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Abstract

Experimental results suggest that transfer learning (TL), compared to learning from scratch,
can decrease exploration by reinforcement learning (RL) algorithms. Most existing TL al-
gorithms for RL are heuristic and may result in worse performance than learning from
scratch (i.e., negative transfer). We introduce a theoretically grounded and flexible ap-
proach that transfers action-values via an intertask mapping and, based on those, explores
the target task systematically. We characterize positive transfer as (1) decreasing sample
complexity in the target task compared to the sample complexity of the base RL algorithm
(without transferred action-values) and (2) guaranteeing that the algorithm converges to
a near-optimal policy (i.e., negligible optimality loss). The sample complexity of our ap-
proach is no worse than the base algorithm’s, and our analysis reveals that positive transfer
can occur even with highly inaccurate and partial intertask mappings. Finally, we empiri-
cally test directed exploration with transfer in a multijoint reaching task, which highlights
the value of our analysis and the robustness of our approach under imperfect conditions.

Keywords: Reinforcement Learning, Transfer Learning, Directed Exploration, Sample
Complexity

1. Introduction

Transfer learning (TL) applied to reinforcement learning (RL) exploits knowledge gained
while interacting with source tasks to learn faster in a target task [Lazaric, 2008; Taylor and
Stone, 2009]. When TL is successful it is referred to as positive transfer, and when TL fails it
is referred to as negative transfer. Previous research applying TL to RL has demonstrated its
effectiveness in decreasing learning time [Selfridge et al., 1985; Taylor et al., 2007; Fernández
et al., 2010], but there is a lack of theoretical understanding about when TL applied to RL
will succeed or fail [Taylor and Stone, 2011]. Most TL+RL algorithms are heuristic in
nature. This is in contrast with provably efficient single task RL algorithms such as R-MAX
[Brafman and Tennenholtz, 2002; Kakade, 2003] and Delayed Q-learning [Strehl et al., 2006].
Lazaric and Restelli [2011] – a notable exception – has analyzed the sample complexity of
TL from a batch RL perspective, but their work does not address exploration in the target
task.

To learn efficiently, RL algorithms must balance between exploitation (executing a se-
quence of actions the algorithm has already learned will provide high long-term rewards)
and exploration (trying uncertain actions to gain more information about the environment).
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Exploration strategies can be broadly categorized as either undirected exploration or di-
rected exploration [Thrun, 1992]. Undirected exploration is characterized by local, random
selection of actions, while directed exploration, by contrast, uses global information to sys-
tematically determine which action to try. ǫ-greedy represents the most popular undirected
exploration strategy, while “optimism in the face of uncertainty” (OFU) represents the most
popular directed exploration strategy. OFU initially assumes that all actions result in higher
value than may be true in the environment and greedily selects the action believed to give
the highest reward (breaking ties arbitrarily). When the agent tries an action it samples its
value distribution. If the sampled values are lower than expected, the algorithm lowers the
action’s estimated value and switches to another (possibly overestimated) action. Otherwise
the algorithm sticks with its current action. In this way, the algorithm eventually settles
on a nearly optimal action at every state (which results in a near-optimal policy [Kakade,
2003, Theorem 3.1.1]).

Previous research on TL+RL has almost exclusively studied undirected exploration [Tay-
lor et al., 2007; Fernández et al., 2010] or batch transfer [Lazaric, 2008]. Although the sample
complexity of exploration has been examined in the literature, to our knowledge, no previ-
ous work has formally analyzed sample complexity of exploration in the considerably more
complex case of action-value transfer. Analyzing TL is more complicated because there are
multiple learning algorithms and tasks that need to be considered. Our main innovation is
to show how TL can be analyzed from a sample complexity perspective. We analyze action-
value transfer via intertask mappings [Taylor and Stone, 2011] paired with the provably
efficient Delayed Q-learning algorithm [Strehl et al., 2006] that uses the OFU exploration
strategy to learn faster in the target task while avoiding optimality loss (i.e., positive trans-
fer). Our approach has several advantages compared to previous TL approaches:

1. We can theoretically analyze our TL approach because we precisely define positive
transfer in terms of sample complexity and optimality loss. The sample complexity of
our approach can be compared to the sample complexity of single task RL algorithms
(with respect to the target task).

2. Our analysis reveals that positive transfer can occur even when the distance between
the optimal target task action-values and the transferred action-values is large.

3. Intertask mappings enable transfer between two tasks with different state-action spaces
or when only a partial intertask mapping can be derived.

The rest of this paper is organized as follows: In section 2, we provide background on RL
and TL. In section 3, we introduce α-weak admissible heuristics, which we use in section 4 to
analyze the sample complexity and optimality loss of TL+RL. In section 5, we demonstrate
the advantage of applying directed exploration to TL. In section 6 we discuss advantages
and limitations of our approach and conclude in section 7.

2. Background

A Markov decision process (MDP) M is defined by a 5-tuple 〈S,A, T,R, γ〉 where S is a set
of states, A is a set of actions, T is a set of transition probabilities Pr [s′|s, a] determining
the probability of transitioning to a state s′ ∈ S immediately after selecting action a ∈ A
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while in state s ∈ S, R : S × A → R assigns scalar rewards to state-action pairs, and γ is
a discount factor that reduces the value of rewards distant in the future [Sutton and Barto,
1998]. We assume the transition probabilities T and the reward function R are unknown.
The objective of most RL algorithms is to find a policy π : S → A that maximizes

QπM (st, at) = E

[
R(st, at) +

∞∑

τ=t+1

γτ−tR(sτ , π(sτ ))

]
, (1)

the action-value for (st, at), which is the discounted, expected sum of future rewards from
time t forward [Sutton and Barto, 1998]. The value function V π

M (s) = maxa∈AQπM (s, a).
We denote the optimal value and action-value functions by V ∗

M and Q∗
M (respectively) and

assume that the reward function is bounded to the interval [0, 1]. Therefore, 0 ≤ V ∗
M (s) ≤

1
1−γ for all states s ∈ S.

Sample complexity enables theoretical comparison between RL algorithms by measuring
the number of samples required for an RL algorithm to achieve a learning objective. Given
any MDP M , ǫ > 0, and δ ∈ (0, 1], the sample complexity of exploration of an RL algorithm
A is the number of timesteps t, such that, with probability at least 1− δ,

V At

M (st) < V ∗
M (st)− ǫ (2)

where st is the state and V At

M denotes the value of A’s policy at timestep t [Kakade, 2003].
Sample complexity that is polynomial in 1

ǫ ,
1
δ ,

1
1−γ , N = |S|, and K = |A| is considered

efficient. Algorithms that are provably efficient with respect to sample complexity of explo-
ration are called PAC-MDP [Strehl et al., 2009].

A key component of algorithms with polynomial sample complexity is directed explo-
ration. Whitehead [1991] demonstrated conditions where undirected exploration leads to
exponential sample complexity, with respect to the number of states. Provably efficient
algorithms such as R-MAX [Brafman and Tennenholtz, 2002; Kakade, 2003] and Delayed
Q-learning [Strehl et al., 2006] use the OFU directed exploration strategy. Although the
analysis in this paper can be extended to other provably efficient single task RL algorithms,
we focus on Delayed Q-learning (DQL) for clarity. DQL has two parameters m and ǫ1,
where m controls the number of samples used during each update of a state-action pair and
ǫ1 controls how close to optimal the learned policy should be.

Previous research on TL+RL has primarily considered undirected exploration strategies
[Taylor et al., 2007; Fernández et al., 2010] or batch RL, which does not consider the prob-
lem of exploration [Lazaric, 2008; Lazaric and Restelli, 2011]. If the transferred knowledge
is not similar enough to any near-optimal policy, undirected exploration can lead to expo-
nential sample complexity due to the same reasons it fails in single task RL. In this paper,
we consider the transfer of action-values, which has been demonstrated to be effective in
experiments [Selfridge et al., 1985; Taylor et al., 2007] with directed exploration. Before
explaining our TL setup, we will find it useful to define a new structure called a weak
admissible heuristic.

3. Action-value Initialization with Weak Admissible Heuristics

A good guess of the initial action-values can be useful in speeding up RL. A function U :
S × A → R is an admissible heuristic if Q∗(s, a) ≤ U(s, a) ≤ 1

1−γ for all (s, a) ∈ S × A.
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Strehl et al. [2009] demonstrated that if the action-values are smaller than 1
1−γ , then this

initialization can decrease the sample complexity of exploration while maintaining PAC-
MDP guarantees. Admissible heuristics provide valuable prior knowledge to PAC-MDP RL
algorithms, but the specified prior knowledge does not need to be exact. This property will
be useful in a TL setting for two reasons: (1) knowledge is estimated from a source task and
(2) there is rarely an exact relationship between source and target tasks.

The admissible heuristic used by Strehl et al. [2009] is more restrictive than necessary. For
example, Figure 3.1 shows an example where some of the initial action-values’ estimates are
below their corresponding optimal values, yet, following a simple OFU exploration strategy
will converge to the near-optimal action b2. Consider what would happen if the OFU
exploration strategy is run on the example in Figure 3.1. First, the algorithm’s initial policy
would select action b6 because the heuristic value (dotted box) is the highest. After selecting
b6 several times an update would occur decreasing the value associated with b6 because its
true value is much lower than the estimated value. Now action b2 would be selected because
it has the second highest estimated value and this estimate is very unlikely to drop below
the value of any other action. So the algorithm would converge on the near-optimal action
b2. For our analysis of TL+RL, we would like to derive an extremely weak structure that
will help characterize when TL will succeed and when it will fail. To help with this, we
define the concept of a weak admissible heuristic.

Action-Values
Weak Admissible
Heuristic Values

Optimal
Action-Values b2

b1

b3

b4

b5b6

b1 b2 b3 b4 b5 b6

s'
Optimal
Value

α-Optimal
Cutoff

Figure 3.1: Weak admissible heuristic applied to a one-state task with six actions. The weak
admissible heuristic only needs to optimistically initialize the action-value for a
single nearly optimal action.

Definition 1 A function W : S × A → R is an α-weak admissible heuristic (or just
weak admissible heuristic) for MDP M = 〈S,A, T,R, γ〉, if for each s ∈ S, there exists ã ∈ A
such that

V ∗(s)− α ≤ Q∗(s, ã) ≤W (s, ã) ≤ 1

1− γ (3)

where α is the smallest non-negative value satisfying this inequality.

In other words, W is a weak admissible heuristic if at every state s ∈ S at least one α-
optimal action is mapped to an optimistic value, even though other action-values (including
the optimal action) may be severely pessimistic. This is consistent with the situation in
Figure 3.1, where an OFU exploration strategy converges to the near-optimal action b2,
with high probability, and not the optimal action b1. In this case, the weak admissible
heuristic implicitly eliminated several actions (including the optimal action b1). This helped
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reduce sample complexity because only one suboptimal action (b6) was ever explored, and
the algorithm still converges to a near-optimal policy.

Although weak admissible heuristics are considerably less constrained than the notion of
admissible heuristic employed by Strehl et al. [2009], initializing DQL with a weak admissible
heuristic (with small enough α) is sufficient to maintain PAC-MDP guarantees. For our
analysis, the critical aspect of weak admissible heuristics is that they implicitly eliminate
some state-action pairs from consideration (Lemma 1 below). This improves the efficiency
of directed exploration because there are fewer state-action pairs to explore.

Lemma 1 (State-action Pair Elimination) Let η ≥ 0, W be an α-weak admissible heuris-
tic for an MDP M , and A is a value-based RL algorithm with initial action-value esti-
mates Q̂0 = W such that for all timesteps t ≥ 1, (1) A follows a greedy policy (At(s) =
argmaxa∈A Q̂t(s, a)), (2) Updates to Q̂t(s, a) can only occur if (s, a) has been visited, and
(3) If W (s, a) ≥ Q∗(s, a), then Q̂t(s, a) ≥ Q∗(s, a) − η, then for all (s, a) ∈ S × A where
W (s, a) < V ∗(s) − (α + η), A will never explore (s, a) (At(s) 6= a at any timestep t ≥ 1,
where At denotes the policy of A at timestep t).

Proof Since A follows a greedy policy with respect to Q̂t, a state-action pair (s, a) will
only be selected if Q̂t(s, a) = maxa′∈A Q̂t(s, a′). The proof is by induction on the timestep
t. Suppose, without loss of generality, that W (s, a) < V ∗(s)− (α+ η).

Base Case (t = 0): By the definition of W there exists ã such that W (s, ã) ≥ Q∗(s, ã) ≥
V ∗(s)− α > W (s, a). Thus a 6= argmaxa′∈AW (s, a′) = argmaxa′∈A Q̂0(s, a

′).
Induction Step: By assumption 3 the action-value estimate for Q̂t(s, ã) ≥ Q∗(s, ã)− η ≥

(V ∗(s)− (α+ η)) > W (s, a). Since (s, a) has not been tried yet no update to its action-
value could have occurred (assumption 2), and will not be executed on timestep t+1 because
Q̂t(s, a) =W (s, a) < Q̂t(s, ã).

Therefore by induction, (s, a) will never be executed.

If W is a weak admissible heuristic, then Lemma 1 says that low valued state-action pairs
will never be explored by the algorithm’s policy. Condition 3 guarantees that the algorithm
will never underestimate action-values (by more than η) that are initially optimistic. This
combined with the weak admissible heuristic assumption allows us to guarantee that an α-
optimal action will eventually be the action selected by the algorithm’s greedy policy. DQL
satisfies the algorithmic requirements of Lemma 1, with high probability.

Theorem 2 Let α ≥ 0, ǫ > 0, δ ∈ (0, 1], and W be an α-weak admissible heuristic with

respect to M = 〈S,A, T,R, γ〉. There exists ǫ1 = O (ǫ(1− γ)) and m = O
(
ln(NK/δ)
ǫ21(1−γ)2

)
, such

that if A is an instance of the DQL algorithm initialized with parameters ǫ1 and m, then
V At(st) ≥ V ∗(st)− (ǫ+ α

1−γ ) on all but

O

(
NK −X
ǫ4(1− γ)8 ln

1

δ
ln

1

ǫ(1− γ) ln
NK

δǫ(1− γ)

)
(4)

timesteps t, with probability at least 1−δ, where X =
∣∣∣
{
(s, a) ∈ S ×A |W (s, a) < V ∗(s)− α− α

1−γ

}∣∣∣.
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The proof of this theorem is similar to [Strehl et al., 2006, Theorem 1], which provides
the following sample complexity bound for DQL without transferred knowledge:

O

(
NK

ǫ4(1− γ)8 ln
1

δ
ln

1

ǫ(1− γ) ln
NK

δǫ(1− γ)

)

Our proof relies on Lemma 1 to demonstrate its dependence on NK −X ≤ NK. See the
Appendix for a proof of Theorem 2.

If X > 0 and α is small, then the sample complexity bound depends on Õ(NK − X),
which is smaller than the lower bound for any single task RL algorithm Ω(NK) with respect
to the number of states and actions Strehl et al. [2009]. If X = 0 and α = 0, then we restore
the upper bound from [Strehl et al., 2006, Theorem 1]. Therefore, a weak admissible heuristic
can help to decrease the sample complexity of exploration.

4. Transferring a Weak Admissible Heuristic

We use the concept of a weak admissible heuristic to analyze action-value transfer with the
objective of learning to act near-optimally in the target task with sample complexity of
exploration (Eq. 2) that is smaller than DQL without transferred knowledge. We denote
the source task/MDP by Msrc and the target task/MDP by Mtrg. Consider the situation
in Figure 4.1. First the agent learns action-values for the source task. Next, because the
source task and the target task have a different number of actions, a function h called an
intertask mapping (defined below) is used to relate action-values from the source task to the
target task. Finally, notice that in Figure 4.1 the transferred action-values satisfy a weak
admissible heuristic. In this section, we explore assumptions about the intertask mapping
needed to ensure that the transferred action-values satisfy a weak admissible heuristic and
how transfer influences sample complexity of exploration in the target task.

Source Task
Action-Values Target Task Action-Values

Transferred 
Estimates
Optimal
Action-Values

a2

a1 a3

a1 a2 a3

b2

b1

b3

b4

b5b6

b1 b2 b3 b4 b5 b6

VMAX

0 h(s',.)

s's

Target TaskSource Task

Figure 4.1: Transfer from a one-state source task with three actions to a one-state target task
with six actions. Despite the transferred action-values severely underestimating
the optimal action b1 and severely overestimating the lowest valued action b6,
an OFU exploration strategy can still converge to a near-optimal policy (i.e.,
b2).

There are two factors that affect positive transfer: (1) sample complexity and (2) opti-
mality loss. Positive transfer occurs when the sample complexity of exploration in the target
task is lower than the sample complexity of the base RL algorithm and no optimality loss
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has occurred. Optimality loss occurs when transferred knowledge causes an RL algorithm
to converge to a suboptimal policy along its current trajectory.

Typically, access to samples of the source task is less “expensive” than access to samples
from the target task. For the purposes of this paper, we assume unrestricted access to a
generative model for Msrc. Using, for example, the PhasedValueIteration algorithm [Kakade,
2003] it is possible to learn arbitrarily accurate source task action-values with arbitrarily high
confidence with polynomially many samples. Therefore, we will assume that the estimated
source task action-values Q̂src are ǫsrc-accurate.

If Msrc and Mtrg have different state-action spaces, then an intertask mapping h : D →
Ssrc × Asrc is needed, where D ⊆ Strg × Atrg, to relate a subset of state-action pairs from
the target task to state-action pairs in the source task. We assume that if (s, a) ∈ D, either
there exists (s, ã) ∈ D such that

V ∗
trg(s)− α ≤ Q∗

trg(s, ã) ≤ Q∗
src(h(s, ã)) , (5)

which is analogous to (3) with W (s, a) = Q∗
src(h(s, a)) or there exists (s, ã) /∈ D such that

V ∗
trg(s)− α ≤ Q∗

trg(s, ã) (6)

in which case we can assign the value W (s, ã) = 1
1−γ . To transfer action-values we use

W (s, a) =

{
min

(
Q̂src(h(s, a)) + ǫsrc,

1
1−γ

)
if (s, a) ∈ D

1
1−γ otherwise

(7)

to set initial action-value estimates given an intertask mapping h, and ǫsrc-accurate source
task action-value estimates Q̂src. At every state at least one nearly optimal action is mapped
to an action-value which overestimates the true action-value or not mapped at all. If a state-
action pair is not in the domain D, then we assign the maximum possible value to ensure
it is optimistically initialized. Under these assumptions the transferred action-values are an
α-weak admissible heuristic.

Theorem 3 Let ǫ > 0, ǫsrc > 0, δ ∈ (0, 1], h : D → Ssrc×Asrc be an intertask mapping from
a subset of state-action pairs in Mtrg to Msrc satisfying (5) and (6), and Q̂src are ǫsrc-accurate

action-value estimates for Msrc. There exists ǫ1 = O(ǫ(1− γ)) and m = O
(
ln(NK/δ)
ǫ21(1−γ)2

)
such

that if an instance A of the DQL algorithm with ǫ1, m, and action-value estimates initialized
by Eq. (7) is executed on Mtrg, then V At

trg (s) < V ∗
trg(s)− (ǫ+ α

1−γ ) occurs on at most

O

(
NK − Y
ǫ4(1− γ)8 ln

1

δ
ln

1

ǫ(1− γ) ln
NK

δǫ(1− γ)

)

timesteps t, with probability at least 1− δ, where N = |S|, K = |A|, and

Y =

∣∣∣∣
{
(s, a) ∈ D | Q̂src(h(s, a)) < V ∗

trg(s)− (α+
α

1− γ + ǫsrc)

}∣∣∣∣

is the number of state-action pairs that will never be explored.
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See Appendix for a proof of Theorem 3. The main importance of Theorem 3 is that we
have reduced the analysis of action-value transfer to the analysis of learning with an α-weak
admissible heuristic. Here, α controls optimality loss, and we can think of α (or α/(1− γ))
as the error introduced by the intertask mapping h. If α ≈ 0 compared to ǫ, then there is
little or no optimality loss compared to learning from scratch. In many cases, α = 0 can
be achieved, for example, if W turns out to be an admissible heuristic [Strehl et al., 2009].
However, if α is large, then the result of TL is likely to be poor in the worst case. Similar
to X in Theorem 2, when Y is large the sample complexity of exploration in the target task
decreases significantly compared to learning from scratch with DQL. Notice, however, that
the sample complexity is never worse than learning from scratch. The main consideration
should be identifying an intertask mapping that does not introduce much optimality loss.
Thus, TL is characterized by optimality loss and sample complexity, and Theorem 3 helps
to clarify this relationship.

5. Experiments and Results

Our experimental tasks were inverse kinematics problems (Figure 5.1a). In the source task
Msrc, the agent controlled a two-joint mechanical arm guiding its end-effector to one of four
reach target locations. In the target task Mtrg, the agent controlled a three-joint mechanical
arm with noisy actuators by moving its end-effector to one of four reach target locations.
In both tasks the state was represented by the target index and the joint locations. The
actions encode whether to rotate each joint and in which direction. Actions only perturbed
joints by a small amount. So a sequence of actions was needed to complete each task. In the
target task there was a small probability (0.2) that the action applied to a joint would either
leave the joint unchanged or overshoot the desired location. Because of the different number
of joints, there is no one-to-one mapping between the state-action space of the source task
and the state-action space of the target task. We defined an intertask mapping that relates
the reach target index, and joints J1 to I1 and J3 to I2, leaving out joint J2.

We compared DQL, which uses directed exploration, with and without transferred knowl-
edge, and Q-learning (QL) using an ε-greedy exploration strategy with and without trans-
ferred knowledge. Figure 5.1b demonstrates that the transferred action-values enable DQL
to quickly converge to a near-optimal solution, while DQL (with the same parameters)
learning from scratch takes much longer to learn a good policy. Both QL conditions perform
worse than the DQL conditions because local exploration is not efficient in the target task’s
large state-action space. The negligible difference between QL and Transfer QL is due to
the fact that the transferred action-values are a very poor approximation to the optimal
action-values.

DQL and Transfer DQL spend most of their timesteps in a small number of states (less
than 50 out of 1,372). Figure 5.1c shows the average proportion of highly visited states where
the transferred action-values satisfy the admissible heuristic (AH) and α-weak admissible
heuristic criteria with α = 0.1. Most of the transferred action-values at these highly visited
states fall under α-WAH and AH conditions. Note that AH ⊆ α-WAH. A small proportion
do not satisfy α-WAH (i.e., Other). For the states satisfying α-WAH, we found that the
policy learned by Transfer DQL selected good action choices (i.e., Q∗

trg(s, π(s)) ≥ V ∗
trg(s)−α)

almost 100% of the time. Interestingly, Transfer DQL performs well despite the fact that
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Figure 5.1: (a) Transfer between inverse kinematic tasks where the source task controls
a two-joint arm, and the target task controls a three-joint arm. (b) Average
reward over 3,000 episodes in the target task for Delayed Q-learning without
transfer (DQL (Baseline)), Delayed Q-learning with transferred action-values
(Transfer DQL), Q-learning with transferred action-values (Transfer QL), and Q-
learning without transfer (QL). Transfer DQL learns much more quickly than the
compared algorithms. (c) Percentage of transferred action-values (out of highly
visited states) satisfying the admissible heuristic (AH) and α-weak admissible
heuristic (α-WAH) criteria. Note: AH ⊆ α-WAH.

some of the highly visited states do not satisfy the α-WAH condition. This demonstrates the
robustness of our TL approach in practice and is an important observation since we would
not expect in practice to be able to rigerously guarantee (5) and (6) for all states. These
result suggest that the weak admissible heuristic concept is important for understanding
when transfer learning succeeds. On the other hand, in practice, guaranteeing that the
transferred action-values satisfy the weak admissible heuristic criterion at every state is not
necessary to achieve positive transfer.

We considered the impact of TL with partial intertask mappings by modifying the in-
tertask mapping from the previous experiment. State-action pairs from its domain were
randomly removed with probability λ. Figure 5.2 shows the average reward curve for Trans-
fer DQL as λ is varied from 0.0 to 1.0. The training time has an approximately linear
relationship with λ, increasing as λ increases.

6. Discussion

The main advantages of our approach are that it can be theoretically analyzed and that it
works with several existing provably efficient algorithms, such as R-MAX, Modified R-MAX,
and DQL. This approach may also work with future RL algorithms. We have shown that
the transferred action-values do not need to be accurate (with respect to L1-norm), and our
analysis holds for MDPs with stochastic transitions and rewards.

The main limitation of our approach is that if the action-values do not satisfy a weak ad-
missible heuristic with small α, then the final learned policy may be poor and the algorithm
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Figure 5.2: (a) Average reward for Transfer DQL as state-action pairs are removed from
the intertask mapping’s domain (with probability λ). (b) Increase in training
time is approximately proportional to the probability that state-action pairs are
removed.

will never recover. Another potential objection to our method is that there is no general
way to obtain a good intertask mapping between tasks without solving both tasks. However,
there are interesting special cases, for example, where an identity intertask mapping is used
because the tasks only differ by their dynamics or reward structure.

7. Conclusion

We theoretically analyzed the combination of (1) action-value transfer via an intertask map-
ping with (2) directed exploration and found that the approach has several provable benefits.
Only weak assumptions on the intertask mapping are necessary for positive transfer. Pos-
itive transfer can occur even when the distance between the transferred action-values and
the optimal target task action-values is large. Although we have analyzed our TL approach
using DQL, our analysis can be extended to other efficient algorithms such as R-MAX [Braf-
man and Tennenholtz, 2002] or Modified R-MAX [Szita and Szepesvári, 2010]. Finally, we
demonstrated these advantages empirically on an inverse kinematics task. For states where
the intertask mapping induced a weak admissible heuristic, DQL almost always learned to
select a good action. Furthermore, our TL approach performed well even though a few
highly visited states did not satisfy the weak admissible heuristic criteria, suggesting the
approach is robust in practice. Although previous research has mostly paired undirected
exploration with TL, we believe that directed exploration is an important mechanism for
developing provably efficient TL+RL algorithms.
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Appendix

In this appendix we provide proofs for Theorems 2 and 3. Throughout this appendix we assume that
M is an MDP defined by 〈S,A, T,R, γ〉 and W is an α-weak admissible heuristic for some α > 0,
unless otherwise noted. To prove Theorem 2 we need to introduce several concepts and lemmas.

7.1. PAC-MDP Framework

Analysis of PAC-MDP algorithms typically depends on the notion of an induced MDP [Kakade,
2003; Strehl et al., 2006, 2009; Szita and Szepesvári, 2010]. We introduce a modified version of
the induced MDP that depends on how action-values are initialized. We assume that the RL
algorithm maintains action-values Q̂t initialized by W = Q̂0. State-action pairs with optimistically
initialized action-values (i.e., W (s, a) ≥ Q∗

M (s, a)) are treated separately from state-action pairs
with pessimistically initialized action-values (i.e., W (s, a) < Q∗

M (s, a)). This allows us to essentially
ignore pessimistically initialized state-action pairs and focus on optimistically initialized state-action
pairs.

Definition 2 Let M = 〈S,A, T,R, γ〉 be an MDP, κ ⊆ S × A, and W be an α-weak admissible
heuristic with respect to M . The induced MDP with respect to M and κ is denoted by Mκ =
〈S ∪ {zs,a | (s, a) /∈ κ}, A, Tκ, Rκ, γ〉 where

Tκ(s
′|s, a) =





T (s′|s, a) if (s, a) ∈ κ and W (s, a) ≥ Q∗
M (s, a)

1 if ((s, a) /∈ κ and s′ = zs,a) or (s ∈ {zs,a | (s, a) /∈ κ} and s′ = s)
0 otherwise

and

Rκ(s, a) =

{
R(s, a) if (s, a) ∈ κ and W (s, a) ≥ Q∗

M (s, a)

(1− γ)Q̂(s, a) otherwise

where Tκ defines the transitions probabilities and Rκ defines the reward function of Mκ.

The purpose of this more complex version of the induced MDP is to obtain the following action-
value function. Suppose that a value-based RL algorithm is initialized with action-values W = Q̂0,
πt is the policy followed by the RL algorithm at timestep t and κt ⊆ S ×A, then the induced MDP
Mκt

has action-values defined by

Qπt

Mκt

(s, a) =

{
R(s, a) + γ

∑
s′∈S V

π
Mκt

(s′) if (s, a) ∈ κt and W (s, a) ≥ Q∗
M (s, a)

Q̂t(s, a) if (s, a) /∈ κt or W (s, a) < Q∗
M (s, a)

(8)

for all (s, a) ∈ S×A. The induced MDP represents an idealized version of what the RL algorithm has
learned. The set κ represents the number of state-action pairs that have been experienced enough
to be considered “well modeled”. In the standard analysis of Delayed Q-learning, the induced MDP
Mκ becomes equivalent to M , if κ ≡ S×A. In our analysis, we show instead that when it is difficult

to escape from the set κ, then an ǫ-optimal policy in Mκ is an
(
ǫ+ α

1−γ

)
-optimal policy in M .

Strehl et al. [2009] introduced a meta-PAC-MDP theorem that has been successfully used to
analyze a number of RL algorithms. The next theorem is a minor generalization of [Strehl et al.,
2009, Theorem 10].

Theorem 4 [Strehl et al., 2009, Theorem 10] Let ǫ > 0, δ ∈ (0, 1], and A(ǫ, δ) be any value-based
greedy learning algorithm such that, for every timestep t, A(ǫ, δ) maintains action-value estimates
Q̂t ≤ 1

1−γ and there exists a set κt of state-action pairs that depends on the agent’s history up to

timestep t. We denote maxa∈A Q̂t(s, a) by V̂t(s) and assume that the set κ does not change unless
an action-value is updated (i.e., κt = κt+1 unless, Q̂t 6= Q̂t+1) or an escape event occurs. Let Mκt
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be the known state-action MDP with respect to MDP M and W and πt be the greedy policy followed
by At. Suppose that with probability at least 1 − δ the following conditions hold for all state-action
pairs s ∈ S and timesteps t ≥ 1:

Condition 1: V̂t(s) ≥ V ∗
M (s)− β (optimism),

Condition 2: V̂t(s)− V At

Mκt

(s) ≤ ǫ (accuracy), and

Condition 3: the total number of updates of action-value estimates plus the number of times the
escape event from κt can occur is bounded by ζ(ǫ, δ) (learning complexity).

If A(ǫ, δ) is executed on M it will follow a (3ǫ+ β)-optimal policy on all but

O

(
ζ(ǫ, δ)

ǫ2(1− γ)2 ln
1

δ
ln

1

ǫ(1− γ)

)

timesteps t with probability at least 1− 2δ.

The key difference between this version of the theorem and the one reported in Strehl et al. [2009]
is that we have separated the error variable β in condition 1 from the error variable ǫ in condition 2,
which allows for a tighter optimality bound in our proof of Theorem 2. We omit the complete proof
of Theorem 4 because our modification from [Strehl et al., 2009, Theorem 10] requires only minor
changes to the proof. However, due to our modified notion of induced MDP, we discuss why the
core inequalities hold without modification. The main objective is to argue that the policy followed
by the algorithm is either a near-optimal policy in the MDP M or the algorithm’s policy is likely
to experience a state-action pair that is outside of the set of “well-modeled” experiences. Since the
latter can only happen a finite number of times before there are no more “poorly modeled” state-
action pairs (because our knowledge of the state-action pair improves with each experience), then
eventually the algorithm must follow a near-optimal policy in M . In the proof of Strehl et al. [2009,
Theorem 10], the argument starts by comparing the algorithm’s value in M over a finite sequence of
timesteps H to the same policy πt in the induced MDP Mκt

over H timesteps minus the probability
of Z, an escape event will occur during H timesteps, times 2

1−γ . In our definition of induced MDP
the equation

V At

M (s,H) ≥ V πt

Mκt

(s,H)− Pr[Z]

(
2

1− γ

)

still holds because πt always has a smaller value in the induced MDP while in κt and outside of κt

the difference must be bounded by
(

2
1−γ

)
since 1

1−γ is the maximum possible value in both M and

Mκt
. Furthermore, the policy πt only escapes from κt with probability Pr[Z]. This enables us to

reproduce the core inequalities used by Strehl et al. [2009] to prove their Theorem 10:

V At

M (s,H) ≥ V πt

Mκt

(s,H)− Pr[Z]
(

2
1−γ

)

≥ V πt

Mκt

(s)− ǫ− Pr[Z]
(

2
1−γ

)

≥ V̂t(s)− 2ǫ− Pr[Z]
(

2
1−γ

)

≥ V ∗
M (s)− β − 2ǫ− Pr[Z]

(
2

1−γ

)

where the second step is obtained by choosing H (see Kearns and Singh [2002, Lemma 2]) large
enough so that V πt

Mκt

(s)−V πt

Mκt

(s,H) ≤ ǫ. The third step is due to Condition 2 (V̂t(s)−V At

Mκt

(s) ≤ ǫ),
and the final step is due to Condition 1 (V̂t(s) ≥ V ∗

M (s)− β).
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7.2. Delayed Q-learning Background & Lemmas

Similar to Strehl et al. [2009], our analysis of Delayed Q-learning will apply Theorem 4. The analysis
of Delayed Q-learning mostly consists of finding appropriate values for arguments m > 0 and ǫ1 > 0
that depend on ǫ > 0 and δ ∈ (0, 1], where increasing the value of m provides more statistical
accuracy by averaging over more samples and decreasing ǫ1 causes the algorithm to learn to act
closer to optimal. Our analysis is similar to Strehl et al. [2006, 2009], but there are significant
differences due to initializing the action-value estimates Q̂ with an α-weak admissible heuristic.

We have assumed that the immediate rewards are bound to the interval [0, 1]. In Strehl et al.
[2006], the Delayed Q-learning algorithm worked by initializing its action-values to 1

1−γ (the max-

imum possible action-value) and decreasing these estimates in a series of updates. Here the main
difference is that Delayed Q-learning is initialized by Q̂0 =W . Initializing the action-value estimates
with a weak admissible heuristic introduces several technical issues that are not addressed by Strehl
et al. [2006] or Strehl et al. [2009]. Delayed Q-learning is called “delayed” because it updates action-
value estimates in a series of batches of m samples from a state-action pair (s, a) before attempting
to update (s, a)’s action-value estimate. It may collect many batches of m samples from each state-
action pair. To know when to stop updating a state-action pair, Delayed Q-learning maintains a
Boolean value for each state-action pair. These Boolean values are called the LEARN flags.

Definition 3 A batch of m samples

AU(s, a) =
1

m

m∑

i=1

(
Rki

(s, a) + γ max
a′∈A

s′

Q̂ki
(s′, a′)

)
(9)

occurring at timesteps k1 < k2 < · · · < km for a state-action pair (s, a) consists of a sequence of m
visits to (s, a) where the first visit occurs at a timestep k1 corresponding to either the first timestep
that (s, a) is visited by the algorithm or during the most recent prior visit to (s, a) at timestep k′ < k1,
LEARNk′(s, a) = true and lk′(s, a) = m was true. A batch of samples is said to be completed on
the first timestep t > k1 such that LEARNt(s, a) = true and lt(s, a) = m.

Delayed Q-learning has three notions of update:

1. Attempted Updates : An attempted update occurs when a batch of m samples has just been
completed.

2. Update (or Successful Updates) : A successful update to a state-action pair (s, a) occurs when
a completed batch of m samples at timestep t causes a change to the action-value estimates
so that Q̂t(s, a) 6= Q̂t+1(s, a).

3. Unsuccessful Updates : An unsuccessful update occurs when a batch of m samples completes
but no change occurs to the action-values.

An attempted update to a state-action pair (s, a) at timestep t is successful if

Q̂t(s, a)−AUt(s, a) ≥ 2ǫ1 (10)

the completed batch of samples is significantly lower (< 2ǫ1) than the current action-value estimate,
and a successful update assigns

Q̂t+1(s, a) = AUt(s, a) + ǫ1 (11)

the completed batch of samples plus a small constant to the new action-value estimate. These rules
guarantee that whenever a successful update occurs, the action-value estimates decrease by at least
ǫ1.
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Lemma 5 [Strehl et al., 2009, Lemma 19] No more than u = NK
(
1 + NK

ǫ1(1−γ)

)
attempted updates

can occurs during an execution of Delayed Q-learning on M .

Lemma 5 bounds the total number of attempted updates that can possibly occur during the
execution of Delayed Q-learning. This lemma is important because it allows us to bound the total
probability that a failure event will occur.

The set

κt =

{
(s, a) ∈ S ×A | Q̂t(s, a)−

(
R(s, a)− γ

∑

s′∈S

T (s′|s, a)V̂t(s′)
)
≤ 3ǫ1

}
(12)

consists of state-action pairs with small Bellman residual. Because the state-action pairs in κt have
low Bellman error, Szita and Szepesvári [2010] has called Eq. (12) the “nice” set. The set κt is
somewhat analogous to the known-state MDP used in the analysis of R-MAX. However, unlike R-
MAX, the algorithm cannot determine which state-action pairs are actually in this set. It is used
strictly for the purposes of analysis.

Let X1 denote the event that when Delayed Q-learning is executed on M , then every time k1
when a new batch of samples for some state-action pair (s, a) begins, if (s, a) /∈ κk1

and the batch is
completed at timestep km, then a successful update to (s, a) will occur at timestep km.

Lemma 6 [Strehl et al., 2006, Lemma 1] If Delayed Q-learning is executed on M with parameters
m and ǫ1 where m satisfies

m =
1

2ǫ21(1− γ)2
ln
u

δ
(13)

then event X1 will occur, with probability at least 1− δ.

Lemma 6 establishes a value of m that is large enough to ensure that event X occurs with high
probability.

The next lemma is a modified version of Strehl et al. [2006, Lemma 2]. The reason that this
lemma needs to be modified is because not all of the action-value estimates maintained by Delayed Q-
learning will be optimistic, since they are initialized according to the α-weak admissible heuristic W .
Instead we show that the action-values that were initialized optimistically will remain approximately
optimistic. In addition to the original purpose for this lemma, it also shows how Delayed Q-learning
can be made to satisfy Condition 3 of Lemma 1, which we will use in our proof of Theorem 2.

Let X2 be the event that for all timesteps t ≥ 0 and (s, a) ∈ S × A, if W (s, a) = Q̂0(s, a) ≥
Q∗

M (s, a), then Q̂t(s, a) ≥ Q∗
M (s, a)− α

1−γ .

Lemma 7 If Delayed Q-learning is initialized by the α-weak admissible heuristic W and is executed
with m determined by (13), then event X2 occurs with probability at least 1− δ.

Proof We prove the claim by induction on the timestep t.
Base Case (t = 0): By our assumption if W (s, a) ≥ Q∗

M (s, a), then Q̂0(s, a) = W (s, a) ≥
Q∗

M (s, a) > Q∗
M (s, a)− α

1−γ .

Induction Step (t > 0): Suppose that for all timesteps τ = 1, 2, . . . , t− 1, if W (s, a) ≥ Q∗
M (s, a),

then Q̂τ (s, a) ≥ Q∗
M (s, a) − α

1−γ . If during timestep t − 1 no successful update occurs, then the

action-value estimates are unchanged implying that Q̂t(s, a) = Q̂t−1(s, a) ≥ Q∗
M (s, a) − α

1−γ . On

the other hand, if a successful update occurs during timestep t− 1 at some state-action pair (s, a),
then by the update rule given by (11)

Q̂t(s, a) = AU(s, a) + ǫ1

= 1
m

∑m
i=1

(
Rki

(s, a) + γV̂ki
(s′ki

)
)
+ ǫ1
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where V̂ki
(s) = maxa∈A Q̂ki

(s, a) for k1 < k2 < · · · < km = t− 1. Notice that

V̂ki
(s) ≥ V ∗

M (s)− α− α

1− γ (14)

for all s ∈ S and i = 1, 2, . . . ,m, because the definition of an α-weak admissible heuristic guarantees
that there exists ã ∈ A such that W (s, ã) ≥ Q∗

M (s, ã) ≥ V ∗
M (s) − α. This implies that V̂ki

(s) =

maxa∈A Q̂ki
(s, a) ≥ Q∗

M (s, ã)− α
1−γ ≥ V ∗

M (s)−α− α
1−γ for every state s ∈ S. Now we can plug (14)

into the previous inequality to obtain

Q̂t(s, a) = 1
m

∑m
i=1

(
Rki

(s, a) + γV̂ki
(s′ki

)
)
+ ǫ1

≥ 1
m

∑m
i=1

(
Rki

(s, a) + γ
(
V ∗
M (s′ki

)− α− α
1−γ

))
+ ǫ1

= 1
m

∑m
i=1

(
Rki

(s, a) + γV ∗
M (s′ki

)
)
− α

1−γ + ǫ1

.

Now we define the random variables Ji =
(
Rki

(s, a) + γV ∗
M (s′ki

)
)

for i = 1, 2, . . . ,m bound by the

interval
[
0, 1

1−γ

]
. By the Hoeffding inequality and our choice of m (13), 1

m

∑m
i=1 Ji ≥ E[J1] − ǫ1

with probability at least 1− δ
u . Thus

Q̂t(s, a) ≥ E[J1]− ǫ1 + ǫ1 − α
1−γ

= E[J1]− α
1−γ

= Q∗
M (s, a)− α

1−γ

We extend our argument over all u potential attempted updates using the union bound so that
Q̂t(s, a) ≥ Q∗

M (s, a)− α
1−γ holds over all timesteps t ≥ 0, with probability at least 1−u δ

u = 1− δ.

The next lemma bounds the number of timesteps that a state-action pair outside of the “nice”
set κ can be experienced. This lemma is a modification of [Strehl et al., 2006, Lemma 4]. Our
lemma decreases the number of times that a state-action pair that is not in κ can be experienced

from 2mNK
ǫ1(1−γ) to 2m(NK−X)

ǫ1(1−γ) , where X is the number of state-action pairs that are eliminated by

initializing the action-value estimates with W . If X is large this represents a significant decrease
in the number of experiences of state-action pairs outside of κ, which is the key factor in proving
Theorem 2.

Lemma 8 If events X1 and X2 occur, then (s, a) /∈ κt can be experienced on at most 2m(NK−X)
ǫ1(1−γ)

timesteps t, where X =
∣∣∣
{
(s, a) ∈ S ×A |W (s, a) < V ∗

M (s)− α− α
1−γ

}∣∣∣.

Proof We start by applying Lemma 1. By its definition the Delayed Q-learning algorithm always
follows a greedy policy (satisfying Condition 1 of Lemma 1) and cannot change an action-value
estimate unless the corresponding state-action pair has been experienced (satisfying Condition 2 of
Lemma 1). Since event X2 occurs, this satisfies Condition 3 of Lemma 1. Therefore by Lemma 1,
under the above assumptions, Delayed Q-learning will only visit NK −X state-action pairs.

The result follows from the proof of [Strehl et al., 2006, Lemma 4] over NK − X state-action
pairs rather than all NK state-action pairs.

7.3. Proof of Theorem 2

Now we are ready to prove Theorem 2.
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Proof (of Theorem 2) We proceed by applying Theorem 4. We select ǫ1 = ǫ(1−γ)
3 and m according

to (13) so that event X1 holds with probability at least 1− δ (by Lemma 6) and event X2 holds with
probability at least 1− δ (by Lemma 7).

Suppose that events X1 and X2 occur. Condition 1 (V̂t(s) ≥ V ∗
M (s)−β) of Theorem 4 is satisfied

with β = α
1−γ (by Lemma 7). Now we argue that Condition 2 (V̂t(s) − V πt

Mκt

(s) ≤ ǫ) of Theorem 4

is also satisfied. Notice that

V̂t(s)− V πt

Mκt

(s) ≤
{

γ
∑

s′∈S T (s
′|s, a)

(
V̂t(s

′)− V πt

Mκt

(s′)
)
+ 3ǫ1 if (s, πt(s)) ∈ κt

0 if (s, πt(s)) /∈ κt

because V̂t(s)−
(
R(s, a) + γ

∑
s′∈S V̂t(s

′)
)
≤ 3ǫ1, whenever (s, πt(s)) ∈ κt. This implies that V̂t(s)−

V πt

Mκt

(s) ≤ 3ǫ1
1−γ = 3(ǫ(1−γ)/3)

1−γ = ǫ.

The number of timesteps that a state-action pair that is not in κt can be experienced is bounded
in Lemma 8, which satisfies Condition 3 of Theorem 4. By our choice of m, events X1 and X2 occur
with probability at least 1− 2δ (applying the union bound). Therefore the conditions of Theorem 4
are met with probability at least 1− 2δ. By applying Theorem 4 and plugging in the values for the
learning complexity, m, and ǫ1, we obtain the fact that on all but

O

(
NK −X
ǫ4(1− γ)8 ln

1

δ
ln

1

ǫ(1− γ) ln
NK

δǫ(1− γ)

)

timesteps, Delayed Q-learning follows an
(
3ǫ+ α

1−γ

)
-optimal policy, with probability at least 1−3δ.

We obtain our final result by setting ǫ← ǫ
3 and δ ← δ

3 , which modifies the bound by constant factors
only.

7.4. Proof of Theorem 3

Proof (of Theorem 3) Let s ∈ Strg be a state in the target task. Because h is assumed to satisfy (5)
and (6) there exists an action ã ∈ Atrg such that either (1) (s, ã) ∈ D and V ∗

trg(s)−α ≤ Q∗
trg(s, ã) ≤

Q∗
src(h(s, ã)) or (2) (s, ã) /∈ D and V ∗

trg(s)− α ≤ Q∗
trg(s, ã).

In the first case ((s, ã) ∈ D), Eq. (7) will assign the value

W (s, ã) = min
(
Q̂src(h(s, ã)) + ǫsrc,

1
1−γ

)

≥ Q̂src(h(s, ã)) + ǫsrc
≥ (Q∗

src(h(s, ã))− ǫsrc) + ǫsrc
≥ Q∗

trg(s, ã) ≥ V ∗
trg(s)− α

where the initial equality is due to the fact that (s, ã) ∈ D and values are transferred according
to Eq. (7). The first step removes the minimum operation. The second step replaces the source
task action-value estimates with the true source task action-values by subtracting ǫsrc. The final
step is due to the fact that the intertask mapping satisfies (5). This inequality satisfies the α-weak
admissible heuristic criteria for state s.

In the second case ((s, ã) /∈ D), W (s, ã) is assigned the maximum value 1
1−γ which is greater

than or equal to Q∗
trg(s, ã) and V ∗

trg(s)−α. Therefore in both cases, the α-weak admissible heuristic
criteria is satisfied at the state s. Since this argument holds for all states, then the transferred
action-values induce an α-weak admissible heuristic with respect to the target task Mtrg.

The remainder of proof follows from applying Theorem 2 to the target task with the transferred
action-values taking the place of the α-weak admissible heuristic.
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