
JMLR: Workshop and Conference Proceedings 24:25–42, 2012 10th European Workshop on Reinforcement Learning

Planning in Reward-Rich Domains via PAC Bandits

Sergiu Goschin sgoschin@cs.rutgers.edu

Ari Weinstein aweinst@cs.rutgers.edu

Michael L. Littman mlittman@cs.rutgers.edu

Erick Chastain erickc@cs.rutgers.edu

Rutgers University, Piscataway, NJ 08854 USA

Editor: Marc Peter Deisenroth, Csaba Szepesvári, Jan Peters

Abstract

In some decision-making environments, successful solutions are common. If the evaluation
of candidate solutions is noisy, however, the challenge is knowing when a “good enough”
answer has been found. We formalize this problem as an infinite-armed bandit and provide
upper and lower bounds on the number of evaluations or “pulls” needed to identify a solution
whose evaluation exceeds a given threshold r0. We present several algorithms and use them
to identify reliable strategies for solving screens from the video games Infinite Mario and
Pitfall! We show order of magnitude improvements in sample complexity over a natural
approach that pulls each arm until a good estimate of its success probability is known.

Keywords: Multi-armed bandits, Planning under uncertainty, Stochastic optimization

1. Introduction

Consider the following trivial problem. A huge jar of marbles contains some fraction ρ of
black (success) marbles and the rest white (failure) marbles. We want to find a black marble
as quickly as possible. If the black marbles are sufficiently plentiful in the jar, the problem
is simple: Repeatedly draw marbles from the jar until a black one is found. The expected
sample complexity is Θ(1/ρ). This kind of generate-and-test approach is simple, but can
be extremely effective when solutions are common—for example, finding an unsatisfying
assignment for a randomly generated CNF formula is well solved with this approach.

The corresponding noisy problem is distinctly more challenging. Imagine the marbles
in our jar will be used to roll through some sort of obstacle course and (due to weight or
balance or size) some marbles are more successful at completing the course than others. If
we (quickly) want to find a marble that navigates the obstacle course successfully at least
r0 = 25% of the time, how do we best allocate our test runs on the course? When do we
run another evaluation of an existing marble and when do we grab a new one out of the
jar? How do we minimize the (expected) total number of runs while still assuring (with high
probability) that we end up with a good enough marble?

We formalize this problem as an infinite-armed bandit and provide a lower bound on
the number of arm pulls needed to find an arm with payoff above r0. We describe and
analyze several algorithms that are close to this lower bound. We include comparisons of
these algorithms using data from two well known video games—Infinite Mario and Pitfall!
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2. Infinite-Armed Bandit Problem

We define an arm as a probability distribution (Da) over possible reward values within a
bounded range [rmin, rmax]. When an arm is pulled, it returns a reward value (sampled
from Da). One arm a is preferred to another a′ if it has a higher expected reward value,
Era∼Da [ra] > Era′∼Da′

[ra′ ]. Arms are sampled from an arm space S, possibly infinitely large.
The distribution D over the arm space defines an infinite-armed bandit problem IB(D).

We seek algorithms that take a reward level r0 as input and attempt to minimize the
number of pulls needed to identify an arm with expected value of r0 or more. This sample
complexity has a dependence on D and r0, as it may be likely or unlikely to encounter an arm
with high enough reward. Specifically, define ρ = Pa∼D(Era∼Da [ra] ≥ r0) as the probability
of sampling a “good enough” arm. We assume the domain is reward rich—specifically, that
ρ is bounded away from zero. By allowing the agent to aspire to any reward level, this
definition of the performance measure is akin to the earlier work of Wang et al. [2008],
which is constrained to finding the optimal reward value.

Formally, we define an (ǫ, δ, r0)-correct algorithm ALG for an IB(D) problem to be an
algorithm that after a number of samples T (ǫ, δ, r0, D) (that is finite with probability 1)
returns an arm a with expected value E[ra] ≥ r0 − ǫ with probability at least 1 − δ. This
formalism is a variation of the PAC-Bandit model [Even-Dar et al., 2002] to an infinite
number of arms.

Regarding the motivation of our model, we target a class of optimization problems
where standard local search approaches fail: in particular, relations between arms are either
not predictive of relations between their associated reward values or such relations can be
ignored without sacrificing much in terms of the number of evaluations needed to get an
approximately optimal solution. We view planning as an optimization problem, with every
possible plan being an ‘arm’ in the infinite bandit model described above.

Our claim is that some apparently hard planning problems can be solved via a sampling
and testing approach that cannot be solved by algorithms that depend on the existence
of local structure for search. We documented this phenomenon in the video games Infinite
Mario and Pitfall! where policies can be very similar but have vastly different outcomes (one
different action in a long sequence can lead the agent to failure as opposed to successfully
completing a level).

In Section 3, we introduce the problem by considering the simple case in which arms are
deterministic, P (E[ra] = ra) = 1. In Sections 4 and 5, we address the more general case of
arms with stochastic rewards. We will mostly focus on arms with a Bernoulli distribution
Da over rewards, but our bounds are extendable to arbitrary distributions with bounded
support.

2.1. Related Work

The framework used in our work is closely related to several models from the multi-armed
bandit literature. While the case of a finite number of arms is well understood [Auer et al.,
2002], in the past few years, papers discussing bandits with infinitely many arms have
appeared [Kleinberg et al., 2008; Bubeck et al., 2008]. Our work extends the PAC-Bandit
setting [Even-Dar et al., 2002] to an infinite number of arms [Wang et al., 2008], but we
replace the assumption about the probability of drawing a near optimal arm with a given
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Figure 3.1: A screenshot of Infinite Mario and plots of the distribution of the sample com-
plexity for an algorithm that pulls each arm once (x -axis log-scale). The dis-
tributions are plotted for 2 of the 50 Infinite Mario levels corresponding to the
first (easy) and third (hard) quartiles. See the Algorithms section for more
details.

target threshold. It is worth noting here that a typical assumption in the literature on
continuous-armed bandits (one class of infinite-armed bandits) is that the structure in the
arm space induces structure in the space of expected rewards of the arms. The mean-
reward function is usually assumed to be Lipschitz and algorithms are created that take
advantage of this smoothness assumption. In some cases, including our example problems,
this assumption does not hold and algorithms that depend on it can fail.

Regarding our chosen performance measure, we depart from the often used cumulative
regret setting and choose a setting that only requires an agent to have a good answer after
some finite experimentation. This setting is related to some recent work [Bubeck et al.,
2009; Audibert et al., 2010], but we chose the PAC-Bandit performance measure instead
of the simple regret setting defined in the aforementioned work. Besides existing PAC-
Bandit algorithms, we also draw algorithmic inspiration from the Hoeffding/Bernstein races
framework [Maron and Moore, 1997; Heidrich-Meisner and Igel, 2009; Mnih et al., 2008],
which we extend to our infinite-armed bandit setting, and from the empirical success of
the Biased Robin algorithm from the Budgeted Learning framework [Madani et al., 2003],
about which our analysis may offer some insight. Applicationwise, we target policy search
and planning under uncertainty.

3. Experiment: Infinite Mario

Our first experiment used a version of Infinite Mario (a clone of the Super Mario video
game, see the left panel of Figure 3.1) that was modified for the Reinforcement Learning
Competition [Whiteson et al., 2010]. It was also used for other competitions [Togelius
et al., 2010] and it is considered to be an interesting benchmark for planning and learning.
The game is deterministic and gives us an opportunity to present a natural problem that
illustrates the “reward richness” phenomenon motivating our work.

We treated starting screens in Infinite Mario as bandits, where each arm encodes an
action sequence 50-steps long. In the experiments, the agent’s goal was to reach a threshold
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on the right side of the initial screen. The action set of the agent was restricted by removing
the backward action (unnecessary for solving any level), resulting in 8 total actions and an
arm space of size 850. Action sequences were tested in the actual game, assigning rewards
of −1 if the agent was destroyed, 0 if it did not reach the goal in 50 steps, and a value of
100−t, otherwise (where t was the number of steps taken before reaching the goal). Since the
domain is deterministic, the agent simply sampled uniformly at random new arms until one
was found with reward greater than 0. Sampling uniformly from the space of arms induces
an unknown distribution D over the space of possible rewards, which is the distribution over
arms described in section 2.

The average number of pulls needed to find a strategy for completing the first screen over
a set of 50 levels ranged from 1 to 1000, with a median of 7.7 pulls and a mean of 55.7 (due
to a few very difficult levels). Thus, testing just a handful of randomly generated action
sequences was sufficient to find a successful trajectory in this game. The performance of the
method is conveyed by the black (leftmost) lines in the plots in Figure 3.1 (the algorithms
corresponding to the other curves are described in the next sections). The results show that
nearly all screens were solved in well under 100 samples.

As an extension to this experiment, we ‘chained’ trajectories together to completely solve
each of the 50 levels (as opposed to just treating the starting screens). Using a cap of 3000
pulls for each screen in a level, this simple method was able to complete 40 out of the 50
levels. (See the auxiliary material for links to videos of the discovered solutions.)

4. Sample Complexity Lower Bound

When the sampled arms are not deterministic, the problem of allocating pulls is more
complex. The agent is faced with a choice between getting better accuracy estimates of
previously sampled arms versus sampling new arms to find one with higher value. In the
following, we state and prove a lower bound on the expected sample complexity of a correct
algorithm for the case of Bernoulli arms.

Theorem 1 Any (ǫ, δ, r0)-correct algorithm for an IB(D) problem has an expected sample
complexity of at least T (ǫ, δ, r0, D) = Ω( 1

ǫ2
(1ρ + log 1

δ )).

Due to space constraints, we leave the proof of the theorem for the auxiliary material
(Appendix C). The key element of the proof is the use of Theorem 13 of Mannor et al. [2004],
which states a lower bound on the expected sample complexity of any correct algorithm in the
PAC-Bandit setting when the expected rewards of the arms are known up to a permutation.

5. Algorithms

When ρ is known, the infinite-armed bandit problem can be reduced to the classic PAC-
Bandit setting and algorithms for that setting can be applied [Even-Dar et al., 2002; Mannor
et al., 2004]. Specifically, if one samples a number of arms such that, with high probability,
at least one has high expected reward (at least r0) and then uses a version of Median
Elimination [Mannor et al., 2004] to solve the resulting finite PAC-Bandit problem, the
sample complexity bound will be O( 1

ρǫ2
log 1

δ ), roughly a factor of log 1
δ away from the lower

bound. (Details available in Appendix F).
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For the more general case when ρ is not known, this section introduces three new algo-
rithms: one that is an incremental version of a naïve strategy [Even-Dar et al., 2002], one
inspired by the Hoeffding Races framework [Maron and Moore, 1997; Heidrich-Meisner and
Igel, 2009], and another that uses ideas from ballot-style theorems for random walks [Addario-
Berry and Reed, 2008] to quickly reject unpromising arms.

All the algorithms we introduce have the structure of the Generic Algorithm (Algo-
rithm 1): They sample an arm, make a bounded number of pulls for the arm, check if the
arm should be accepted (and in this case, stop and return the arm) or rejected (sample a
new arm from D and repeat). The decision rule for acceptance / rejection and when it can
be applied is what differentiates the algorithms.

Algorithm 1:
GenericAlgorithm (ǫ, δ, r0,RejectionFunction)

1: i = 1, found = false
2: for i = 1, 2, ... do
3: Sample a new arm ai ∼ D
4: decision = RejectionFunction(ai, i, ǫ, δ, r0)
5: if decision = ACCEPT then
6: return ai
7: end if
8: end for

5.1. Iterative Uniform Rejection (IUR)

Iterative Uniform Rejection (Algorithm 2) is an incremental version of the naïve strategy
by Even-Dar et al. [2002]. The algorithm pulls an arm a fixed number of times to decide
with high confidence if the arm has an expected reward less than or greater than r0 − ǫ. It
samples arms in this manner until one with an estimated mean reward of at least r0 − ǫ is
found.

Algorithm 2: IterativeUniformRejection (ǫ, δ, r0)

1: return GenericAlgorithm(ǫ, δ, r0,UniformRejection)

Function UniformRejection(a, i, ǫ, δ, r0)

1: n0 =
4
ǫ2
ln 2i2

δ
2: for k = 1, 2, ..., n0 do
3: Pull the arm to get reward rk ∼ a
4: end for
5: r̂a =

1
n0

∑n0
k=1 rk

6: if r̂a < r0 − ǫ
2 then

7: return REJECT
8: end if
9: return ACCEPT
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Theorem 2 Algorithm Iterative Uniform Rejection is an (ǫ, δ, r0)-correct algorithm for
any IB(D) problem and its expected sample complexity is upper bounded by O( 1

ρǫ2
log 1

ρδ ).

The IUR algorithm is simple, correct, and achieves a bound close to the lower bound
for the problem. We leave the proof of the theorem for the auxiliary material (Appendix A).

5.2. Iterative Hoeffding Rejection (IHR)

One problem with IUR is that it is very conservative in the sense of taking a large number
of samples for each arm (with the dominant term being 1

ǫ2
). The algorithm does not take

advantage of the fact that it may be possible to tell that an arm is highly unlikely to be
better than r0 − ǫ long before all n0 pulls are performed. As a result, the algorithm wastes
pulls deciding precisely how good or bad the arm is, when it just needs to know whether it is
good or bad. Iterative Hoeffding Rejection (Algorithm 3) exploits the situation in which
∆i, the difference between the expected reward of arm ai and r0, might be larger than ǫ, so
an unpromising arm could be rejected before reach the decision threshold from IUR—an
insight from the Hoeffding Races framework [Maron and Moore, 1997]. The main idea of the
IHR algorithm is to maintain confidence intervals built using the Hoeffding bound around
the empirical average for the sampled arm and to reject the arm as soon as the upper bound
of the confidence interval drops below a certain threshold. If this threshold is not reached
after a particular number of pulls, the arm is accepted.

Algorithm 3: IterativeHoeffdingRejection (ǫ, δ, r0)

1: return GenericAlgorithm(ǫ, δ, r0,HoeffdingRejection)

Function HoeffdingRejection (a, i, ǫ, δ, r0)

1: Let δ0 = δ
2i2
, j = 1

2: n0 =
4
ǫ2
ln 1

ǫδ0
3: for j = 1, 2, ..., n0 do
4: rj ∼ a; r̂aj = 1

j

∑j
k=1 rk

5: if r̂aj < r0 −
√

2 log(2j2/δ0)
j then

6: return REJECT
7: end if
8: j = j + 1
9: end for

10: return ACCEPT

Theorem 3 Algorithm Iterative Hoeffding Rejection is an (ǫ, δ, r0)-correct algorithm
for any IB(D) problem and its expected sample complexity is upper bounded by O( 1

ρǫ2
log 1

ǫρδ ).

We leave the proof of the theorem for the auxiliary material (Appendix D). The analysis
of the algorithm is tight in the worst case (consider the domain used to prove the lower bound
in Theorem 1). Nevertheless, as we will show in the experiments section, the algorithm has
a much better practical behavior than IUR. The reason can be understood by emphasizing
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the differences between the arms in the upper bound for IHR. Define ∆a = E[ra] − r0
to be a random variable that encodes the difference between r0 and the expectation of an
arm sampled from D, and define ∆− such that 1

∆2
−

= E[ 1
max(ǫ2,∆2

a)
|∆a < 0]. (∆− is lower

bounded by ǫ and it encodes the relevant difference for rejecting an arm if the arm has an
expectated value smaller than r0.) It can then be shown (see the proof in Appendix E) that:

Theorem 4 The expected sample complexity of Iterative Hoeffding Rejection is upper
bounded by O(( 1

ǫ2
+ 1

ρ∆2
−

) log 1
ǫρδ ) with probability at least 1− δ.

For situations where ∆− is larger than ǫ, the number of pulls needed to classify a ‘bad’
arm is actually much smaller (ignoring log factors, the difference is between O( 1

∆2
−

) and

O( 1
ǫ2
) pulls per arm). This difference is the reason why the algorithm has the potential to

be much more useful then IUR in practice.
The algorithm can be improved by accepting an arm faster if the lower bound of the

confidence interval for the empirical average of a particular arm becomes larger than r0.
Another immediate extension is to use Bernstein bounds [Mnih et al., 2008] instead of
Hoeffding bounds to take advantage of the case where the distributions associated with
each arm have low variance. We leave these straightforward improvements for an extended
version of the paper.

5.3. Iterative Greedy Rejection (IGR)

Both IUR and IHR carefully decide whether an arm is good or bad before deciding to
reject. As a consequence, with high probability, the first time they encounter a ‘good’ arm,
they accept it. This strategy is reasonable in general, but it has one disadvantage: when the
proportion of good arms is relatively low, these algorithms will spend a long time sampling
and discarding bad arms. In some cases, a better strategy could be to reject faster—without
being sure with high probability whether an arm is good or bad. This approach is permissible
in our framework since failure to accept a good arm is only penalized in terms of sample
complexity and does not compromise correctness. Related examples of empirically successful
algorithms that quickly reject are Biased Robin [Madani et al., 2003] in the Budgeted Bandit
setting and evolutionary algorithms in noisy settings [Fitzpatrick and Grefenstette, 1988].

We next describe an algorithm that implements such a strategy by constraining the
empirical average of each sampled arm to stay above a certain threshold for it not to be
rejected. While the worst-case bound we prove is a factor of O(1ǫ ) worse than that of
the other algorithms, the algorithm is strong experimentally for real data sets, and is still
polynomial in the worst case.

Synthetic experiments that investigate various settings of the parameters (see Appendix G)
indicate the upper bound is loose and point to a tighter upper bound that is similar to the
one from Theorem 4 (with an advantage in some practical situations). We were unable to
prove this bound though, and thus leave the improvement of the bound for IGR as an open
problem.

Theorem 5 Algorithm Iterative Greedy Rejection is an (ǫ, δ, r0)-correct algorithm for
any IB(D) problem and its expected sample complexity is upper bounded by O( 1

ρǫ3
log 1

ǫρδ ), if
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Figure 5.1: An illustration of the behavior of three algorithms in a simple domain.

Algorithm 4: IterativeGreedyRejection (ǫ, δ, r0)

1: return GenericAlgorithm(ǫ, δ, r0,GreedyRejection)

Function GreedyRejection (a, i, ǫ, δ, r0)

The function is identical to HoeffdingRejection with the exception of Line 5:
5′: if r̂aj < r0 − ǫ

2 then

r0 > ǫ (if r0 ≤ ǫ, an algorithm can simply return the very first arm, which is guaranteed to
be ‘good’ because its reward r satisfies r ≥ 0 ≥ r0 − ǫ.)

The proof can be found in Appendix B and it is one of the core contributions of this
paper as it uses a new proving technique to upper bound the sample complexity.

The key idea of the proof is to interpret the evolution of the empirical average for a good
arm as a random walk and then apply a ballot-style theorem [Addario-Berry and Reed,
2008] to bound the probability that the average will always be higher than a fixed threshold.
Doing so allows us to lower bound the probability of accepting a good arm, which is the key
to upper bounding the expected sample complexity.

One possible looseness in the analysis comes from ignoring the fact that in non-worst
case scenarios, bad arms will be rejected before nmax(i) samples (which is why this strategy
is successful in practice).

6. Illustrating the Algorithms

Figure 5.1 illustrates the behavior of all three algorithms in a simple setting where arms
can take on three different values (0.20, 0.37, and 0.70) with equal probability (r0 = 0.5,
ǫ = 0.1, δ = 0.01). Thus, the goal is to recognize when a 0.70 arm is drawn. We note
that this experiment is not meant to compare the algorithms empirically, but only to give
insights about their different strategies for a simple example.

The first plot shows the behavior of IUR. Every time it draws an arm, it uses 1600 pulls
to accurately estimate its payoff before deciding whether to accept or reject. In the plot,
we show the algorithm’s estimate of the mean of each arm it draws as it accumulates more
data. We also plot a fixed interval of ǫ/2 around this mean, which is the confidence interval
of the estimate after 1600 pulls.
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Figure 6.1: Plot of distribution of the sample complexity (pulls needed) for IGR (Iterative
Greedy Rejection), IHR (Iterative Hoeffding Rejection) and IUR (Iterative
Uniform Rejection) over a set of 5000 repetitions. The distributions are plotted
for 3 different Pitfall! levels (shown along with a representation of a successful
policy in the lower half of the figure). Average sample complexity for each
algorithm is marked with a circle. All experiments used δ = 0.01.

The second plot depicts the behavior of IHR, which maintains confidence intervals on
the sample mean throughout. If the upper confidence interval drops below r0, the arm is
rejected. The result in the experiment is that IHR is able to reject 4 arms in the time it
takes IUR to reject 1.

The third plot provides the analogous illustration of IGR. Note that this algorithm rejects
an arm immediately if it fails on the first pull, and the sample mean must remain above r0
long enough to verify the arm’s payoff. The plot shows that the algorithm is able to test
many different arms very quickly, occasionally discarding good arms. Ultimately, it settles
in on a high scoring arm and evaluates it exhaustively.

7. Experiment: Pitfall!

Originally developed for the Atari 2600, Pitfall! is a game where the objective is to guide
the protagonist through the jungle collecting treasure while avoiding items that harm him.
In our experiments, interaction with the game was done via an emulator [JSt, 2008], which
was modified to allow for software control. In the experiment, the agent’s goal was defined
simply as arriving at the right side of the screen on the top tier (some levels can be finished on
the lower tier). The evaluation used the same 8 actionsfrom the Infinite Mario experiment.
Stochasticity was added by randomly changing the joystick input to a centered joystick with
no button press 5% of the time.
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In this game, constructing a policy as a mapping from states to actions is difficult because
it is unclear exactly what state representation to use. The Atari 2600 has 128 bytes of RAM,
which means the actual size of the state space can be 8128, much too large to effectively
plan in directly. Treating the game as a collection of objects greatly simplifies the problem
and has been used in Pitfall! for learning the dynamics of the first screen and navigating it
successfully [Diuk et al., 2008], but requires prior domain knowledge to define what kind of
interactions can occur between objects.

Because the issue of state in Pitfall! is problematic, one approach to planning in this
domain is to not factor in state at all but to execute action sequences (which are policies)
blindly (conditioned only on time, as opposed to state). The search space for sequences
of 500 actions is 8500 possible plans. However, on average far fewer than 84 of the pos-
sible sequences actually need to be sampled uniformly at random before a successful one
is found. This result is surprising, as the more difficult screens do not tolerate errors of
more than a couple of pixels of placement. The success indicates that, like Infinite Mario,
Pitfall! is reward rich. Figure 6.1 illustrates the results of running the three algorithms pre-
sented in this paper on the Pitfall! levels with stochasticity introduced. In all three cases,
the random-walk-based IGR outperformed the races-based IHR, which outperformed the
highly conservative IUR by a very large margin. The percentage improvement was greatest
for the most challenging levels (Vine and Crocs). The same pattern can also be seen in
Figure 3.1, where the algorithms were used on a deterministic domain without modification.
Note that the deterministic strategy used for Infinite Mario is not successful in Pitfall! be-
cause of the noise we introduced. The deterministic algorithm assumes an arm is good if
it is successful on the first pull, which can be very misleading. In Crocs, for example, the
deterministic strategy results in over 90% of the runs erroneously returning a bad arm.

Of all the advantages of the infinite-armed bandit algorithms discussed here, the most
significant may be the weak assumptions that are made: the only requirement is the prob-
ability of sampling a good enough arm be nonzero. It is thus an important topic of future
research to compare the strategies from this paper with local search strategies and plan-
ning algorithms that are designed to take advantage of relations between arms or policies
[Kleinberg et al., 2008; Bubeck et al., 2008; Bubeck and Munos, 2010].

8. Conclusion

We introduced an infinite-armed bandit framework that is tailored to optimization problems
to which local search cannot be applied. It is closely related to the finite PAC multi-armed
bandit model. We presented an almost-tight lower bound and three algorithms that solve the
problem and provided analyses (including a novel random-walk-based method) proving that
these algorithms achieve polynomial sample complexity bounds. We showed how a decision
maker can balance between allocating pulls to get high-accuracy estimates and sampling
new arms to find ones with higher expected rewards.

The framework models applications where good solutions are plentiful—where a good
arm can be found by random sampling. It was shown that some non-trivial planning prob-
lems (such as two encountered in established video games) can be solved handily by exploit-
ing this insight, even in the face of stochastic outcomes.
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Appendix A. Proof of Theorem 2

Proof
Sample Complexity. We will first show that there is a constant lower bound on the

probability of the algorithm stopping, which will in turn help us show the expected sample
complexity is finite. Let Ai be the event of accepting the i’th sampled arm (i ∈ 1, 2, ...),
conditioned on rejecting the first i−1 arms. Let N be a random variable that stands for the
number of arms sampled until the algorithm returns an arm, and SC be a random variable
that stands for the sample complexity. Note that P (Ai) = P (accept arm ai|ai is ’good’
)P (ai is ’good’) +P (accept arm ai|ai is ’bad’ )P (ai is ’bad’) ≥ P (accept arm ai|ai is ’good’
)P (ai is ’good’) ≥ (1 − δ

2i2
)ρ ≥ ρ

2 , ∀i ∈ 1, 2, . . . (where the third inequality holds due to an
application of the Hoeffding bound). Thus E[N ] ≤ 2

ρ (by the properties of the geometric
distribution, where Ai stands for “success”).

The expected sample complexity is E[SC] = E[
∑N

i=1
4
ǫ2
log 2i2

δ ] ≤ 4
ǫ2
E[N log 2N2

δ ] ≤
8
ǫ2
(E[N logN ] + 1

ρ log
2
δ ) (with the right hand side of the first equality determined by

the Hoeffding bound). The expectation for sample complexity is taken with respect to
both sampling the arms from D and noise in the pulls themselves. Now, E[N logN ] ≤√
E[N2]E[log2N ] ≤

√
4
ρ2
E[log2N ] (where the first inequality is Cauchy-Schwarz and the

second is due to the properties of the geometric distribution). To bound E[log2N ] we use
the fact that the function log2(x) is concave for x ≥ 3 (assuming a natural logarithm) and
we apply Jensen’s inequality to get E[log2N ] ≤ log2E[N ] ≤ log2 2

ρ .

So, for E[N ] ≥ 3, E[N logN ] ≤ 2
ρ log

2
ρ . For E[N ] < 3, E[N logN ] ≤ E[N2] < 9. As a

consequence, E[N logN ] ≤ max(9, 2ρ log
2
ρ) and the bound follows.

Correctness. The algorithm will stop (with probability 1, since its expected sample
complexity is finite) and recommend either a ‘good’ arm (with reward r ≥ r0 − ǫ) or a
‘bad’ one (reward r < r0 − ǫ). The failure probability is P (failure) ≤ P (

⋃
i≥1{incorrect

recommendation at step i}) ≤∑i≥1
δ
2i2
≤ δ (the second inequality follows via the Hoeffding

bound given the number of samples n0(i) for each arm).
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Appendix B. Proof of Theorem 5

Before we give the actual proof we will restate for completeness (and to unify notation)
Corollary 2.3 from Kallenberg [1999].

Theorem A 1 [Kallenberg [1999]] Let (Z1, Z2, ...) a finite or infinite, stationary sequence
of random variables with values in R+ = [0,∞] and let Tj =

∑
i≤j Zi and β = E[Z1]. Then

there exists a random variable σ, uniform over (0, 1) (and independent of Zi) such that:

Pσ,Zi,i≥1[sup
j>0

Tj
j
≤ β

σ
] = 1.

Now we can prove theorem 5.
Proof We note that while the proof is done for Bernoulli arms, it is extendable to arbitrary
distributions with bounded support. We use the notation from Theorem 2 and we will only
discuss the sample complexity (the correctness follows similarly to the other algorithms). As
mentioned, the main challenge, given the aggressiveness of the rejection procedure, is to get
a positive lower bound on the probability of accepting a good arm. Let B be the event of
accepting an arm if the expected reward associated with that arm is r0 (the bound follows
immediately for all arms with r ≥ r0, since the probability of acceptance will be at least as
large as for r0). Define X = Bernoulli(r0) as a Bernoulli distributed random variable.

Define Y = X−r0+ǫ/2
1−r0+ǫ/2 as an affine transformation of X. Then, let α = E[Y ] = ǫ/2

1−r0+ǫ/2 ≥
ǫ
2 (since r0 > ǫ). Since Y = 1 with probability r0 and Y = −r0+ǫ/2

1−r0+ǫ/2 < 0 with probability

1− r0, we can interpret the series {Sj} (with Sj =
∑j

i=1 Yi, with Yi being i.i.d. samples of
Y , and implicitly Xi being i.i.d. samples of X) as a random walk.

We will now make two simplifying assumptions (and then describe at the end of the
proof how to remove them). We assume: (1) r0 − ǫ

2 ≥ 1
2 and (2) −r0+ǫ/2

1−r0+ǫ/2 ∈ Z− (the set
of negative integers). Then, {Sj} is a positively biased random walk on the integers with
maximum step value 1. In this case, we can apply a classic ballot-style result that says that
P (Sj > 0, ∀j = 1, 2, ...) = max(E[Y ], 0) = α, for example, Theorem 3 from Addario-Berry
and Reed [2008], which is based on a result by Takacs [1967].

But, α = P (Sj > 0, ∀j = 1, 2, ...) ≤ P (Sj ≥ 0, ∀j = 1, 2, ...) = P (
∑j

i=1Xi

j ≥ r0 − ǫ
2 , ∀j =

1, 2, ...) = P (X̂j ≥ r0− ǫ
2 , ∀j = 1, 2, ...) ≤ P (X̂j ≥ r0− ǫ

2 , ∀j = 1, 2, ..., nmax(i)) (where X̂j is
the empirical average after j samples and corresponds to r̂aj from Line 5′ of the algorithm).
Thus, P (B) ≥ α ≥ ǫ

2 .
So, as in Theorem 2, P (Ai) ≥ P (B)ρ ≥ ǫρ

2 . This fact implies E[N ] ≤ 2
ǫρ and the proof

for the expected sample complexity bound follows similarly to that of Theorem 3 with an
extra 2

ǫ factor in the bound that comes via the upper bound on E[N ].
To complete the proof, one needs to show that a ‘bad’ arm (with expected value smaller

than r0 − ǫ) will be rejected after at most nmax(i) samples. This claim follows via the same
application of the Hoeffding bound as for the previous algorithms (the probability that a
‘bad’ arm is accepted after nmax(i) samples is smaller than δ0, which is enough to bound
the probability of error for the entire execution of the algorithm).

To remove Assumptions 1 and 2, we will apply ballot-style theorems for random variables
with real values. The result will then follow by applying Corollary 2.3 from Kallenberg [1999].
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The goal of the last part of the proof is to complete the proof for IGR for the general
case of random walks on the real numbers.

Let Z = 1 − Y (where Y was defined in the main text as a transformation of the
Bernoulli random variable X). A set of i.i.d. samples of X induces a set of i.i.d. samples
of Y and implicitely of Z (Z1, Z2, ...). But (Z1, Z2, ...) is a stationary sequence of variables
with E[Z1] = E[Z] = 1− E[Y ] = 1− α. The support of Z is {0, 1

1−r0+ ǫ
2
} ⊂ R+.

Let Tj =
∑

i≤j Zi. Then, the conditions for theorem 1 hold and so there exists a

Uniform(0, 1) random variable σ such that P [supj>0
Tj
j ≤ 1−α

σ ] = 1.

Let’s note V = supj>0
Tj
j and W = 1−α

σ two transformed random variables of Zi and σ
respectively. We know that P [V ≤ W ] = 1 (a relation known under the name of absolute
stochastic dominance or statewise stochastic dominance). It is known that this relation
implies the usual notion of (first order) stochastic dominance (which states that a random
variable Y stochastically dominates a random variable X if for all elements x in the support
of X and Y , P (Y > x) ≥ P (X > x) or equivalently P (Y ≤ x) ≤ P (X ≤ x)).

So since W stochastically dominates V in an absolute sense, it also dominates it in a
first-order sense. We will pick 1 ∈ R+ and it follows that P (W ≤ 1) ≤ P (V ≤ 1).

But P (W ≤ 1) = Pσ(
1−α
σ ≤ 1) = Pσ(σ ≥ 1 − α) = 1 − (1 − α) = α (where the third

equality follows immediately from the properties of the uniform distribution).
We’ve thus shown that α ≤ P (V ≤ 1). Then α ≤ P (supj>0

Tj
j ≤ 1) = P (

Tj
j ≤ 1, ∀j >

0) = P (
∑

i≤j(1−Yi) ≤ j, ∀j > 0) = P (Sj ≥ 0, ∀j > 0). We know from the proof of theorem

5 in the main text that P (Sj ≥ 0, ∀j > 0) ≤ P (X̂j ≥ r0− ǫ
2 , ∀j = 1, 2, ..., nmax(i)). Thus the

desired relation (P (B) ≥ α) holds even when Assumptions 1 and 2 are removed, and we con-
sider random walks with steps taking real values. The rest of the proof remains unchanged.

Appendix C. Proof of Theorem 1

We will shortly introduce the PAC-Bandit setting as its definition is needed for the proof.
For a thorough introduction we refer the reader to Even-Dar et al. [2002].

The PAC-Bandit problem is defined as follows: Given n arms and two parameters ǫ and
δ, stop in finite time with probability 1 and return an arm at most ǫ away from the arm
with the highest expected reward among the n with probability at least 1 − δ. The lower
bound we will use from Mannor et al. [2004] has the form Ω( 1

ǫ2
(n+ log 1

δ )).
Proof We will use contradiction and assume there exists an (ǫ, δ, r0)-correct algorithm ALG
that solves any IB(D) problem with expected sample complexity o( 1

ǫ2
(1ρ + log 1

δ )). The goal
is to show that ALG would imply a correct algorithm for the PAC-Bandit problem with
expected sample complexity o( 1

ǫ2
(n+log 1

δ )), which would contradict the known lower bound
in the PAC-Bandit setting.

Let D be a categorical probability distribution with 2 values in its support: 0.5 − ǫ (a
bad arm) and 0.5 + ǫ (a good arm) with probability mass 1− x on the first value and x on
the second. Let’s choose an arbitrary r0 ∈ (0.5, 0.5 + ǫ] (so that we follow the constraint
that ρ is bounded away from zero). Then ρ = x. Now, define a PAC-Bandit problem as
follows: assume we are given n arms, n−1 of which have expected reward of 0.5− ǫ and one
of which has expected reward of 0.5+ ǫ. To be precise, it is worth mentioning that we allow
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the algorithms in the PAC-Bandit setting to resample arms and ignore any previous pulls
taken for those arms (this actually makes the PAC-Bandit problem harder, so the lower
bound still has to hold).

Let x = ρ = 1
n . When we use ALG for the PAC-Bandit problem, each time the algo-

rithm samples a new arm from the environment, it selects an arm uniformly at random, with
replacement, from the n arms. Applying ALG, it will get the good arm with probability at
least 1 − δ with an expected number of samples o( 1

ǫ2
(1ρ + log 1

δ )) = o( 1
ǫ2
(n + log 1

δ )), which
contradicts the lower bound mentioned above (Theorem 13 Mannor et al. [2004]).

Appendix D. Proof of theorem 3

Proof Sample Complexity. We keep the same notation as in the proof of Theorem 2. We
use E[rai ] to represent the expected value associated with arm ai, r̂

ai
j the empirical average

of ai’s rewards after its jth pull, and CI(j) =
√

2 log(2j2/δ0)
j the confidence interval for the

empirical average at step j. Let nmax(i) =
4
ǫ2
log 1

ǫδ0
be the maximum number of pulls for

arm ai.
Now, P (Ai) = ρ(1−P (reject arm ai| arm ai is good)) = ρ(1−P (∪nmax(i)

j=1 {r̂aij 6∈ [E[rai ]−
CI(j), E[rai ] + CI(j)]})) ≥ ρ(1 −∑nmax(i)

j=1
δ0
2j2

) ≥ ρ(1 − δ0) ≥ ρ
2 . So, as in Theorem 2,

E[N ] ≤ 2
ρ .

Since the sampling of each arm stops after at most nmax(i) steps, E[SC] ≤ E[
∑N

i=1
4
ǫ2
log 2i2

ǫδ ]
and then the sample complexity bound follows similarly to the proof of Theorem 2.

Correctness. The algorithm stops with probability 1 in finite time, and P (failure) ≤∑
i≥1 P ({ incorrect recommendation at step i}) =∑i≥1 P (

⋃nmax(i)
j=1 {r̂aij 6∈ [E[rai ]−CI(j), E[rai ]+

CI(j)]}) ≤∑i≥1

∑
j≥1

δ
4i2j2

≤ δ.

Appendix E. Proof of Theorem 4

Proof Since this is a high probability statement, we can assume for the rest of the proof
that we are in a situation where the algorithm commits no errors (which happens w.p. at
least 1 − δ as it can be shown that, for the entire experiment, the algorithm fails w.p. at
most δ). Let’s define SC(a) to be the same complexity of accepting or rejecting an arm a.
Let’s fix (for now) the total number of sampled arms to N = n, and fix an arm a, with
∆a < 0 (which we label as a ’bad’ arm).

Then, using the Hoeffding bound, SC(a) = 4
max(ǫ2,∆2

a)
log 2i2

max(ǫ,∆a)δ
(where i is the index

of the arm among all n arms). Let’s assume D is continuous (the discrete case is similar)
and let’s define f(∆a) to be the pdf of ∆a. Then, since a ∼ D, E[SC(a)|a ‘bad’] =∫
∆a<0

4
max(ǫ2,∆2

a)
log 2i2

max(ǫ,∆a)δ
f(∆a)d∆a ≤ log 2n2

ǫδ

∫
∆a<0

4
max(ǫ2,∆2

a)
f(∆a)d∆a ≤ 4

∆2
−

log 2n2

ǫδ .

So, E[samples from all ‘bad’ arms|N = n] =
∑n

k=1E[samples from k ‘bad’ arms|N =

n]P (k arms are bad) ≤ 4
∆2

−

log 2n2

ǫδ

∑n
k=1 kP (k arms are bad) = 4(1−ρ)n

∆2
−

log 2n2

ǫδ . Similarly, it

can be shown that E[samples from all ‘good’ arms|N = n] ≤ 4ρn
ǫ2

log 2n2

ǫδ .
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Then, for any N , EB = E[samples from all ‘bad’ arms] ≤ ∑∞
n=1

4(1−ρ)n
∆2

−

log 2n2

ǫδ P (N =

n) ≤ 4(1−ρ)
∆2

−

log 2
ǫδE[N ] + 8(1−ρ)

∆2
−

E[N log(N)] ≤ 16(1−ρ)
ρ∆2

−

log 4
ǫρδ (where the last inequality fol-

lows from the bounds for E[N ] and E[N log(N)] from Theorem 2). So, EB = O( 1
ρ∆2

−

log( 1
ǫρδ )).

Using a similar argument, one can show that EG = E[samples from all ‘good’ arms] =
O( 1

ǫ2
log( 1

ǫρδ )). Thus, E[SC] = EB + EG = O(( 1
ǫ2

+ 1
ρ∆2

−

) log 1
ǫρδ ).

Appendix F. Known Probability to Get a “Good” Arm—Algorithms

The algorithms we introduced so far treat the scenario for which the concentration of rewards
(ρ) is unknown. In this section, we will solve the problem for the case of known ρ by reducing
it to the PAC-Bandit setting (that we introduced formally in Appendix C).

The high level strategy is to compute how many arms one needs to sample to get a
“good” arm with high probability and then apply a PAC-Bandit algorithm to select the
“good arm” from the sampled ones. Algorithm 5 implements this strategy. It is worth
noting here that besides the standard algorithms (Uniform Planning (UP), Sequential
Elimination (SE) or Median Elimination (ME) Even-Dar et al. [2002]), we can also
apply an algorithm with a better upper bound due to our assumption that the domain is
reward rich (ρ > 0)—the version of Median Elimination from Section 7.1 of Mannor et al.
[2004] (which we label as Median Elimination with Known Bias (MEKB) from this
point on). The last algorithm is built to take advantage of knowledge of the bias of the best
arm.

Algorithm 5: PAC-Bandit Reduction (ǫ, δ, r0, ρ)

1: Sample n = 1
ρ log(

2
δ ) arms.

2: Execute a correct PAC-Bandit Algorithm with input (ǫ, δ2 , n) on the n multi-armed
bandit problem.

3: Return the output of the PAC-Bandit Algorithm

We denote as SCALG the expected sample complexity of an IB(D) algorithm that uses
a PAC-Bandit algorithm ALG as a subroutine in Step 2.
Proof [Proof] Correctness. Let a1, a2, ..., an ∼ D i.i.d. Define eventA = {∀i ∈ {1...n}, E[ai] <
r0} (in words, A stands for the event that the expected value of all the sampled arms is
smaller than r0). Then, Pai∼D,i∈{1...n}(A) = (1 − ρ)n. If we choose n = 1

ρ log(
2
δ ), then

P (A) ≤ δ
2 .

When ALG is executed with parameters from Step 2 in Algorithm 5, it will fail with
probability at most δ

2 . Thus, by the union bound on P (A) and the failure probability of
ALG, the algorithm will fail with probability at most δ and will otherwise return an arm
with the desired properties.

The sample complexity obviously depends on the algorithm chosen. It is easy to show
that, in the worst case, SCUP = O( 1

ρǫ2
log 1

δ log
1
ρδ ), SCME = O( 1

ρǫ2
log2 1

δ ) and SCMEKB =
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Figure G.1: Each data point in each graph is the average of 500 repetitions of the experi-
ment. (a) In the left figure, we plot the dependence of the empirical average
sample complexity (E[SC]) on 1/∆. ǫ and ρ are fixed (ǫ = 0.05, ρ = 0.005). (b)
In the center figure, we plot the dependence of E[SC] on 1/ρ. ǫ and ∆ are fixed
(ǫ = 0.05,∆ = 0.4). (c) In the right figure, we plot the dependence of E[SC] on
1/ǫ. ρ and ∆ are fixed (ρ = 0.005,∆ = 0.4). For all experiments, δ = 0.01.

O( 1
ρǫ2

log 1
δ ). It can be observed that there is a gap of O(log 1

δ ) between the upper bound of
MEKB and the lower bound from Theorem 1 (we leave the closing of this gap as an open
problem)1.

Appendix G. Experiments

G.1. Pitfall! and Infinite Mario

This section provides additional details about the experiments we ran for Pitfall! and Infinite
Mario.

Four videos are included for Pitfall!. The experimental setting is described in the paper
— it requires Harry to navigate from the left to the right side of the screen on the top
tier without being killed or running out of time. Each video demonstrates one discovered
trajectory, chosen as a representative of the others found. Each trajectory is run 20 times
in each video. The locations of the videos are:

• Screen 3, Best Observed Policy, 3:11: http://www.youtube.com/watch?v=Jw-t7Ihe4Uc

• Screen 3, Worst Observed Policy, 3:36: http://www.youtube.com/watch?v=uAdXraDpUs0

• Screen 4, Best Observed Policy, 8:05: http://www.youtube.com/watch?v=r8Hr2Dc_NN0

• Screen 4, Worst Observed Policy, 7:06: http://www.youtube.com/watch?v=fOmAyGuXdvI

For Infinite Mario, we recorded videos of the performance of the simple strategy defined
in the paper:

1. We remark here that while Median Elimination (and its variant MEKB) is the PAC-Bandit algorithm
that offers the best sample complexity upper bound, it is not a practical algorithm.
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• Success video (resulting from stitching together solutions to consecutive screens), 0:53:
http://www.youtube.com/watch?v=tH5DRNrRS8I

• Partial success video, 0:49: http://www.youtube.com/watch?v=Wh8HGKIp7PQ

• First screens for 50 levels, 9:51: http://www.youtube.com/watch?v=tcJSQcVzRkc

Regarding the implementation, we took the Infinite Mario code from RLCompetition
source code: http://code.google.com/p/rl-competition/ and RL-Glue code from RL-Glue
source: http://glue.rl-community.org/wiki/Main_Page.

G.2. Synthetic Experiments

The role of this section is to further investigate the empirical sample complexity of IGR so
as to give indications as to how the upper bound of IGR can be tightened and how does
IGR compare with IHR in various scenarios.

We will use a simple but illustrative infinite bandit problem inspired by the sample
complexity lower bound example. Let D (the probability distribution over the space of
arms) be a categorical distribution with parameter ∆ such that with probability ρ an arm
is Bernoulli(12 + ∆) (a ’good’ arm) and with probability 1 − ρ is is Bernoulli(12 − ∆) (a
’bad’ arm). The ρ parameter encodes (as usual) the reward richness of the domain while ∆
encodes how large is the difference between the good and the bad arms (and plays the role
of ∆− from section 5.2).

The three parameters of interest are obviously ǫ,∆ and ρ. In figure G.1, in each graph,
two parameters have fixed values and the third is varied. We plot the dependence of the
empirical average sample complexity on the inverse of each parameter (since the sample
complexity bounds depend on 1/ǫ, 1/∆−, and 1/ρ). We only compare IGR with IHR, since
the empirical sample complexity of IUR is always significantly larger than the other two
algorithms and thus does not offer any interesting insight.

In the left graph from Figure G.1 it is visible that IGR increasingly dominates IHR as
the difference between the good and the bad arms increases. We think this is one of the two
factors that determine the success of IGR in practice, as it provides fast rejection of bad
arms for a variety of types of bad arms (for a fixed accuracy ǫ and concentration of good
arms ρ). The behavior is consistent for other fixed values of ǫ and ρ.

In the center graph from Figure G.1 the dependency of IGR and IHR on ρ is interest-
ing. For values of ρ > 0.01, IHR dominates, while when the concentration of good arms
decreases, IGR starts to have a better sample complexity. The better dependency on ρ as
it decreases is the second factor that makes IGR strong empirically.

In the graph on the right side of Figure G.1 the dependency on ǫ is plotted. The
performance comparison between IGR and IHR is reversed as compared to the experiment
where ρ was varied. IGR dominates for values of ǫ > 0.04 while IHR starts dominating
when ǫ decreases further.

While the experiments (b) and (c) in Figure G.1 show that IGR and IHR are not
totally ordered in terms of sample complexity performance, it is intuitive that for practical
applications (where ǫ is usually fixed) IGR tends to behave better. All three synthetic
experiments indicate that the bound from Theorem 5 is loose and the true bound of IGR
is actually closer to Theorem 4.

42

http://www.youtube.com/watch?v=tH5DRNrRS8I
http://www.youtube.com/watch?v=Wh8HGKIp7PQ
http://www.youtube.com/watch?v=tcJSQcVzRkc
http://code.google.com/p/rl-competition/
http://code.google.com/p/rl-competition/
http://glue.rl-community.org/wiki/Main_Page
http://glue.rl-community.org/wiki/Main_Page

