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Abstract

In the imitation learning paradigm algorithms learn from expert demonstrations in order
to become able to accomplish a particular task. Daumé III et al. [2009] framed structured
prediction in this paradigm and developed the search-based structured prediction algorithm
(Searn) which has been applied successfully to various natural language processing tasks
with state-of-the-art performance. Recently, Ross et al. [2011] proposed the dataset aggre-
gation algorithm (DAgger) and compared it with Searn in sequential prediction tasks.
In this paper, we compare these two algorithms in the context of a more complex structured
prediction task, namely biomedical event extraction. We demonstrate that DAgger has
more stable performance and faster learning than Searn, and that these advantages are
more pronounced in the parameter-free versions of the algorithms.

Keywords: Real-world Applications, Imitation Learning, Natural Language Processing,
Structured Prediction.

1. Introduction

Imitation learning algorithms aim at learning controllers from demonstrations by human
experts [Schaal, 1999; Abbeel, 2008; Syed, 2010]. Unlike standard reinforcement learning
algorithms [Sutton and Barto, 1996], they do not require the specification of a reward func-
tion by the practitioner. Instead, the algorithm observes a human expert perform a series of
actions to accomplish the task in question and learns a policy that “imitates” the expert with
the purpose of generalizing to unseen data. These actions have dependencies between them,
since earlier ones affect the input to the following ones and the algorithm needs to handle
the discrepancy between the actions of the expert in the demonstration during training and
the actions predicted by the learned controller during testing. Imitation learning algorithms
have been applied successfully to a variety of domains and tasks including autonomous he-
licopter flight [Coates et al., 2008] and statistical dialog management [Syed and Schapire,
2007].

For structured prediction tasks in natural language processing (NLP) the output space
of an instance is a structured group of labels [Smith, 2011]. For example, in part-of-speech
tagging the output for a sentence is a sequence of part-of-speech tags, or in handwriting
recognition the output is a sequence of characters. Structures can often be more complex
than sequences, for example in syntactic dependency parsing the output space for a sentence
is a set of labeled edges spanning the words. While learning methods such as Conditional
Random Fields [Lafferty et al., 2001] and Markov Logic Networks [Domingos and Lowd,
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2009] have been developed for structured prediction, they are usually tailored to particular
structures so that they can perform parameter learning and inference efficiently. As a result,
a common approach that performs well in practice is to decompose structured prediction
into multiple classification tasks, in which each label of the structured output is predicted
by a classifier.

Under this prism, learning for structured prediction can be viewed as learning a controller
whose actions are to output each of the labels of the structured output. Similar to the
controllers in reinforcement learning, these actions have dependencies between them (e.g. in
part-of-speech tagging, determiners are commonly followed by nouns instead of verbs, or in
handwriting recognition some character sequences are more likely than others) which must
be taken into account in order to achieve good performance. The training signal commonly
provided is a set of labeled instances produced by a human expert, which is akin to the
human demonstrations in the imitation learning paradigm. Daumé III et al. [2009] proposed
an imitation learning algorithm1, search-based structured prediction (Searn), that reduces
the problem of learning a model for structured prediction into learning a set of classifiers.
This reduction enables Searn to tackle structured prediction tasks with complex output
spaces, and it has been applied successfully to a variety of tasks including summarization
[Daumé III et al., 2009] and biomedical event extraction [Vlachos and Craven, 2011].

In this work, we investigate a novel imitation learning algorithm proposed by Ross et al.
[2011], dataset aggregation (DAgger) that also reduces the problem of learning structured
prediction to classification learning. It was compared to Searn on learning video game-
playing agents and handwriting recognition and was shown to be more stable and have
faster learning while achieving state-of-the-art performance.

In this paper we make the following contributions. We present Searn and DAgger in a
unified description, highlighting the connections between imitation learning and structured
prediction. We then compare them in the context of biomedical event extraction [Kim
et al., 2011], a task in which the structure of the output is more complex than a sequence
of labels, and confirm the aforementioned advantages of DAgger over Searn which are
more pronounced in the parameter-free versions of the algorithms. Furthermore, we explore
the effect of the learning rate on the balance between precision and recall achieved by the
algorithms. We believe that these contributions are relevant to applications of imitation
learning algorithms to other structured prediction tasks, as well as to the development and
evaluation of imitation learning algorithms.

2. Imitation learning algorithms for structured prediction

Searn and DAgger form the structured output prediction of an instance s as a sequence
of T actions ŷ1:T made by a learned policy H. Each action ŷt can use features from s and all
previous actions ŷ1:t−1, thus exploiting possible dependencies. The number of actions taken
for an instance is not defined in advance but it depends on the actions chosen.

Algorithm 1 presents the training procedure for Searn and DAgger. Both algorithms
require a set of labeled training instances S and a loss function ℓ that compares structured

1. Searn infers rewards using the loss function and the labeled instances, therefore it is better described as
an apprenticeship learning algorithm [Syed, 2010]. Note though that this distinction between imitation
and apprenticeship learning is not consistent among authors [Abbeel, 2008].
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Algorithm 1: Imitation learning training
Input: training data S, expert policy π⋆, loss function ℓ,
learning rate β, CSC learner CSCL
Output: policy HN

1 Examples E = ∅
2 for i = 1 to N do
3 p = (1− β)i−1

4 current policy π = pπ⋆ + (1− p)Hi−1

5 if Searn then
6 Examples E = ∅
7 for s in S do
8 Predict π(s) = ŷ1:T
9 for ŷt in π(s) do

10 Extract features Φt = f(s, ŷ1:t−1)

11 foreach possible action yjt do
12 if Searn then

13 Predict y′t+1:T = π(s|ŷ1:t−1, y
j
t )

14 else

15 Predict y′t+1:T = π⋆(s|ŷ1:t−1, y
j
t )

16 Estimate cjt = ℓ(ŷ1:t−1, y
j
t , y′t+1:T )

17 Add (Φt, ct) to E

18 Learn a policy hi = CSCL(E)
19 if Searn then

20 Hi = β
∑i

j=1
(1−β)i−j

1−(1−β)ihj

21 else
22 Hi = hi

output predictions of instances in S against the correct output for them. In addition,
an expert policy π⋆ must be specified which is a function that returns the optimal action
ŷt for the instances in the training data, which is akin to an expert demonstrating the
task. An action is optimal when it minimizes the loss over the instance given the previous
actions ŷ1:t−1 assuming that all future actions ŷt+1:T are also optimal. π⋆ is typically derived
from the labeled training instances (e.g. in handwriting recognition π⋆ returns the correct
character for each position) and it must be able to deal with mistaken ŷ1:t−1. Both algorithms
output a learned policy H that is a classifier, which unlike the expert policy π⋆, it can
generalize to unseen data. Finally, the learning rate β and a cost sensitive classification
(CSC) learner (CSCL) must be provided. In CSC each training instance has a vector of
misclassification costs associated with it, thus rendering some mistakes on some instances
to be more expensive than others [Domingos, 1999].

Each training iteration of both algorithms begins by setting the probability p (line 3) of
using π⋆ in the current policy π. In the first iteration only π⋆ is used but in later iterations
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π becomes stochastic as for each action we use π⋆ with probability p and the learned policy
from the previous iteration hi−1 with probability 1 − p (line 4). Then π is used to predict
each instance s in the training data (line 8). For each s and each action ŷt, a CSC example
is generated (lines 10-17). The features Φt are extracted from s and the previous actions
ŷ1:t−1 (line 10) and are desinged to be good predictors of the current action ŷt. For example,
in part-of-speech tagging, commonly used features include the word whose part of speech
label we are predicting, the words preceding it and following it, as well as the label predicted
for the previous word. The cost for each possible action yjt is estimated by predicting the
remaining actions y′t+1:T in s using either π or π⋆ (line 13 or 15) and calculating the loss
incurred given that action w.r.t. the correct output using ℓ (line 16). The features for each
timestep together with the costs for each possible action at that timestep (Φt, ct) form one
CSC example (line 17). The CSC examples obtained from all the training instances are
used by a CSC learning algorithm to learn a policy hi (line 18) which is combined with the
previously learned ones to form the new policy Hi.

In each iteration, the algorithm predicts the instances in the training data and estimates
the cost of each action. This procedure is commonly referred to as inverse reinforcement
learning [Abbeel and Ng, 2004], since unlike standard reinforcement learning, an expert
policy is given but we try to learn the reward for each action (cost). Note that the learned
policy from the previous iteration is used in generating the CSC examples in predicting each
training data instance (line), as well as estimating the cost for each action in the case of
Searn (line 13). The degree to which it is used depends on the probability p set in the
beginning of each iteration. By gradually decreasing the use of the expert policy in the
current policy, both algorithms adapt the learned policy to its own predictions.

The main algorithmic difference between Searn and DAgger is in the learning of the
classifiers hi in each iteration and in combining them into a policy Hi. Under Searn, each hi
is learned using only the CSC examples generated in iteration i (line 6) and is then combined
with the classifiers learned in the previous iterations h1:i−1 according to the learning rate
β (line 20). On the other hand, DAgger learns hi using CSC examples from iterations
1 : i and uses it as the learned policy Hi (line 22). Thus DAgger can combine the training
signal obtained from all iterations more flexibly, which results in faster learning and more
stable performance compared to Searn.

Another difference between the two algorithms is that DAgger uses the expert policy
π⋆ to predict the remaining actions in y′t+1:T .2 This approach to costing had been proposed
by Daumé III et al. [2009] in the context of Searn, referred to as optimal approximation.

The learning rate β determines how fast the current policy π moves away from π⋆. A
special case is obtained when β = 1, also referred to as pure policy iteration or parameter-
free. In this case, π⋆ is used only in the first iteration to reproduce the correct output and
π only uses only the learned policy from the previous iteration Hi−1. Furthermore, the
classifier combination under Searn becomes the same as the one of DAgger, i.e. only
the most recently learned classifier is used. In this setting the algorithms cannot query π⋆

after the first iteration, thus π⋆ does not need to handle mistakes in previous actions since
all actions are optimal in the first iteration. Furthermore, the predictions in lines 8 and
12 become deterministic. However, relying only on the learned policy for action prediction

2. This fact was pointed out by a reviewer as it was not mentioned by Ross et al. [2011].
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beyond the first iteration (note that the cost estimation still uses the correct output via the
loss function) renders the learning harder as the algorithms are given less supervision.

3. Tackling biomedical event extraction with imitation learning

Vlachos and Craven [2012] developed a biomedical event extraction approach trained with
Searn that achieved the second-best reported performance on the data from the recent
BioNLP 2011 shared task (BioNLP11ST) [Kim et al., 2011]. Therefore, we decided to use
the BioNLP11ST setup to compare empirically Searn and DAgger. In this section we
describe briefly the task and the approach, but the interested reader is referred to the article
by Vlachos and Craven [2012] for more details.

The term biomedical event extraction is used to refer to the task of extracting descrip-
tions of actions and relations among one or more entities from the biomedical literature.
In BioNLP11ST each event consists of a trigger and one or more arguments, the latter
being proteins or other events. Protein names are annotated in advance and any token
in a sentence can be a trigger for one of the nine event types. Depending on their event
types, triggers are assigned theme and cause arguments. In an example demonstrating the
complexity of the task, given the passage “. . . SQ 22536 suppressed gp41-induced IL-10 pro-
duction in monocytes”, systems should extract the three appropriately nested events listed
in Figure 3.1(d). Performance is measured using Recall, Precision and F-score over complete
events, i.e. the trigger, the event type and the arguments all must be correct in order to
obtain a true positive.

In our approach, we treat each sentence independently and decompose event extraction
in four stages: trigger recognition, theme assignment, cause assignment and event con-
struction (Fig. 3.1).3 Apart from the last one which is rule-based, each stage has its own
module to perform the classification needed. The basic features used are extracted from the
lemmatization and the syntactic parse of the sentence. Furthermore, we extract structural
features for each action from the previous ones, for example the trigger recognition label of
the previous token is used as a feature to predict the label for the current token.

The loss function sums the number of false positive and false negative events, following
the task evaluation. The expert policy for a sentence is derived from the correct events
contained in the training data and returns the action that minimizes the loss over the
sentence given the previous actions and assuming that all future actions are optimal. In
the first iteration it returns the actions required to reproduce the correct events in the
sentence. In subsequent iterations, in order to deal with mistakes in previous actions, it
avoids assigning arguments to incorrectly tagged triggers and avoids using incorrect events
as arguments of other events. It it important to note that the same events can be obtained
using different sequences of actions and that the correct events in the training data specify
only one such sequence. For example in Figure 3.1, token “SQ” could have been tagged as a
trigger without assigning any arguments to it and we ould still obtain the correct events. In
order to resolve this ambiguity, we restrict the expert policy to return only the the triggers
that are necessary to produce the correct events.

3. While different task decompositions are possible, this 4-stage decomposition is the most commonly used
one among the systems participating in BioNLP11ST.
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(c) Cause assignment

ID type Trigger Theme Cause
E1 Neg_reg suppressed E2
E2 Pos_reg induced E3 gp41
E3 Gene_exp production IL-10

(d) Event construction

Figure 3.1: The stages of our biomedical event extraction system.

The classifiers learned for trigger recognition, theme assignment and cause assignment,
are unlikely to be able to replicate to the expert policy due to the difficulty of the tasks. In
such cases, the optimal approximation method for costing (line 15 in Alg. 1) is unlikely to
estimate the cost of each action correctly, since the actions predicted by the learned policy
are likely to differ from the ones returned by the expert policy. Therefore, in our experiments
we use the Searn-style cost estimation (line 13 in Alg. 1) for both Searn and DAgger. In
order to restrict the effects of the stochasticity of this approach, we use the focused costing
method [Vlachos and Craven, 2011], in which the cost estimation for an action takes into
account only the part of the output graph connected with that action, thus limiting the part
of the structured output considered for this purpose.

The structure of the output space for the biomedical event extraction decomposition
described above is a sequence of tags defining triggers and their event types, combined
with a directed acyclic graph in which vertices correspond to triggers or proteins and edges
represent argument assignments. Thus it is more complex than the handwriting recognition
task that was used in the comparison performed by Ross et al. [2011] which is a sequential
tagging task. Also, it is not amenable to several commonly used structured prediction
methods which rely on the output structure being a sequence or a tree in order to perform
inference efficiently. Furthermore, incorrect actions can prohibit other correct actions from
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being taken, e.g. if a token is incorrectly predicted not to be a trigger, it is impossible to
assign arguments to it. Again, this is unlike sequential tagging tasks, where an incorrect
prediction of a token does not prohibit the correct prediction of the remaining ones. Both
algorithms under comparison use the learned policies from previous iterations in order to
generate training examples (line 9 in Alg 1), therefore incorrectly predicted actions can
inhibit the algorithm from reaching regions of the output space that could provide useful
CSC examples. Thus, the learning rate which determines how frequently the expert policy
is queried is likely to be more important for biomedical event extraction than it was in the
comparisons of Ross et al. [2011].

4. Experiments

In our experiments we run Searn and DAgger for 12 training iterations and perform
CSC learning using the online passive-aggressive (PA) algorithm [Crammer et al., 2006].
BioNLP11ST comprises three datasets – training, development and test – which consist
of five full articles each and 800, 150 and 260 abstracts respectively. We extract features
from the output of the syntactic parser by McClosky [2010] as provided by the shared task
organizers [Stenetorp et al., 2011]. The use of this publicly available resource allows for
easy replication of our experiments. While the correct output is provided for the training
and development datasets, evaluation on the test dataset is only possible once per day via a
webserver in order to maintain the fairness of comparisons between systems. However, since
we focus on comparing the algorithms in terms of stability and learning speed, we report
results on the development set.

Initially we compare Searn and DAgger with learning rate equal to one. Figure 4.1(a)
shows that the performance of DAgger peaks after 6 iterations beyond which it remains
stable. On the other hand, the performance of Searn oscillates between high recall/low
precision and low recall/high precision iterations (Figures 4.1(b) and 4.1(c)). In particular,
in the first iteration Searn learns theme and cause assignment components given correctly
identified triggers only (the expert policy only returns those), but the trigger recognition
component learned returns many incorrect ones, thus resulting in high recall and low pre-
cision. This behaviour is reversed in the second iteration, in which the theme and cause
assignment components are learned so that they can accommodate for incorrectly recognized
triggers, but at the same time the trigger recognition component becomes extremely conser-
vative. This pattern holds for subsequent iterations, albeit progressively less pronounced. In
contrast, DAgger can combine training signal from both iterations, thus its performance
improves faster and avoids such oscillating behaviour. The unstable behaviour of Searn
affects the training time as well, since in the high recall/low precision iterations the algo-
rithm needs to consider many more actions during the cost-sensitive example generation
steps (lines 8-17 in Alg. 1).

Figure 4.1(b) shows a substantial drop in recall for both algorithms in the second iter-
ation. This is due to the learned policy in the first iteration being unable to replicate the
correct output without using the expert policy. This issue did not emerge in the experiments
of Ross et al. [2011], but as explained in Section 3, event extraction is likely to be affected by
it. Using slower learning rates ameliorates this problem (Figure 4.1(e)) and renders Searn
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Figure 4.1: Development dataset results for DAgger(β) and Searn(β) with various learn-
ing rates.

more stable, but DAgger still learns faster for a range of learning rates (0.7, 0.3 and 0.1 in
Figures 4.1(d), 4.1(g) and 4.1(h) respectively).

Even though slower learning rates improve the performance for both Searn and Dag-
ger, the improvement for the latter is not as dramatic (about 1.5 points in F-score). As
discussed in Sec. 2, when β < 1 action costing becomes stochastic, which can result in un-
reliable estimates. In our experiments we used the focused costing approach proposed by
Vlachos and Craven [2011], who reported that it improved the performance of Searn by 4
F-score points. In Figure 4.1(i) we compared the performance of DAgger with and without
focused costing and we show that even though focused costing results in faster learning, the
difference in terms of F-score is smaller, approximately 2 points. In other words, DAgger
is more robust w.r.t. the choice of action costing method. Also note that using DAgger
with β = 1 avoids introducing stochasticity in action costing, while unlike Searn it remains
stable, thus it is more likely to be applicable to other structured prediction tasks.
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5. Conclusions - Future work

In this paper we compared two imitation learning algorithms for structured prediction,
Searn and DAgger. We presented them in a unified description and evaluated them
on biomedical event extraction. We found that DAgger is more stable and learns faster,
while being more robust with respect to the choice of learning rates and action costing.
These advantages are more pronounced in the parameter-free versions of the algorithms
which avoid stochastic cost estimates and need simpler expert policy definitions. Finally,
we assessed the effect of the learning rate in complex structured prediction tasks in which
mistaken predictions can inhibit imitation learning algorithms from exploring useful parts of
the training data. Our contributions should be relevant to applications of imitation learning
to other structured prediction tasks.

In future work, we will apply imitation learning algorithms to other complex struc-
tured prediction tasks. Furthermore, we would like to explore and compare against other
structured prediction frameworks such as structured prediction cascades [Weiss and Taskar,
2010] and output space search [Doppa et al., 2012] that also rely on reductions of structured
prediction learning to simpler problems.
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