non-convex
optimization and kernel approximation with a statistically significant evidence. However,
there is no statistically significant evidence at the 95% confidence level that 1-norm SVM
outperforms ESVM in terms of predictive accuracy. Here, it is perhaps worth reiterating
that the 1-norm SVM significantly outperforms ESVM in terms of sparsity of solutions
as shown in Table 2. Therefore, the 1-norm SVM method achieves the highest predictive
accuracy among all methods that learn with indefinite kernels, while also retaining sparsity
of the support vector set.

Finally, it is worth pointing out that indefinite similarity functions in our evaluation led
to lower error rates than PSD similarity functions in roughly 50% of the datasets. This
includes, most notably, the datasets: CALTECH-101-P2, AUSTRALIAN, HABERMAN, and
DIABETES. Therefore, even for classification problems where PSD similarity functions are
readily available, learning with non-PSD kernels remains important because it can result in
a better classification accuracy.
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Table 3: In this table, the second column lists the p values in increasing order of the two-
tailed Wilcoxon’s signed rank test. The last column shows the critical values when
Holm’s step-down procedure is used at the 95% confidence level.

NuLL HYPOTHESIS p VALUE ADJUSTED
(H,) CRITICAL VALUE

l-norm SVM vs. SVM with 0.0003 \ 0.0100
non-convex optimization

1l-norm SVM vs. Denoise 0.0008 0.0125

l-norm SVM vs. Flip 0.0052 0.0167

1-norm SVM vs. Indefinite SVM | 0.0107 0.0250

l-norm SVM vs. ESVM 0.0771 0.0500

5. Conclusion

Extensive research effort has been devoted recently to training support vector machines
(SVM) with indefinite kernels. In this paper, we establish theoretically and experimen-
tally that a variant of the 1-norm support vector machines is a better method for handling
indefinite kernels. The 1-norm SVM method formulates large-margin separation as a con-
vex linear programming (LP) problem without requiring that the kernel matrix be positive
semidefinite (PSD). It uses the indefinite similarity function directly without any trans-
formation, and, hence, it always treats both training and test examples consistently. In
addition, 1-norm SVM achieves the highest accuracy among all methods that train SVM
with indefinite kernels, with a statistically significant evidence, while also retaining sparsity
of the support vector set.
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