
JMLR: Workshop and Conference Proceedings 3: 107-128 WCCI2008 workshop on causality

Causal & Non-Causal Feature Selection for Ridge Regression

Gavin C. Cawley gcc@cmp.uea.ac.uk

School of Computing Sciences
University of East Anglia
Norwich, Norfolk, NR4 7TJ, United Kingdom

Editors: I. Guyon, C. Aliferis, G. Cooper, A. Elisseeff, J.-P. Pellet, P. Spirtes, and A. Statnikov

Abstract

In this paper we investigate the use of causal and non-causal feature selection methods
for linear classifiers in situations where the causal relationships between the input and re-
sponse variables may differ between the training and operational data. The causal feature
selection methods investigated include inference of the Markov Blanket and inference of
direct causes and of direct effects. The non-causal feature selection method is based on
logistic regression with Bayesian regularisation using a Laplace prior. A simple ridge re-
gression model is used as the base classifier, where the ridge parameter is efficiently tuned
so as to minimise the leave-one-out error, via eigen-decomposition of the data covariance
matrix. For tasks with more features than patterns, linear kernel ridge regression is used
for computational efficiency. Results are presented for all of the WCCI-2008 Causation and
Prediction Challenge datasets, demonstrating that, somewhat surprisingly, causal feature
selection procedures do not provide significant benefits in terms of predictive accuracy over
non-causal feature selection and/or classification using the entire feature set.
Keywords: regularisation, feature selection, causal inference

1. Introduction

A common assumption underpinning the majority of classical statistical pattern recognition
techniques holds that the training data represent an independent and identically distributed
(i.i.d.) sample drawn from the same underlying distribution as the operational or test data.
Unfortunately, in many practical applications this assumption may not be valid. For exam-
ple one might train a classifier to diagnose lung cancer using historical data from a particular
hospital. However, through changes in referral procedures, diet and lifestyle (for example
through government initiatives to restrict smoking in enclosed public places), the distribu-
tion of symptoms presented by patients may become progressively more and more different
from that of the training sample; a phenomenon known as covariate shift (Quiñonero Can-
dela et al., 2009). Nevertheless, the classifier may still be of diagnostic value, especially if
designed from the outset to be robust to covariate shift, for instance through careful feature
selection. It seems a reasonable assumption that features in a close causal relationship with
the target are likely to remain more reliable under covariate shift than those with a more
tenuous link. A model that is robust in this sense would also be valuable in predicting the
effects of interventions, for instance in planning more effective referral procedures. There-
fore there are practical reasons for attempting to infer the causal relationships between the
explanatory and target variables in order to improve predictive performance rather than
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uncovering the structure of the data. In this paper we evaluate the effectiveness of several
causal and non-causal feature selection procedures in such situations, using ridge regression
as the base classifier, using all of the datasets comprising in the WCCI-2008 Causation and
Prediction Challenge.

2. Method

Ridge regression ensembles are used as the base classifier for the empirical study. Let D =
{(xi, yi)}`i=1 represent the training sample, where xi ∈ X ⊂ Rd is a vector of explanatory
features for the ith sample, and yi ∈ {+1, − 1} is the corresponding response indicating
whether the sample belongs to the positive or negative class respectively. Ridge regression
provides a simple and effective classifier that is equivalent to a form of regularised linear
discriminant analysis. The output of the ridge regression classifier, ŷi, and vector of model
parameters, β ∈ Rd, are given by

ŷi = xi · β and
[
XTX + λI

]
β = XTy, (1)

where X = [xi]`i=1 is the data matrix, y = (yi)`
i=1 is the response vector and the ridge

parameter, λ, controls the bias-variance trade-off (Geman et al., 1992). Note that classi-
fiers used throughout this study included an unregularised bias parameter, which has been
neglected here for notational convenience. Careful tuning of the ridge parameter allows the
ridge regression classifier to be used even in situations with many more features than train-
ing patterns (i.e. d � `) without significant over-fitting (e.g. Cawley, 2006). Fortunately
the ridge parameter can be optimised efficiently by minimising a closed-form leave-one-out
cross-validation estimate of the sum of squared errors, i.e. Allen’s PRESS statistic (Allen,
1974),

P (λ) =
1
`

∑̀
i=1

[
ŷ

(−i)
i − yi

]2
where ŷ

(−i)
i − yi =

ŷi − yi

1− hii
, (2)

ŷ
(−i)
i represents the output of the classifier for the ith training pattern in the ith fold of the

leave-one-out procedure and hii is an element of the principal diagonal of the hat matrix
H = X

[
XTX + λI

]−1
XT . The ridge parameter can be optimised more efficiently in

canonical form (Weisberg, 1985) via eigen-decomposition of the data covariance matrix
XTX = V T ΛV , where Λ is a diagonal matrix containing the eigenvalues. The normal
equations and hat matrix can then be written as

[Λ + λI]α = V TXTy where α = V Tβ and H = V [Λ + λI]−1 V T (3)

As only a diagonal rather than a full matrix need now be inverted following a change in
λ, the computational expense of optimising the ridge parameter is greatly reduced. For
problems with more features than training patterns, d > `, the kernel ridge regression
classifier (Saunders et al., 1998) with a linear kernel is more efficient and exactly equivalent.
The ridge parameter for KRR can also be optimised efficiently via an eigen-decomposition
of the kernel matrix (Saadi et al., 2007).

108



Causal & Non-Causal Feature Selection for Ridge Regression

2.1 Non-Causal Feature Selection

The feature selection methods most frequently used in practical applications aim to de-
termine a small subset of features that are predictive of the target variable, without any
consideration of causal relationships. For a survey of conventional feature selection meth-
ods, see Guyon and Eliseeff (2003). In this study, we adopt an embedded feature selection
method, known as BLogReg (Cawley and Talbot, 2006), based on logistic regression with
Bayesian regularisation using a Laplace prior. As the usual regularisation parameter is in-
tegrated out analytically in this approach using an uninformative hyper-prior, the number
of features is determined automatically, without the need for additional cross-validation.
Rather than make predictions with BLogReg directly, it is used to select features for a ridge
regression model so that the comparison of feature selection techniques is not obscured by
the differences due to the classifier.

2.2 Finding the Markov Blanket

The most basic form of causal feature selection aims to determine the Markov blanket,
MB(T ), the set of features such that the target, T , is conditionally independent of all
other features, conditioned on the features comprising MB(T ). Under the faithfulness as-
sumption (Pearl, 1988), the Markov blanket consists of the set of features representing the
direct causes (parents) and direct consequences (children) of the target, and also any other
causes directly affecting the consequences of the target (spouses). In this study, we use the
HITON algorithm (Aliferis et al., 2003) to infer the Markov blanket of the unmanipulated
distribution throughout. If information is available regarding which features have been
manipulated, it is in principle possible to infer the Markov blanket of the manipulated dis-
tribution, however this was not investigated (due to the ignorance of the investigator at the
time!). Once the Markov blanket of the unmanipulated distribution has been determined,
the manipulated children of the target can be deleted (provided they are not also a spouse
via an unmanipulated child) as the direct causal link has been broken and similarly spouses
related only via manipulated children can also be deleted, forming the Markov blanket of
the manipulated distribution.

2.3 Discerning Causes and Effects

More advanced causal inference methods attempt to construct a directed graph representing
the causal relationships between variables. This can be used to identify direct causes and
direct effects of the target variable, forming alternative feature sets for ridge regression
classifiers. In this study, the PC and MMHC algorithms of the Causal Explorer package
(for further details, see Aliferis et al., 2003) were used throughout. As these algorithms are
computationally expensive, they are applied to the subset of features already identified as
belonging to the Markov blanket. As the PC algorithm can accommodate problems with
continuous attributes, no discretisation of continuous features was necessary.

2.4 Use of Ensembles

As feature selection algorithms are unstable, i.e. a perturbation of the data is likely to
result in a different subset of features being selected, an ensemble of 100 ridge regression
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classifiers is used in all experiments to minimise the distracting effects of this source of
variability. For each component classifier, a different random partition of the available data
is used to form training and test sets (in proportions of 9:1) and feature selection performed
separately for each partition. The prediction is then made using the arithmetic mean of the
100 component classifiers. As the regularisation parameter is also tuned separately for each
of the component classifiers, this approach also addresses over-fitting the model selection
criterion so some degree (Cawley and Talbot, 2007; Hall and Robinson, 2009). It should be
noted that as feature selection is performed separately for each component classifier, the
number of features used by the ensemble is generally much larger than the number used by
any individual member of the ensemble.

3. Results

In this section, we compare the performance of different causal and non-causal feature
selection procedures for ridge regression classifiers on two illustrative benchmarks and each
of the four challenge datasets, before discussing the absolute performance of the base ridge
regression classifier. The results are given for a number of different models, in most cases
labelled according to the feature selection process used:

• True MB: Ensembles trained using the true Markov blanket of the target variable for
each variant of the benchmark. For REGED and MARTI, manipulated features are
only retained if they are parents or spouses of the target. For CINA and SIDO, where
the feature set is comprised of real variables and probes, the true Markov blanket is
unknown, and hence the union of the set of all real variables and probes belonging to
the true Markov blanket is used instead, for further details, see Guyon et al. (2008).

• Inferred MB: Features identified by HITON MB as forming the Markov blanket of
the unmanipulated distribution are retained.

• None: No feature selection is performed, relying purely on regularisation to prevent
over-fitting the training data.

• Non-causal: Feature selection performed using the BLogReg algorithm (Cawley and
Talbot, 2006), providing an example of the performance of traditional embedded fea-
ture selection methods.

• Causes & effects: Members of the Markov Blanket of the unmanipulated distribu-
tion, identified by HITON MB, that are determined using the MMHC or PC algo-
rithms to be direct causes and effects of the target variable. It should be noted that
the pre-filtering to remove features not belonging to the Markov blanket of target for
the unmanipulated distribution probably made it very difficult for the causal discovery
algorithm to correctly orient the edges of the causal graph, and this perhaps explains
the poor performance observed.

• Causes only: Members of the Markov Blanket of the unmanipulated distribution,
identified by HITON MB, that are determined using the MMHC or PC algorithms to
be direct causes of the target variable.

110



Causal & Non-Causal Feature Selection for Ridge Regression

• Winner: This is the scores achieved by the winning entries for each benchmark in the
WCCI-2008 Causation and Prediction Challenge. For REGED and CINA, these are
described in Chang and Lin (2008); for SIDO and MARTI, these are described here
and in the supplementary material1. Note that the entries for REGED and CINA
are not based on ridge regression ensembles and so are not directly comparable to the
other methods.

• Best TSCORE: Results for models achieving the best TSCORE, whether or not they
were the winning entries, for each variant of each benchmark during the WCCI-2008
Causation and Prediction Challenge.

• Yin et al.: Feature selection based on the method by Yin et al. (2008), which was
identified as the most successful algorithm for local structure determination.

3.1 LUCAS - LUng CAncer Simple Dataset

The LUCAS dataset represents a synthetic medical diagnosis problem, where the task is
to identify patients with lung cancer from a set of explanatory variables of putative causal
relevance. As the data are generated artificially using a set of simple Bayesian network
models (see Guyon et al., 2008, Figure 1 a-c), the true nature of the underlying causal
relationships is known, and so this benchmark is useful in illustrating the value of different
approaches in ideal conditions. The results obtained2 on this benchmark are shown in
Table 1.

Regularisation proves satisfactory in suppressing the influence of uninformative features
in the absence of external manipulation (LUCAS0), and so feature selection does not im-
prove predictive performance (although selection of the Markov blanket is only marginally
inferior). In the presence of mild manipulation (LUCAS1), the benefit of selecting only the
variables comprising the Markov blanket of the target becomes more apparent, achieving
the best TSCORE as the manipulation of causally irrelevant variables is ignored. It is in-
teresting to note, however, that the result obtained is only marginally better than that for
a ridge regression model without any form of feature selection, showing that regularisation
is effective in suppressing the influence of irrelevant variables. However other explanations
are plausible. For instance, it could be that including redundant variables is better than
deleting important variables (Guyon et al., 2008, §6.2); alternatively it may be the case in
many applications that the most relevant features are simply those best correlated with the
target. For LUCAS2, only the direct causes are relevant, and for this simple dataset the
causal discovery algorithms (HITON MB and MMHC) are effective in identifying them so
the causes only model performs significantly better than the others.

3.2 LUCAP - LUng CAncer with Probes Dataset

The LUCAP benchmark extends the medical diagnosis problem introduced in LUCAS to
include probes, artificial variables that are noisy functions of the existing variables (see

1. http://theoval.cmp.uea.ac.uk/~gcc/projects/causal

2. Non-causal feature selection performed using BLogReg (tolerance = 1 × 10−9), identification of the
Markov blanket using HITON MB (“g2” statistic, threshold = 0.05, maximum size of conditioning set
= 4), identification of direct causes and effects using MMHC (with default parameter settings).
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Table 1: Results obtained for the LUCAS benchmark: FNUM – number of features used,
FSCORE – area under the receiver operating characteristic (AUROC) statistic
for the detection of causally related features, DSCORE – AUROC on the training
set, TSCORE – AUROC on the test set, AUC – AUROC using 100-fold repeated
hold-out validation.

Dataset Selection FNUM FSCORE DSCORE TSCORE AUC
LUCAS0 None 11 1.0000 0.9139 0.9170 0.9079

Inferred MB 6 1.0000 0.9102 0.9168 0.9082
True MB 5 1.0000 0.9103 0.9167 0.9082
Non-causal 11 0.8070 1.0000 0.9139 0.9079
Causes & effects 4 0.9000 0.8911 0.8992 0.8910
Causes only 2 0.7000 0.7782 0.7968 0.7832

LUCAS1 True MB 4 1.0000 0.9026 0.9041 —
Inferred MB 6 1.0000 0.9102 0.9012 —
None 11 1.0000 0.9139 0.9005 —
Non-causal 11 1.0000 0.9139 0.9005 —
Causes & effects 4 0.8571 0.8911 0.8808 —
Causes only 2 0.7500 0.7782 0.7910 —

LUCAS2 True MB 2 1.0000 0.7782 0.7913 —
Causes only 2 1.0000 0.7782 0.7913 —
Causes & effects 4 0.9444 0.8911 0.7579 —
Inferred MB 6 0.9444 0.9102 0.7410 —
None 11 0.8333 0.9139 0.7348 —
Non-causal 11 0.9444 0.9139 0.7342 —

Guyon et al., 2008, Figure 1 d-e). The results obtained3 on this benchmark are shown in
Table 2. The probes appear to obfuscate the task of discovering the true causal structure of
the data, and the models with non-causal feature selection fare conspicuously better than
those with causal feature selection on the manipulated datasets. The organizers suggest
that selecting features that are direct causes of the target may be an attractive approach;
however the causal discovery algorithm (MMHC) found 26 features that may be direct
causes, over the 100 random partitions of the data, when in fact there are only two genuine
direct causes. The causes only approach therefore performed very poorly. It is a rather
discouraging result that the causal feature selection procedures perform so poorly, albeit
perhaps in the hands of an inexpert user.

3.3 REGED - REsimulated Gene Expression Dataset

The REGED dataset represents a re-simulated gene expression microarray classification
problem, where the task is to diagnose lung cancer on the basis of gene expression pro-

3. BLogReg: tolerance = 1× 10−9, HITON MB: “g2” statistic, threshold = 0.05, maximum size of condi-
tioning set = 4, MMHC: default parameter settings.
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files, classifying samples as malignant (adenocarcinoma) or benign (squamous). The results
obtained4 on this benchmark are shown in Table 3 and statistical significance diagrams
(adapted from the critical difference diagrams introduced by Demšar (2006)), are shown in
Figure 1:

• For all three datasets, True MB achieves a TSCORE that is statistically indistinguish-
able from the best obtained during the challenge (Best TSCORE), demonstrating that
the linear ridge regression ensemble is a competitive base classifier for this benchmark.

• For all three datasets, the TSCORE performance obtained using the non-causal fea-
ture selection procedure (BLogReg) was statistically indistinguishable from that ob-
tained using the best overall causal feature selection procedure (Yin et al.). This is
perhaps because the BLogReg algorithm was originally developed with this particular
application (Cawley, 2006) in mind, although the approach is generally applicable and
without specific adaption to microarray classification.

• The total number of features used by the inferred Markov Blanket ensemble for
REGED0 (78) is much larger than the average number of features used by the in-
dividual component classifiers (24.85), providing an indication of the instability of the
causal feature selection methods. Note that the average size of the inferred Markov
blanket for each component is however close to the true value (21). The average

4. BLogReg: tolerance = 1 × 10−6, HITON MB: “z” statistic, threshold = 0.05, maximum size of condi-
tioning set = 2, PC: ’z’ statistic, threshold = 0.05, k = 16.

Table 2: Results obtained for the LUCAP benchmark, see caption of Table 1 for details.
Dataset Selection FNUM FSCORE DSCORE TSCORE AUC

LUCAP0 Non-causal 42 0.5930 0.9749 0.9711 0.9681
True MB 105 1.0000 0.9757 0.9692 0.9698
None 143 0.7381 0.9768 0.9686 0.9695
Inferred MB 77 0.8466 0.9726 0.9684 0.9674
Causes & effects 45 0.7143 0.9703 0.9675 0.9664
Causes only 26 0.6238 0.9486 0.9382 0.8089

LUCAP1 True MB 11 1.0000 0.9139 0.9126 —
Non-causal 42 0.6832 0.9749 0.8564 —
Causes & effects 45 0.5561 0.9703 0.8317 —
Inferred MB 77 0.5344 0.9726 0.8121 —
None 143 0.6109 0.9768 0.7744 —
Causes only 26 0.5090 0.9486 0.6504 —

LUCAP2 True MB 11 1.0000 0.9139 0.9165 —
Non-causal 42 0.6832 0.9749 0.6578 —
Inferred MB 77 0.5344 0.9726 0.5634 —
Causes & effects 45 0.5561 0.9703 0.5575 —
None 143 0.6109 0.9768 0.5100 —
Causes only 26 0.5090 0.9468 0.4344 —
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number of features used by individual component classifiers are shown in Table 8,
demonstrating that a degree of instability is to be expected when using both causal
and non-causal feature selection methods.

• None of the causal feature selection algorithms, with the exception of reference entries,
proved statistically superior to non-causal selection procedures for any of the three
REGED datasets, a rather disappointing and challenging result.

No use was made of the information regarding the manipulated variables for the methods
introduced in this study; it is possible that better results might be obtained by taking
advantage of this information, especially for causal feature selection approaches.

Table 3: Results obtained for the REGED benchmark, see caption of Table 1 for details.
Dataset Selection FNUM FSCORE DSCORE TSCORE AUC

REGED0 Best TSCORE∗ 122 0.8352 1.0000 1.0000± 0.0002 —
True MB 21 1.0000 0.9999 0.9999± 0.0008 0.9997
Winner‡ 16 0.8526 1.0000 0.9998± 0.0009 —
Yin et al. 15 0.8571 1.0000 0.9997± 0.0010 0.9998
Non-causal 26 0.8070 1.0000 0.9997± 0.0009 0.9997
Inferred MB 78 0.8988 0.9999 0.9997± 0.0012 0.9995
Causes & effects 13 0.8095 0.9999 0.9996± 0.0011 0.9996
None 999 0.9204 1.0000 0.9983± 0.0017 0.9962
Causes only 9 0.7143 0.9984 0.9955± 0.0018 0.8961

REGED1 Best TSCORE∗ 122 0.7946 1.0000 0.9980± 0.0015 —
True MB 14 1.0000 0.9926 0.9957± 0.0020 —
Winner‡ 16 0.8566 1.0000 0.9556± 0.0040 —
Yin et al. 14 0.8185 0.9999 0.9548± 0.0036 —
Non-causal 26 0.7798 1.0000 0.9508± 0.0036 —
Inferred MB 78 0.8438 0.9999 0.9346± 0.0044 —
Causes & effects 13 0.7822 0.9999 0.9329± 0.0037 —
None 999 0.9078 1.0000 0.9321± 0.0036 —
Causes only 9 0.7124 0.9984 0.8919± 0.0042 —

REGED2 Best TSCORE† 2 1.0000 0.9611 0.9534± 0.0042 —
True MB 2 1.0000 0.9557 0.9464± 0.0041 —
Winner‡ 8 0.9970 0.9995 0.8392± 0.0052 —
Yin et al. 11 0.9975 0.9997 0.8019± 0.0054 —
Non-causal 26 0.9980 1.0000 0.7992± 0.0056 —
Causes & effects 13 0.9970 0.9999 0.7989± 0.0057 —
Causes only 9 0.9970 0.9984 0.7653± 0.0054 —
Inferred MB 78 0.9975 0.9999 0.7644± 0.0057 —
None 999 0.9950 1.0000 0.7184± 0.0059 —

∗Reference “SNB(CMA), IID assumption”, †Reference “True model with parents”, ‡Yin-Wen
Chang “final submission”.
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Figure 1: Statistical significance diagrams for (a) REGED0, (b) REGED1 and (c)
REGED2. The axis represents the TSCORE statistic, and the heavy bars de-
note groups of classifiers with statistically indistinguishable performance. The
statistical significance of differences in TSCORE are determined using the two
sample z-test at the 95% level of significance (a critical value of z = 1.64).
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3.4 SIDO - SImple Drug Operation

The SIDO benchmark represents a problem in pharmacology, where the task is to identify
small molecules that are active against the AIDS HIV virus on the basis of a large number
of binary molecular descriptors. The results obtained5 on this benchmark are shown in
Table 4 and the statistical significance diagram in Figure 2:

• Again, for all three datasets, True MB achieves a TSCORE that is statistically in-
distinguishable from the best obtained during the challenge (Best TSCORE), demon-
strating that the linear ridge regression ensemble is a competitive base classifier for
this benchmark.

• For both manipulated datasets, the TSCORE achieved using no feature selection at
all is statistically superior to the best overall causal feature selection method (Yin et
al.). For the unmanipulated dataset, the differences in performance were statistically
insignificant. This demonstrates that regularisation alone can be highly effective in
suppressing the deleterious influence of uninformative features.

• The differences in TSCORE between the best causal feature selection procedure (Yin
et al.) and non-causal feature selection using BLogReg were statistically insignificant
for all three datasets.

• None of the causal feature selection algorithms investigated, with the exception of
reference entries, proved statistically superior to an ensemble trained using all of the
available features for any of the three SIDO datasets, again a rather disappointing
result.

3.5 CINA - Census Is Not Adult

The CINA benchmark describes an econometrics problem, where the task is to discover
the socio-economic factors affecting income (the positive class representing individuals with
annual income in excess of $50K). The results obtained6 on this benchmark are shown in
Table 5 and the statistical significance of differences in TSCORE are depicted in Figure 3:

• True MB achieves a TSCORE that is statistically indistinguishable from the best
obtained during the challenge (Best TSCORE), on both manipulated datasets, but
not in CINA0. This suggests that linear ridge regression ensembles may not provide a
genuinely competitive base classifier for this benchmark, especially as the difference is
quite large for CINA0. Note that BLogReg was used as the base classifier for the final
challenge submission as the mean AUC scores for the individual component classifiers
was lower than that for linear ridge regression.

• For both manipulated datasets, the TSCORE achieved using no feature selection at
all is statistically superior to the best overall causal feature selection method (Yin

5. BLogReg: tolerance = 1× 10−6, HITON MB: “g2” statistic, threshold = 0.05, maximum size of condi-
tioning set = 3, PC: “g2” statistic, threshold = 0.05, k = 8.

6. BLogReg: tolerance = 1 × 10−6, HITON MB: “z” statistic, threshold = 0.05, maximum size of condi-
tioning set = 5, PC: “z” statistic, threshold = 0.05, k = 4.
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Figure 2: Statistical significance diagrams for (a) SIDO0, (b) SIDO1 and (c) SIDO2. The
axis represents the TSCORE statistic, and the heavy bars denote groups of clas-
sifiers with statistically indistinguishable performance.
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Table 4: Results obtained for the SIDO benchmark, see caption of Table 1 for details.
Dataset Selection FNUM FSCORE DSCORE TSCORE AUC
SIDO0 Best TSCORE† 181 0.4940 0.9584 0.9467± 0.0073 —

True MB 4301 0.9995∗ 0.9830 0.9436± 0.0072 0.9471
Winner§ 4928 0.5890 0.9840 0.9427± 0.0070 —
None 4928 0.5890 0.9840 0.9427± 0.0070 0.9472
Inferred MB 837 0.5834 0.9563 0.9419± 0.0075 0.9356
Yin et al. 16 0.5019 0.9475 0.9410± 0.0074 0.9442
Causes & effects 58 0.5067 0.9459 0.9328± 0.0085 0.8798
Causes only 58 0.5067 0.9454 0.9317± 0.0089 0.8733
Non-causal 138 0.5160 0.9482 0.9294± 0.0080 0.9226

SIDO1 True MB 1643 0.9997∗ 0.9098 0.8061± 0.0132 —
Best TSCORE‡ 1024 0.8114 0.9021 0.7893± 0.0135 —
Winner§ 4928 0.5314 0.9840 0.7532± 0.0137 —
None 4928 0.5314 0.9840 0.7532± 0.0137 —
Non-causal 138 0.4909 0.9482 0.6971± 0.0138 —
Inferred MB 873 0.5351 0.9563 0.6940± 0.0138 —
Yin et al. 16 0.5035 0.9475 0.6834± 0.0133 —
Causes only 58 0.4989 0.9454 0.6613± 0.0138 —
Causes & effects 58 0.4989 0.9459 0.6600± 0.0137 —

SIDO2 True MB 1643 0.9997∗ 0.9089 0.7780± 0.0130 —
Best TSCORE‡ 512 0.8114 0.8693 0.7674± 0.0129 —
Winner§ 4928 0.5314 0.9840 0.6684± 0.0130 —
None 4928 0.5314 0.9840 0.6684± 0.0130 —
Inferred MB 873 0.5351 0.9563 0.6341± 0.0124 —
Yin et al. 16 0.5035 0.9475 0.6322± 0.0131 —
Non-causal 138 0.4909 0.9482 0.6298± 0.0039 —
Causes only 58 0.4989 0.9545 0.6000± 0.0129 —
Causes & effects 58 0.4989 0.9459 0.5983± 0.0129 —

∗Some features beneath the Markov blanket assigned a weight of zero and was not included.

†Gavin Cawley “Final #009”, ‡Reference “MB LR S”, §Gavin Cawley “final models”.

et al.). For the unmanipulated dataset, the difference in performance is statistically
insignificant. In this case, it seems that, while regularisation is not that effective in
supressing the influence of uninformative features, the instability of feature selection
procedure means that better performance is only available given prior knowledge of
the causal relationships.

• The differences in TSCORE between the best causal feature selection procedure (Yin
et al.) and non-causal feature selection using BLogReg were statistically insignificant
for all three datasets.

• None of the causal feature selection algorithms investigated, with the exception of
reference entries, proved statistically superior to an ensemble trained using all of the
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available features for any of the three CINA datasets, again a rather disappointing
result.

Table 5: Results obtained for the CINA benchmark, see caption of Table 1 for details.
Dataset Selection FNUM FSCORE DSCORE TSCORE AUC
CINA0 Best TSCORE∗ 90 0.8913 0.9794 0.9788± 0.0029 —

Winner‡ 64 0.6000 0.9721 0.9715± 0.0032 —
Non-causal 67 0.5708 0.9682 0.9679± 0.0035 0.9660
None 132 0.7908 0.9677 0.9674± 0.0035 0.9664
True MB 115 1.0000 0.9674 0.9673± 0.0035 0.9663
Inferred MB 70 0.7708 0.9669 0.9669± 0.0035 0.9660
Yin et al. 22 0.5957 0.9657 0.9665± 0.0034 0.9657
Causes & effects 42 0.6826 0.9654 0.9661± 0.0035 0.9653
Causes only 4 0.5174 0.7923 0.7911± 0.0046 0.5351

CINA1 Best TSCORE∗ 90 0.4542 0.9794 0.8977± 0.0043 —
True MB 44 1.0000 0.8915 0.8910± 0.0040 —
Winner‡ 64 0.7053 0.9721 0.8446± 0.0047 —
Inferred MB 70 0.5261 0.9669 0.7979± 0.0052 —
None 132 0.5865 0.9677 0.7953± 0.0050 —
Causes & effects 42 0.5477 0.9654 0.7749± 0.0050 —
Yin et al. 24 0.5823 0.9652 0.7710± 0.0048 —
Non-causal 67 0.6436 0.9682 0.7609± 0.0053 —
Causes only 4 0.5114 0.7923 0.5402± 0.0056 —

CINA2 True MB 44 1.0000 0.8915 0.8920± 0.0043 —
Best TSCORE† 32 1.0000 0.8909 0.8910± 0.0042 —
Winner‡ 4 0.7053 0.8137 0.8157± 0.0052 —
None 132 0.5865 0.9677 0.5502± 0.0043 —
Inferred MB 70 0.5261 0.9669 0.5469± 0.0041 —
Non-causal 67 0.6436 0.9682 0.5464± 0.0039 —
Causes & effects 42 0.5477 0.9654 0.5394± 0.0038 —
Yin et al. 18 0.5794 0.9636 0.5373± 0.0041 —
Causes only 4 0.5114 0.7923 0.4825± 0.0035 —

∗Reference “SNB(CMA), IID assumption”. †Reference “CINA Test”, ‡ Yin-Wen Chang “final
submission”.

3.6 MARTI - Measurement ARTIfact

Like REGED, the MARTI benchmark represents a re-simulated microarray classification
task, the aim of which is to identify genes that may be responsible for lung cancer. However,
in this case additive zero-mean correlated noise has been added to the data to simulate
measurement artifacts introduced by an instrument used to collect the training data that is
substantially inferior to a more accurate instrument used to gather the test data. Figure 4
shows an example of the correlated noise corrupting a training sample from the MARTI
benchmark. The correlated noise is likely to confuse both causal and non-causal feature

119



Cawley

0 1

0.794

0.9661

0.9665

0.9669

Causes

Causes & Effects

Yin et al

Inferred MB

Causes Only

Non Causal

Yin et al

Causes & Effects

Causes Only

Yin et al

Causes & Effects

Non Causal

0.9788

0.9715

0.9679

0.9674

0.9673

Best TSCORE

Winner

Non Causal

None

True MB

Best TSCORE

True MB

Winner

Inferred MB

None

True MB

Best TSCORE

Winner

None

Inferred MB

0 1

0.5402

0.7609

0.7710

0.7749

0.8977

0.8910

0.8446

0.7979

0.7953

(a)

(b)

(c)

0 1

0.4825

0.5373

0.5394

0.5464

0.8920

0.8910

0.8137

0.5502

0.5469

Figure 3: Statistical significance diagrams for (a) CINA0, (b) CINA1 and (c) CINA2. The
axis represents the TSCORE statistic, and the heavy bars denote groups of clas-
sifiers with statistically indistinguishable performance.
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selection algorithms, and therefore MARTI differs from the other challenge datasets in that
non-trivial pre-processing is required. We adopt a kernel ridge regression approach to try
to estimate the noise for each training pattern as a function of the x- and y-co-ordinates of
the spot on the microarray image. Let X represent the d × 2 matrix, where each row, xi,
gives the x- and y-co-ordinates of a spot on the microarray image, and Y represents the
d× ` matrix containing the expression levels for every gene, where each row, yi, represents
a spot and each column represents a sample. We assume that the noise contaminating the
expression levels can be approximated by a linear model in a feature space induced by a
radial basis function kernel, with the expression levels themselves modelled by a Gaussian
noise process,

yi = φ(xi) ·W + εi, where εi ∼ N
(
0, σ2

i I
)
, (4)

where φ(x) represents the image of the data in the kernel induced feature space. Note that
a heteroscedastic noise model is used (e.g. Cawley et al., 2004) as considerable variation
is evident in the range of expression of different genes. The model (4) is equivalent to
a multi-output weighted kernel ridge regression model (Saunders et al., 1998), with the
weights given by the inverse noise variance for each spot, σ−1 =

(
σ−2

1 , σ−2
2 , . . . , σ−2

d

)
. The

iterative training algorithm alternates updates of the model parameters with re-estimation
of the noise variance terms using the model residuals. The usual regularisation and kernel
parameters were tuned via numerical minimisation of the cross-validation error. Estimates
of the true expression profiles can then be obtained by simply subtracting from Y the
estimate of the correlated noise given by the fitted model. The results obtained7 on this
benchmark are shown in Table 6, the corresponding statistical significance diagram is shown
in Figure 5:

• The pre-processing steps described above proved quite satisfactory, as demonstrated
by the similarity of results obtained on the REGED and MARTI benchmarks, shown
in Tables 3 and 6 respectively, however no use was made of the calibrant features
or knowledge of manipulated features so the results are likely to be somewhat sub-
optimal.

7. BLogReg: tolerance = 1 × 10−6, HITON MB: “z” statistic, threshold = 0.05, maximum size of condi-
tioning set = 5, PC: “z” statistic, threshold = 0.05, k = 16.
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Figure 4: Example pattern from the training set of the MARTI benchmark (a) raw mi-
croarray image (b) estimate of correlated noise and (c) filtered expression levels.
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• The TSCORE for a linear ridge regression ensemble using knowledge of the true
Markov blanket exceeds that of the best TSCORE achieved by any challenges sub-
mission, by a statistically significant margin on the manipulated datasets. This sug-
gest that linear ridge regression ensembles are competitive as a base classifier for this
application.

• For both manipulated datasets, the TSCORE achieved using no feature selection at
all is statistically superior to the best overall causal feature selection method (Yin
et al.). For the unmanipulated dataset, the difference in performance is statistically
insignificant. In this case, it seems that while regularisation is not that effective in
suppressing the influence of uninformative features, the instability of feature selection
procedure means that better performance is only available given prior knowledge of
the causal relationships.

• The TSCORE achieved using non-causal feature selection was statistically indistin-
guishable from that achieved by the best all-round causal feature selection procedure
(Yin et al.) on the unmanipulated data (MARTI0), was statistically superior on one
manipulated dataset (MARTI1) and statistically inferior on the other (MARTI2), sug-
gesting that causal feature selection does not improve overall on non-causal feature
selection.

3.7 Final Challenge Submission

Table 7 shows the results for the final challenge submission. BLogReg was used as the
base classifier for the CINA benchmark, as this gave slightly better performance under the
100-fold repeated hold-out procedure used for validation during the development phase of
the challenge. The full set of models for the SIDO datasets was incomplete by the challenge
deadline; the best models proved to be simple ridge regression models with no feature
selection (note that there were four features in the training set with zero variance, hence
only 4928 features were actually used by the classifier). The rankings indicate that the
base classifiers were good choices for the benchmarks considered, and so the comparison of
feature selection methods provides a good indication of their relative merits. Further details
of the final challenge submission are available in the supplementary material.

4. Recommendations

The results of the investigation presented in the previous section suggest that further re-
search is required in order for causal feature selection methods to approach more closely the
superior performance that experimental “ground truth” evidence and qualitative arguments
suggest are available. We are however in a position to make some recommendations for use
in practical applications:

• Use regularisation: Regularisation is known to be a viable alternative to feature se-
lection in applications with unmanipulated data, where predictive performance is
the primary objective rather than discovering a compact set of informative features
(Miller, 2002). It has also been argued that when faced with covariate shift it may be

122



Causal & Non-Causal Feature Selection for Ridge Regression

0 1

0.9775

0.9970

0.9983

0.9986

0.6370

0.8929

0.8988

0.9085

0.6607

0.7193

0.7416

0.7740

Causes Only

None

Yin et al

Causes & Effects

Causes Only

Causes & Effects

Yin et al

None

Causes Only

None

Causes & Effects

Inferred MB

0.9998

0.9996

0.9996

0.9995

0.9993

0.9922

0.9542

0.9470

0.9310

0.9234

0.9266

0.8273

0.8130

0.7975

0.7975

True MB

Best TSCORE

Winner

Inferred MB

Non Causal

True MB

Best TSCORE

Winner

Non Causal

Inferred MB

True MB

Best TSCORE

Yin et al

Winner

Non Causal

(a)

(b)

(c)

0 1

0 1

Figure 5: Statistical significance diagrams for (a) MARTI0, (b) MARTI1 and (c) MARTI2.
The axis represents the TSCORE statistic, and the heavy bars denote groups of
classifiers with statistically indistinguishable performance.
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better to include bad features rather than delete good features (Guyon et al., 2008,
§6.2), in which case using a larger feature set with regularisation to avoid over-fitting
seems a sensible strategy.

• Use Bagging: A comparison of the size of the true Markov blanket of the unmanipu-
lated distribution with the number of determined to belong to the Markov blanket of
individual component classifiers and the number of features used by the ensemble as a
whole, suggests that identification of the Markov blanket using HITON MB is unstable
(i.e. the composition of the Markov blanket depends substantially on the sample of
data from which it was inferred). Model selection, including the tuning of the regu-
larisation parameter is also subject to over-fitting the selection criterion (Cawley and
Talbot, 2007), and bagging will help to alleviate this also (Hall and Robinson, 2009).

Table 6: Results obtained for the MARTI benchmark, see caption of Table 1 for details.
Dataset Selection FNUM FSCORE DSCORE TSCORE AUC

MARTI0 True MB 21 1.0000 0.9997 0.9998± 0.0010 0.9991
Best TSCORE∗ 148 0.9078 1.0000 0.9996± 0.0010 —
Winner§ 128 0.8697 1.0000 0.9996± 0.0012 —
Inferred MB 131 0.8862 1.0000 0.9995± 0.0011 0.9994
Non-causal 44 0.8029 0.9998 0.9993± 0.0014 0.9986
Causes & effects 15 0.7849 0.9987 0.9986± 0.0016 0.9978
Yin et al. 11 0.6896 0.9982 0.9983± 0.0018 0.9973
None 1024 0.7980 1.0000 0.9970± 0.0019 0.9950
Causes only 3 0.5714 0.9821 0.9775± 0.0031 0.9346

MARTI1 True MB 14 1.0000 0.9889 0.9922± 0.0024 —
Best TSCORE† 8 1.0000 0.8992 0.9542± 0.0041 —
Winner§ 32 0.8064 1.0000 0.9470± 0.0039 —
Non-causal 44 0.7752 0.9998 0.9310± 0.0039 —
Inferred MB 131 0.8265 1.0000 0.9234± 0.0045 —
None 1024 0.7923 1.0000 0.9085± 0.0047 —
Yin et al. 11 0.6399 0.9982 0.8988± 0.0046 —
Causes & effects 15 0.7820 0.9987 0.8929± 0.0049 —
Causes only 3 0.5347 0.9821 0.6370± 0.0059 —

MARTI2 True MB 2 1.0000 0.9277 0.9266± 0.0049 —
Best TSCORE‡ 2 1.0000 0.8099 0.8273± 0.0060 —
Yin et al. 11 0.9980 0.9982 0.8130± 0.0053 —
Winner§ 64 0.9956 0.9998 0.7975± 0.0059 —
Non-causal 44 0.9976 0.9998 0.7975± 0.0059 —
Inferred MB 131 0.9966 1.0000 0.7740± 0.0060 —
Causes & effects 15 0.9956 0.9987 0.7416± 0.0063 —
None 1024 0.9951 1.0000 0.7193± 0.0062 —
Causes only 3 0.7485 0.9821 0.6607± 0.0062 —

∗Gavin Cawley “marti001 part006”, †Reference “MB NB F S”, ‡Reference “FMBLR”, §Gavin
Cawley “final models”.
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Table 7: Summary of results for the final challenge submission. Top Ts gives the best
Tscore amongst all valid final submissions, Max Ts gives the optimal Tscore, given
knowledge of the true causal relationships, estimated using reference submissions,
see caption of Table 1 for further details.

Dataset
Causal Discovery Target Prediction

Rank
Fnum Fscore Dscore Tscore Top Ts Max Ts

CINA0 128 0.5166 0.9737 0.9743 0.9765 0.9788
3CINA1 128 0.5860 0.9737 0.8691 0.8691 0.8977

CINA2 64 0.5860 0.9734 0.7031 0.8157 0.8910
MARTI0 128 0.8697 1.0000 0.9996 0.9996 0.9996

1MARTI1 32 0.8064 1.0000 0.9470 0.9470 0.9542
MARTI2 64 0.9956 0.9998 0.7975 0.7975 0.8273
REGED0 128 0.9410 0.9999 0.9997 0.9998 1.0000

2REGED1 32 0.8393 0.9970 0.9787 0.9888 0.9980
REGED2 8 0.9985 0.9996 0.8045 0.8600 0.9534
SIDO0 4928 0.5890 0.9840 0.9427 0.9443 0.9467

1SIDO1 4928 0.5314 0.9840 0.7532 0.7532 0.7893
SIDO2 4928 0.5314 0.9840 0.6684 0.6684 0.7674

• Investigate alternative base classifiers: In this study, we investigated only two base
classifiers, linear ridge regression and BLogReg (for CINA). It may be that the benefits
of causal feature selection may be obscured by the use of a base classifier that is unable
to take advantage of non-linear relationships between features.

• In orienting the edges in the causal graph, it would be better to pre-filter the features
to include not only the Markov blanket of the target, but also the parents and children
of all features within the Markov blanket (c.f. Yin et al., 2008).

• Like conventional feature selection procedures, causal feature discovery methods ap-
pear to exhibit significant instability. An empirical characterisation of this instability
would be an interesting area for further research.

5. Summary

In this paper, we have evaluated causal and non-causal feature selection procedures for ridge
regression under covariate-shift. The reference submissions generated with knowledge of the
true causal relationships clearly demonstrate that causal feature selection is very effective
in mitigating against covariate-shift. However the models with causal feature selection pro-
cedures investigated here generally failed to out-perform models with non-causal feature
selection (or indeed without a feature selection step), except on the most basic toy bench-
mark (LUCAS). This is a surprising and disappointing result for datasets designed for causal
inference. It should be noted that the causal feature selection procedures are also compu-
tationally expensive, for instance identification of the Markov blanket for the SIDO dataset
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using HITON MB took on average 76 hours, 57 minutes 8 seconds, and orientation of causal
links using the PC algorithm took on average 50 hours, 21 minutes and 26 seconds. This
means that the SIDO experiments consumed approximately 18 processor-months, without
providing any improvement in predictive accuracy! These results demonstrate that causal
inference is a challenging task, where further theoretical and algorithmic advances are likely
to bring substantial practical benefits and where a more detailed empirical study is clearly
warranted.
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Table 8: Mean number of features used, and hold-out set AUROC score, over the 100 models
comprising each of the ensembles used to make predictions.

Benchmark Selection Features AUROC
None 11.00 0.9079
Non-causal 10.99 0.9079

LUCAS Markov blanket 5.01 0.9082
Causes & effects 4.00 0.8910
Causes only 2.00 0.7832
None 143 0.9695
Non-causal 6.03 0.9426

LUCAP Markov blanket 47.83 0.9674
Causes & effects 39.91 0.9664
Causes only 2.06 0.8089
None 132.00 0.9664
Non-causal 29.44 0.9660

CINA Markov blanket 55.30 0.9660
Causes & effects 21.21 0.9653
Causes only 1.02 0.5351
None 999.00 0.9962
Non-causal 14.69 0.9997

REGED Markov blanket 24.85 0.9995
Causes & effects 11.11 0.9996
Causes only 2.39 0.8961
None 4932.00 0.9472
Non-causal 28.96 0.9226

SIDO Markov blanket 136.27 0.9348
Causes & effects 10.07 0.8798
Causes only 9.95 0.8733
None 1024.00 0.9950
Non-causal 15.19 0.9986

MARTI Markov blanket 26.86 0.9994
Causes & effects 8.60 0.9978
Causes only 1.56 0.9346
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