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1. Background

Contextual multi-armed bandits (Langford and Zhang, 2008) have received substantial interests in
recent years due to their wide applications on the Internet, such as new recommendation and adver-
tising. The fundamental challenge here is to balance exploration and exploitation so that the total
payoff collected by an algorithm approaches that of an optimal strategy. Exploration techniques like
ε-greedy, UCB (upper confidence bound), and their many variants have been extensively studied.
Interestingly, one of the oldest exploration heuristics, dated back to Thompson (1933), has not been
popular in the literature until recently when researchers started to realize its effectiveness in critical
real-world applications (Scott, 2010; Graepel et al., 2010; May and Leslie, 2011; Chapelle and Li,
2012).

This heuristic, known as Thompson sampling, fulfills the principle of “probability matching,”
which states that an arm is chosen with the probability that it is the optimal one. A generic descrip-
tion is given in Algorithm 1, where the algorithm maintains a posterior distribution P (θ|D) over a
parameter space Θ that defines a set of greedy policies. At every step, a random model θt is drawn
from the posterior, and the greedy action according to the payoff predictions of θt is chosen.

Algorithm 1 Thompson sampling (adapted from Chapelle and Li (2012))
Initialize observed data set: D ← ∅
for t = 1, . . . , T do

Observe context xt
Draw θt ∈ Θ according to P (θ|D), and select at = arg maxa Er

[
r|xt, a, θt

]
Observe payoff rt(at), and augment observed data set D ← D ∪ (xt, at, rt(at))

end for

Thompson sampling has a number of significant advantages in practice. First, it can be eas-
ily combined with Bayesian approaches and complicated parametric models (Graepel et al., 2010;
Chapelle and Li, 2012); in contrast, popular exploration strategies like UCB are often hard to de-
rive except in special cases like (generalized) linear models. Second, a number of recent empirical
studies, including those conducted on large-scale, real-world problems, have shown the algorithm
is highly effective for balancing exploration and exploitation (Scott, 2010; Graepel et al., 2010;
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May and Leslie, 2011; Chapelle and Li, 2012). Furthermore, Thompson sampling appears to be
more robust to observation delays of payoffs, compared to deterministic exploration strategies like
UCB (Chapelle and Li, 2012).

2. Known Results

In contrast to the promising empirical findings, there has not been many theoretical results. Our
notion of performance here is regret—the difference between the total payoffs achieved by the
algorithm and the highest achievable payoffs. Formally, let rt(a) denote the payoff at the t-th step if
arm a is chosen, and let at(θ) = arg maxa E [r|xt, a, θ] be the greedy arm if payoffs are accurately
predicted by model θ. The T -step regret is then given by R(T ) = maxθ

∑T
t=1 (rt(at(θ))− rt).

The earliest theoretical results are asymptotic in nature (Granmo, 2010; May et al., 2011). These
results ensure that, under certain natural assumptions, Thompson sampling converges to an optimal
arm-choosing policy, which may only imply R(T ) = o(T ). While these results are important
for showing the fundamental correctness of the algorithm, they do not tell how fast the algorithm
“learns” after a finite number of steps.

More recently, Agrawal and Goyal (2011) give the first non-trivial regret upper bound for the
special case of the traditional (non-contextual) K-armed bandits where Beta distributions are used
as the prior. For K = 2, their upper bound is O(lnT/∆) and matches the well-known lower bound
of Lai and Robbins (1985), where ∆ is the difference in the expected payoff between the optimal
arm and the suboptimal one. For general K > 2, their upper bound still scales logarithmically in T ,

but the multiplicative constant,
(∑K

i=2 ∆−2
i

)2
, is significantly worse.

3. Open Questions

Given the encouraging empirical results, the lack of theoretical understanding of Thompson sam-
pling implies a number of open questions. A sample of them are given below.

First, for the traditional (non-contextual) K-armed bandits, there is a substantial gap between
the state-of-the-art result of Agrawal and Goyal (2011) and the lower bound of Lai and Robbins
(1985). Inspired by numerical simulations (Chapelle and Li, 2012), we conjecture that Thompson
sampling’s regret actually matches the lower bound and is indeed optimal: O(

∑K
i=2 ∆−1

i · lnT ).
Furthermore, it remains open whether one can find a problem-independent regret bound that does
not depend on 1/∆i – a quantity that can be arbitrarily small. An ideal answer would be O(

√
T ),

in light of existing results (Auer et al., 2002).
Second, there is no published regret bound in the contextual setting, which is arguably a more

useful setting in practice for generalization reasons (Langford and Zhang, 2008). Given the sim-
ilarity between Bayes’ formula and the exponential update rule, some of the techniques from the
online-learning literature may be useful. A straightforward application of the techniques, however,
does not seem to produce the strong upper bound of O(

√
T ). One obstacle is the possible under-

exploration of the optimal θ∗ if it is given a low prior probability; in this case, the algorithm may
have to wait a long time before seeing one data point to increase the posterior of θ∗. Another family
of recent algorithms get around this problem by explicitly “massaging” the selection probabilities
of promising θ values, which unfortunately can be computationally expensive (Dudı́k et al., 2011;
Agarwal et al., 2012). One obvious fix is to mix Thompson sampling with uniform exploration, as
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done in EXP4 (Auer et al., 2002), but the regret bound becomes O(T 2/3), no better than the simple
epoch-greedy algorithm (Langford and Zhang, 2008).
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