JMLR: Workshop and Conference Proceedings 24:77-88, 2012 10th European Workshop on Reinforcement Learning

Online Skill Discovery using Graph-based Clustering

Jan Hendrik Metzen JHM@INFORMATIK.UNI-BREMEN.DE
University of Bremen, Bremen, D-28359, Germany

Abstract

We introduce a new online skill discovery method for reinforcement learning in discrete
domains. The method is based on the bottleneck principle and identifies skills using a
bottom-up hierarchical clustering of the estimated transition graph. In contrast to prior
clustering approaches, it can be used incrementally and thus several times during the
learning process. Our empirical evaluation shows that “assuming dense local connectivity
in the face of uncertainty” can prevent premature identification of skills. Furthermore, we
show that the choice of the linkage criterion is crucial for dealing with non-random sampling
policies and stochastic environments.

Keywords: Hierarchical Reinforcement Learning, Skill Discovery, Multi-task Learning

1. Introduction

Reinforcement Learning (RL) can provide autonomous agents with means to learn to im-
prove their performance with experience. There exist theoretical guarantees for certain
RL algorithms that the optimal policy for any discrete Markov Decision Process (MDP) is
learned asymptotically. However, scaling RL to real-world problems with large or continuous
state spaces remains a major challenge since the amount of experience the agent can collect
is limited. One approach to alleviate this problem is Hierarchical RL [Barto and Mahade-
van, 2003| which aims at dividing a problem into simpler subproblems, learning solutions
for these subproblems, and encapsulate the acquired knowledge into so-called skills that can
potentially be reused later on in the learning process. It has been shown that skills can help
an agent to adapt to non-stationarity of the environment and to transfer knowledge between
different but related tasks [Digney, 1998| and can increase the representability of the value
function in continuous domains [Konidaris and Barto, 2009]. One of the major challenges
in Hierarchical RL is to identify what might constitute a useful skill, i.e. how the problem
should be decomposed. Skills should be reusable, distinct, and easy to learn. The task of
identifying such skills is called skill discovery [Kirchner, 1995; Digney, 1996].

We propose the new online skill discovery method OGAHC which identifies densely
connected regions in the state space using a constrained agglomerative hierarchical clustering
of the estimated state transition graph. We show empirically in Section 4.1 that the proposed
method is robust with regard to the agent’s sampling policy and the stochasticity of the
environment. In Section 4.2, we compare the proposed incremental, online skill discovery
method to its non-incremental, offline counterpart. Furthermore, we show in Section 5
that using OGAHC for skill discovery in a Hierarchical RL agent outperforms related skill
discovery approaches in a multi-task learning domain.

© 2012 J. Metzen.

METZEN

2. Background and Related Work

We adopt the option framework |Sutton et al., 1999|, which formalizes skills as options. An
option o consists of three components: the option’s initiation set I, C S determining the
states in which the option may be invoked, the option’s termination condition f, : S — [0, 1]
specifying the probability of option execution terminating in a given state, and the option’s
policy m, which defines the probability of executing an action in a state under option o. In
the options framework, the agent’s policy m may in any state s decide not solely to execute a
primitive action but also to call any of the options for which s € I,. If an option is invoked,
the option’s policy 7, is followed until the option terminates according to (,.

The option’s policy m, is defined relative to an option-specific reward function R, that
may differ from the global external reward function. Learning w, given I,, §,, and R, is
denoted as skill learning and learning 7 given primitive actions and options is known as
compositional learning. In this work we focus on skill discovery, i.e. choosing appropriate
1,, Bo, and R, for a new option o. Autonomous skill discovery is very desirable since the
quantities I,, 8,, and R, need not be predefined but can been identified by the agent itself
and thus, skill discovery increase the agent’s autonomy.

Most prior work on autonomous skill discovery is based on the concept of bottleneck
areas in the state space. Informally, bottleneck areas have been described as the border
states of densely connected areas in the state space [Menache et al., 2002| or as states that
allow transitions to a different part of the environment [Jimgek and Barto, 2004]. A more
formal definition is given by Simsek & Barto [2009] which define bottleneck areas as those
states which are local maxima of betweenness—a measure of centrality on graphs—on the
transition graph. Once bottleneck areas have been identified, typically one (or several) skills
are defined that try to reach this bottleneck from a local neighborhood of the bottleneck.

Since betweenness requires complete knowledge of the transition graph and is computa-
tionally expensive, several heuristics have been proposed to identify bottlenecks. One class
of heuristics are frequency-based approaches that compute local statistics of states. Diverse
density [McGovern and Barto, 2001| and relative novelty [Jimsek and Barto, 2004] have
been considered in frequency-based heuristics. In diverse density, bottlenecks are identi-
fied as those states that are visited often on successful but not on unsuccessful trajectories.
Relative novelty defines bottlenecks as those states that allow the agent to transition to an
area in the state space that is otherwise difficult to reach from its current region. One dis-
advantage of frequency-based approaches is that they require repeated-sampling to obtain
accurate estimates of the statistics and are thus not very sample-efficient.

An other class of heuristics that may be more sample-efficient are graph-based approaches.
These heuristics are based on estimates of the transition graph and aim at partitioning this
graph into subgraphs that are densely connected internally but only weakly connected with
each other. Menache et al. [2002] propose a top-down approach for partitioning the global
transition graph based on the max-flow/min-cut heuristic. Simsek et al. [2005] follow a simi-
lar approach but partition local estimates of the global transition graph using a spectral clus-
tering algorithm and use repeated sampling for identifying globally consistent bottlenecks.
Due to the repeated sampling the approach shares some properties with the frequency-based
approaches. Mannor et al. [2004] propose a bottom-up approach that partitions the global
transition graph using agglomerative hierarchical clustering. The approach is offline, i.e. the

78

ONLINE SKILL DISCOVERY USING GRAPH-BASED CLUSTERING

clustering can be executed only once and thus does not allow us to identify skills at different
times during learning. This property limits the utility of the approach since there may be
no single optimal point in time for skill discovery.

The main contribution of this work is a skill discovery method based on agglomerative
clustering of the transition graph that shares some similarities with the work of Mannor et
al. [2004]; however, the proposed method is online, i.e. can identify skills at any time.

3. Online Graph-based Agglomerative Hierarchical Clustering

We adopt the concept of identifying bottlenecks in the state space as basis for skill discovery.
Informally, a set of states forms a bottleneck area if it lies on the boundary® of two densely
connected areas of the state space that are only weakly connected mutually. We investi-
gate approaches that identify such bottlenecks based on the sample transition graph using
agglomerative clustering. We base skill discovery thus solely on the MDP’s state transition
probabilities P, and ignore the expected rewards RY,, since we consider R}, to encode the
task and aim at identifying task-independent skills that can be reused in different tasks.

3.1. Sample Transition Graph

For discrete environments, we construct the sample transition graph G = (V, E,w), which
is a directed, weighted graph that is used as estimate for the actual unknown transition
graph, as follows: for a given set of n transitions {(s;, a;, s})}i=1.., sampled from an MDP,
we set V' = {s;} U {s,} to the set of all states that have been visited and E = {(s;, s})} to
the set of all one-step transitions that have occurred. For each action a € A, we add the
attribute N(s,a,s’) = > 1, 6((s,a,5), (si,ai, ;) to any edge (s,s’) € E and the attribute
N(s,a) =311 6((s,a),(si,a;)) to any node s € V where §(x,y) =1 if x = y else 0.

Different choices for the edge weights w(e) have been proposed. While Mannor et
al. [2004] used essentially uniform edge weights wyn;i(e) = 1, Simsek et al. [2005] proposed
the edge weights won((s,s")) = >, N(s,a,s’), i.e. how often the transition s — s’ has been
observed under the sampling policy. While wy,; ignore both the stochasticity of the environ-
ment and the action preferences of the agent, w,,, take both into account (i.e. it is “on-policy”
with regard to the sampling policy). We argue that in order to identify properties of P¢,
like bottlenecks, one should take the stochasticity into account but be independent of the
sampling policy. Thus, we propose the edge weights wef¢((s,s")) = >, N(s,a,s’)/N(s,a),
which are “off-policy” (note that N(s,a,s’)/N(s,a) is the maximum likelihood estimate of
P2, and thus independent of the sampling policy).

3.2. Linkage criteria

The purpose of the linkage criterion [is to give a quantitative judgment if the boundary
of two connected, disjoint subgraphs A, B C G forms a bottleneck in G = (V, E,w). The
larger the linkage value for the pair (A, B), the more evidence the criterion offers for a
bottleneck between A and B. By choosing a threshold %, one can create a binary criterion
for “bottleneckness” (by identifying a bottleneck between A and B if (A, B) >).

1. For a graph G = (V, E), we define the boundary of two disjoint node sets A, B C V as
ba(A,B)y={veV|T" eV:(v,0)e EN(Ax BUBx A)}

79

METZEN

Algorithm 1: Constrained agglomerative clustering

Input: graph G = (V, E, w), constraint set C, linkage criterion [, threshold
Initialize partition: P = {{v}jv € V'}
C = C'Ulambda P1,P2 - (pl X pz) NE 75 0/ Merge only clusters p; that are connected in GG
while True do

M. = {(php?)\(l’lapz) S (P X P) AN /\ C(pl,pg)} Merge-candidates that fulfill all

ceC
constraints

p’{,p; = arg minl(pl,pg) 7+ Find merge candidates with minimal linkage
p1,p2€Me
if l(p’{,p;) > . return P No more densely connected clusters — return clustering

P = (P \ {pT,p;}) U {]fi< Up;} 7+ Merge p] and p3

As base for linkages, we define the (directed) connectivity mass ¢, of subgraphs A

and B as ¢, (4, B) = > w(e). The connectivity mass gets large for large, densely
e€EN(AXB)
connected subgraphs with big edge weights. Mannor et al. [2004] proposed a linkage criterion

for bottleneck identification in transition graphs that is defined as follows (using our notation

and |A| being the number of vertices in subgraph A): M(A, B) = min(ch"glg‘))f_(cmafglj)‘"]ﬂ)).
The linkage is based on uniform edge weights such that the denominator is eénuaf to the
number of edges between A and B in G. The linkage thus assigns large values to subgraphs
of similar sizes that are only weakly interconnected.

Simgek et al. [2005] have proposed the Nyt criterion which is defined as follows (using

: { m A7B m B7A m B7A m A7B \J M 1 3
our notation): Ny (A, B) = szA,VgiszB,A; zmgB,V;iim((A,Bg' The N, criterion is an

approximation of the sum of probabilities that the agent transitions in one time step from
a state in subgraph A to a state in subgraph B or vice versa. The authors used a top-down
spectral clustering algorithm to find graph cuts that minimize Ncut; in order to use it as a
linkage criterion where large values indicate a bottleneck, we shall use —Ncut. The authors
used the criterion with on-policy edge weights; we claim that it should rather be used with

off-policy weights (see Section 4.1).

3.3. Constrained Agglomerative Clustering

In order to identify all bottlenecks of GG, we determine a partition P* of minimal cardinality
of the graph nodes into disjoint clusters p; such that neither of the subgraphs induced by
the p; contains a bottleneck. By construction, the boundary of any connected pair of these
subgraphs forms a bottleneck (otherwise, the two subgraphs would have been merged because

of the minimal cardinality objective). Formally: P* = arg min|P| s.t. max [(p; \
PeP(V) pi€P,qiCp;

qi, ;) < ¥, with P(V) being the set of all possible partitions of V. Alternatively, we may
also fix the number of clusters to k and identify a partition P* with |P*| = k such that the

maximal intra-cluster linkage [is minimized: P* = arg min max I(p; \ ¢, gi)-
|P|=k Pi€PaiCp;

Since finding the optimal solutions for these problems is NP-hard, we use an approximate
approach similar to the one proposed by Mannor et al. [2004| which is based on agglomerative
hierarchical clustering (see Algorithm 1). This algorithm starts by assigning each node into a

80

ONLINE SKILL DISCOVERY USING GRAPH-BASED CLUSTERING

Algorithm 2: OGAHC

Input: linkage criterion [, parameters p, ¥, m
Initialize: partition P = (), graph G = (0, 0),
while True do

(51, a1,82,...,Am—1, Sm) = ACT(AGENT, ENV) # Act for m — 1 steps and observe

trajectory

UPDATE(G, (81, a1,82,...,Am—1, Sm)) 7+ Update transition graph with trajectory

G' = SMOOTH(G, ,0) 77 Pseudo transitions for under-explored nodes

C = () # Constraints for keeping partitions consistent

for (pa,pp) € P x P with ps # pp do
7+ Must not merge two clusters with elements that had not been merged in last iteration
C = C U {lambda pi,pz : (p1 Up2) Npa =0V (p1 Upz) Npp = 0}

end for

P = CAC(G/, C,l, ¢) Partition G’ using constrained agglomerative clustering (CAC)

separate cluster and afterwards merges greedily the pair of clusters that has minimal linkage
among all pairs of clusters connected in G until no pair remains with a linkage below 1.
Additionally, the algorithm allows the specification of further constraints that determine
which clusters may be merged (see Section 3.4).

3.4. Online Clustering

The clustering approach presented in Section 3.3 is an offline approach, i.e. it can be executed
only once when “enough” transitions have been gathered to estimate the sample transition
graph. The specific point in time when clustering is performed presents a trade-off: on the
one hand, one would like to perform the clustering as early as possible in order to maxi-
mize the impact of the discovered skills during learning; on the other hand, performing the
clustering too early may result in spurious clusters that are due to considerable deviations
of the estimated transition graph from the true transition graph. It would thus be highly
desirable to use an online clustering algorithm instead, which can be invoked several times
during learning. In order to make such an online clustering algorithm useful for skill dis-
covery, it has to fulfill the following properties: a) Subsequent executions of the clustering
should be consistent, i.e. bottlenecks identified in one invocation of the clustering should
persist in subsequent ones. Otherwise, skills corresponding to these bottlenecks would need
to be deleted (causing an undesirable loss of learned knowledge) or to be modified to a new
target, which would require re-learning and might have a detrimental effect onto higher-level
policies which are based on these skills. b) The less reliable the estimate of the transition
graph in a certain area of the state spaces is, the less likely the clustering should identify
bottlenecks in this area.

To address these issues, we propose the Online Graph-based Agglomerative Hierarchical
Clustering (OGAHC) method (see Algorithm 2). Its main contributions are the following: a)
In order to guarantee consistency of subsequent clusterings, an increasing set of constraints
that must be obeyed by the clustering is maintained. These constraints ensure that no
two nodes that have been assigned to different clusters are assigned to the same cluster in

81

METZEN

subsequent clusterings. b) In order to prevent premature identification of bottleneck areas,
OGAHC builds on a heuristic that may be framed as “assume dense local connectivity
in the face of uncertainty”. Technically, instead of working on the maximum likelihood
estimate G of the transition graph, the clustering is performed on a modified transition
graph G’ = SMOOTH(G, p). In G, for each N(s,a) < p, N(s,a,s’) is incremented by
(p— N(s,a))/k for any s’ that is among the k& = max(5, p) nearest neighbors. The nearest
neighbors can be computed based on any measure of state similarity; if no such measure
exists, one could alternatively use the k graph nodes with minimal distance to s in G.
p is a free parameter of the algorithm that determines if the algorithm is more liberal,
i.e. tends to identify bottlenecks early in the learning process despite the uncertainty in the
sample transition graph, or—for larger values of p— more conservative. Note that sparsity
properties of G—which correspond to a reduced runtime of the constrained agglomerative
clustering algorithm because of less merge candidates—are maintained in G'.

The heuristic “assume dense local connectivity in the face of uncertainty” prevents bot-
tlenecks from being identified prematurely since the linkage value is typically decreased by
adding pseudo transitions and thus, fewer clusters are formed in early invocations of the
algorithm. Over time, fewer pseudo transitions are added, the connectivity decreases, the
typical linkage of subgraphs increases, and thus, more clusters are formed. Note that speci-
fying the number of clusters k& beforehand instead of ¢ is not practical in online clustering
since it does not allow the implicit increase of granularity of the clustering over time.

3.5. Skill Prototype Generation

Given the partitioning P obtained using OGAHC, one skill is generated for reaching each
identified bottleneck area. We set the bottleneck area of two clusters A and B to the
boundary of the corresponding subgraphs of G. The skill prototype (Iap, B4, Rap) that
is generated for the bottleneck between A and B is then defined as follows:

Iap = (A"UB")\ bg(A, B) Bap(s) =0if s € [4p else 1
Rag((s,a,r,s')) =rif s € (A*UB*) else rp +r,

where A* = {v € V[T € A: (v,v') € E}, and 7, is a parameter of the algorithm that
determines the penalty for failing to fulfill a skill’s objective. Further skill prototypes are
generated for reaching identified terminal states s; from the adjacent clusters A. Note that
the skill prototypes may change over time when A or B change because of re-clustering;
however, a skill and its corresponding bottleneck area can never disappear.

4. Cluster Accordance Analysis

This section presents an empirical evaluation of the quality of the partitions generated
by different clustering approaches and linkage criteria in 50 randomly generated MDPs.
Each of the MDPs consists of 400 states and in each state, 4 actions are available. The
stochasticity of the MDPs is controlled by the parameter x € [0, 1], where larger values of
x correspond to increased stochasticity. Along with the MDPs, ground-truth partitions of
the states consisting of 7 clusters have been generated. For more details, we refer to the
supplementary material. For each MDP, an optimal policy has been computed offline and

82

ONLINE SKILL DISCOVERY USING GRAPH-BASED CLUSTERING

Linkage Criterion
@—@®M (Mannor et al.)
: : : : 9—¢ Off-Policy Ny ¢

090 F------- . N R Lo Je-AOn-Policy Newt

Accordance ratio
Accordance ratio

0.85 [+ - vk e N e N F e
0.80 - N TN Linkage Criterion
: : : : . @-@M (Mannoretal.) ¢—Off-Policy Ncut Je-skeOn-Policy Neu
075 Mo il il =T T I I I
0 107 107%* 10°3 1072 107! 1 0.0 0.2 0.4 0.6 0.8 1.0
Exploration €decay Exploitation Stochasticity x
1.0 T T T T r Online: p
E.."“..ofouuooufounuufnnonn Lo 0 1 2 3 4 5 6 7 s
00 . . . I I I I I I I
£ — ©
5 095 8 os M
8 S
09 |- gfff) e S o.
g 8 0-6 9 @ Online
= | 2 i
§ 0.85 0 — & S 04 e o Offline
< ; o= — s g
0.75 Y Tl =— 2 e e Offline] 2 0.2} . .
. . — 2 < liberal —) conservative
8:8 ”5 1': 2' 2' 0.0]]]]]
0 0 5 30 5 30 0 5 10 15 20 25 30
Transitions /10 Offline: Clustering after m steps (/103)

Figure 4.1: Upper row: Comparison of different linkage criteria for different degrees of explo-
ration and different stochasticity of the environment. Lower row: Comparison
of OGAHC (for different values of p) and offline clustering. Errorbars show the
standard error of the mean.

a trajectory consisting of n transitions has been sampled by following the optimal policy
e-greedily. € was set initially to 1 and then decayed after each step by the factor 1 — €gecay-
Based on the sampled transitions, a partition of the states is determined and compared to
the ground truth partition. The agreement of the two partitions P; and P, is measured
using the accordance ratio acc(Py, Py) = ﬁ > 0(0(Pi(s), P1(5)),0(Pa(s), P2(5))), i.e. the
s,5€
ratio of element-pairs on which P; and P, agree on assigning them to the same or to different
clusters (d(z,y) = 1 if x = y else 0). Statistical hypothesis testing has been conducted using

Student’s independent two-samples t-test.

4.1. Linkage criterion

In a first experiment, we compare different linkage criteria in an offline clustering setting
for x = 0. To analyze the effect of non-uniform exploration of the agent, we have varied
€decay- Liarge values of €jecqy correspond to an agent which starts to exploit more early and
as a consequence, obtains a more biased estimate of the transition graph. The upper left
plot in Figure 4.1 shows a comparison of the partitions obtained after n = 25000 transitions

A~

for the M-linkage and the N.,-linkage with both on-policy and off-policy edge weights as

83

METZEN

discussed in Section 3.2. The main result shown in the figure is that the on-policy Ncut
linkage obtains significantly worse partitions than the other two linkages for intermediate
values of €gecay (p < 0.008 for €gecay € {1077, 107#,1073}). This can be attributed to the
fact that the on-policy Ny linkage bases its partitioning not solely on the environment’s
transition probabilities but also on the agent’s action selection which is undesirable if the
agent selects action non-uniformly. In a second experiment (n = 25000, €jecay = 0), we
have varied the stochasticity x of the environment. The upper right plot in Figure 4.1
shows that the M-linkage obtains significantly worse results than the off-policy Newt linkage
if the environment gets slightly non-deterministic (p < 0.0001 for 0.05 < x < 0.8). This
is due to the use of uniform edge weights in the M-linkage; these weights do not allow to
differentiate between probable and less probable transitions, which is apparently important
for skill discovery in non-deterministic environments. In summary, the results show that the
off-policy Ncut—linkage is the most robust linkage criterion; the following experiments have
been conducted with this linkage accordingly.

4.2. Online Graph-Clustering

In this subsection, we compare the OGAHC algorithm with its offline counterpart (essentially
the approach proposed by Mannor et al. [2004]). We have used the same 50 MDPs as before
and set n = 30000, €gecay = 0, x = 0, and ¥ = —0.075. For OGAHC, the clustering has
been updated every 500 steps and different choices of p have been evaluated. The offline
clustering has been performed after m € {500, 1000,...,30000} transitions, taking all m
transitions that have been acquired so far into account at once.

The lower left plot in Figure 4.1 shows how the accordance ratio of the identified parti-
tions changes over time. It can be seen that smaller values of p achieve higher accordance
ratios in the early phase since they tend to identify clusters more early. However, these
clusters are potentially suboptimal since they are based on a sample transition graph that
was estimated based on a small number of transitions and has thus a high sampling error.
Accordingly, it can be seen that for e.g. p = 0 the accordance ratio plateaus on a lower level
than for larger values of p. Comparing OGAHC to offline clustering, one can see that for
any number of transitions, the online clustering tends to be slightly worse than the offline
clustering obtained at that point in time. This can either be due to the enforced consistency
with prior clusterings or to the influence of p.

However, the clusterings of OGAHC can be refined over time while the clusterings of
the offline approach are fixed. Thus, the performance of the two method should not only be
compared at a single point in time. The lower right plot of Figure 4.1 shows the accordance
ratio averaged over the 30000 steps for different values of p and m. For both small and
large values of m, the average accordance of the offline clustering is low. For small m, the
average accordance is low because the clustering is based on only few transitions and cannot
be improved later on; for large values of m, the average accordance is low because there is
no clustering at all for a long initial period. Intermediate values (m =~ 4500) obtain a higher
average accordance of approx. 0.81. In contrast, the online clustering depends less on the
specific choice of p. The optimal value for p is 1, which results in an average accordance
of approx. 0.91; however, for any value 0 < p < 6, OGAHC achieves a significantly higher
average accordance than the offline clustering for m = 4500 (p < 0.019). Thus, even without

84

ONLINE SKILL DISCOVERY USING GRAPH-BASED CLUSTERING

Steps without novelty (/103, Offline)
12 5 10 15 20 25 30 35 40 45 50

(0]
g 280
) Clustert '8 —300 — I . %;ﬁl
o _ =
3 Cluster 2 © —320 e * —T ==
@ —340 s .
I Cluster 3 o)3 -
T —360 II """ [ORI IR B R 5
Ml Cluster 4 o —380 a
| & —400
| | B Bottleneck = — — Offline mmm Predefined Skills
| B8 Special g —420 0 LGP s N Sills
i pecia g —440 OGAHC -
| . Wal $ —460 ML ' '
i < 012 5 10 15 20 25 30
e » (OGAHC) to (LGP)

Figure 5.1: Left: Structure, ground-truth partitioning, and bottlenecks of the multi-task
maze world. Right: Reward per episode (averaged over the first 1000 episodes)
for different skill discovery strategies. p and t, are varied over the same value
range (bottom x-axis). See supplementary material for detailed learning curves.

fine-tuning p, the online clustering can outperform the offline clustering with optimally cho-
sen m with regard to the average clustering quality. In the next section, we will investigate if
the same holds true for the learning performance of a Hierarchical RL agent using OGAHC
for skill discovery compared to agents using other approaches.

5. Multi-task Learning

In this section, we evaluate the utility of the OGAHC method within a Hierarchical RL
agent in a multi-task learning scenario. The scenario is a 23 x 23 maze world consisting of
four rooms with four “special” states (see Figure 5.1). In each time step, the agent obtains
a reward of —1. The agent has to learn to solve 12 different tasks in this environment; each
task is defined by a pair (sg, s¢) of special states where sq is the start state and s; is the
goal state of the task. In each episode, a task is chosen at random and the specific task is
communicated to the agent as a state space dimension. This dimension is used by the agent
for policy learning but ignored during skill discovery and skill learning. The acquired skills
can thus be transferred between tasks and may give a useful exploration bias for the agent.

The agent uses a 2-level hierarchy: The lower level consists of the acquired skills and a
special option discussed below. On the upper level, the agent may choose among these skills
but not choose a primitive action directly, i.e. the action space is abstracted not augmented.
1-step intra-option Q-Learning [Precup, 2000] is used for skill learning; no experience replay
is conducted to avoid intermixing the contributions of skill discovery and experience replay
(see Jong et al. [2008] for a discussion). A special low-level option prototype is provided to
the agent: this option can be invoked in any state, terminates in any state with probability
B = 0.01, and uses the external reward signal. This option allows the agent thus to learn
a monolithic global policy. The reasons for this option are twofold: on the one hand, it
guarantees that the agent can learn a global optimal policy eventually despite the abstraction
of the action space. On the other hand, it makes the agent less susceptible to the broken

85

METZEN

exploration symmetry that is caused by temporal abstraction (see [Jong et al., 2008]) than
pure augmentation of the action space.

We compare OGAHC to the Offline Clustering approach proposed by Mannor et al. [2004]
and the Local Graph Partitioning (LGP) approach by Simsek et al. [2005]. As baseline, we
evaluate the agent using no skill discovery (i.e. learning a monolithic policy using the “special”
option), and the agent that is provided with the ground-truth partitioning (see Figure 5.1)
from the beginning. |¢| has been set to 0.075 for all approaches. For LGP, the required
hit-ratio has been set to ¢, = 0.2, the option lag to [, = 20, the window length to A = 1000,
and the update frequency to 250. These parameters have been chosen based on preliminary
experiments. The discount factor of the agent has been set to v = 0.99, the learning rate to
a = 1.0, the value functions have been initialized optimistically to 0.0, and the penalty for
failing to fulfill a skill’s objective has been set to r, = —100. For OGAHC, the parameter p
has been varied between 0 and 30, for LGP the minimum number of state observations ¢,
has been varied between 1 and 30, and the Offline Clustering has been conducted after m
steps in which no novel state has been encountered (where m has been varied between 5000
and 50000). Each setting has been evaluated 15 times for 1000 episodes.

The results of the experiment are depicted in Figure 5.1. The agent provided with
predefined skill prototypes obtains an average reward per episode of 7. = —296.3 + 1.6 and
the agent using no skills of 7. = —395.5 £ 0.9. The maximal gain of average reward that
can be achieved by biasing exploration using skills is thus approx. +100. Using LGP for
skill discovery does not achieve an average reward of more than 7. = —350 for any choice of
t,. Closer inspection showed that for small values of t,, the resulting partitioning was far
from being optimal while for larger values of #,, the skills have been introduced too late to
provide a useful exploration bias. Using the Offline Clustering approach, the optimal time
for performing the clustering is after m* = 30000 steps without observing any novel state
which results in 7, = —306.8 £ 2.6. Thus, performing Offline Clustering at the right time
does already realize 90% of the possible reward gain. However, for the same reasons as in
Section 4.2 the choice of m is crucial: performing clustering too early results in suboptimal
partitions while performing it too late limits the benefits of the acquired skills for learning.

The OGAHC approach achieves 7. > —305 for any choice of p < 15 and 7. = —294.5+2.1
for p = 10. The approach allows thus to acquire more than 90% of the possible reward gain
(and thus more than obtained by Offline Clustering for any choice of m) for a broad range
of values for p, making the specific choice of p less important. For the optimal choice
p* = 10, OGAHC achieves an average reward that is on par with what can be obtained
with the predefined skill prototypes. This can be explained by the observation that for this
choice of p, OGAHC discovers skills that are close to the optimal ones very early during
learning (typically during the first 3 episodes). Since skill learning takes several episodes,
the predefined skill prototypes offer the agent an efficient exploration bias starting after
approx. 5 episodes; thus OGAHC can be on a par with the predefined skill prototypes. In
summary, the results show that using OGAHC for skill discovery allows to identify reusable
skills at an early stage of learning without requiring to fine-tune the parameter p.

86

ONLINE SKILL DISCOVERY USING GRAPH-BASED CLUSTERING

6. Conclusion and Future Work

We have presented the novel online skill discovery method OGAHC which is based on identi-
fying bottleneck areas in the state transition graph by means of an agglomerative hierarchical
clustering. Our empirical studies suggest that the approach can reliably identify useful skills
in a very early stage of learning and allows the agent thus to explore the environment more
efficiently than with other skill discovery methods or without utilizing skills at all. Future
work is to extend the approach to MDPs with large and continuous state spaces and to
evaluate it on real-world problems.

References

Supplementary material. URL http://www.informatik.uni-bremen.de/~ jhm/files/
ewrl_2012_ogahc_supplement.pdf.

A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete Event Dynamic Systems, 13(4):341-379, October 2003.

B. L. Digney. Emergent hierarchical control structures: Learning Reactive/Hierarchical
relationships in reinforcement environments. In From Animals to Animats: The 4th Con-
ference on Simulation of Adaptive Behavior., page 363-372, Cambridge, MA, 1996. MIT
Press.

B. L. Digney. Learning hierarchical control structures for multiple tasks and changing envi-
ronments. In Proceedings of the 5th Conference on the Simulation of Adaptive Behavior,
pages 321-330. MIT Press, 1998.

N. K. Jong, T. Hester, and P. Stone. The utility of temporal abstraction in reinforcement
learning. In Proceedings of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 299-306, 2008.

F. Kirchner. Automatic decomposition of reinforcement learning tasks. In Proceedings of
the AAAI 95 Fall Symposium Series on Active Learning, pages 5659, Cambridge, MA,
USA, 1995. AAAI Press.

G. Konidaris and A. G. Barto. Skill discovery in continuous reinforcement learning domains
using skill chaining. In Advances in Neural Information Processing Systems, volume 22,
pages 1015-1023, 2009.

S. Mannor, I. Menache, A. Hoze, and U. Klein. Dynamic abstraction in reinforcement
learning via clustering. In Proceedings of the 21st International Conference on Machine
Learning, pages 560-567, 2004.

A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In In Proceedings of the 18th International Conference on Machine
Learning, pages 361-368, 2001.

I. Menache, S. Mannor, and N. Shimkin. Q-Cut - dynamic discovery of sub-goals in rein-
forcement learning. In Proceedings of the 13th FEuropean Conference on Machine Learning,
pages 295-306, 2002.

87

http://www.informatik.uni-bremen.de/~jhm/files/ewrl_2012_ogahc_supplement.pdf
http://www.informatik.uni-bremen.de/~jhm/files/ewrl_2012_ogahc_supplement.pdf

METZEN

D. Precup. Temporal Abstraction in Reinforcement Learning. PhD thesis, University of
Massachusetts, Amherst, MA, 2000.

O. Simsek and A. G. Barto. Using relative novelty to identify useful temporal abstractions
in reinforcement learning. In Proceedings of the 21st International Conference on Machine
Learning, pages 751-758, 2004.

O. Simsek and A. G. Barto. Skill characterization based on betweenness. In Advances in
Neural Information Processing Systems (NIPS), volume 22, pages 1497-1504, 2009.

O. Simgek, A. P. Wolfe, and A. G. Barto. Identifying useful subgoals in reinforcement
learning by local graph partitioning. In Proceedings of the 22nd International Conference
on Machine Learning, pages 816-823. ACM, 2005.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181-211, 1999.

88

