
JMLR: Workshop and Conference Proceedings 19 (2011) 133–154 24th Annual Conference on Learning Theory

Minimax Regret of Finite Partial-Monitoring Games in
Stochastic Environments∗

Gábor Bartók bartok@cs.ualberta.ca

Dávid Pál dpal@cs.ualberta.ca

Csaba Szepesvári szepesva@cs.ualberta.ca

Department of Computing Science, University of Alberta, Edmonton, T6G 2E8, AB, Canada

Editors: Sham Kakade, Ulrike von Luxburg

Abstract

In a partial monitoring game, the learner repeatedly chooses an action, the environment
responds with an outcome, and then the learner suffers a loss and receives a feedback
signal, both of which are fixed functions of the action and the outcome. The goal of the
learner is to minimize his regret, which is the difference between his total cumulative loss
and the total loss of the best fixed action in hindsight. Assuming that the outcomes are
generated in an i.i.d. fashion from an arbitrary and unknown probability distribution, we
characterize the minimax regret of any partial monitoring game with finitely many actions
and outcomes. It turns out that the minimax regret of any such game is either zero, Θ̃(

√
T),

Θ(T 2/3), or Θ(T). We provide a computationally efficient learning algorithm that achieves
the minimax regret within logarithmic factor for any game.

Keywords: Online learning, Imperfect feedback, Regret analysis

1. Introduction

Partial monitoring provides a mathematical framework for sequential decision making prob-
lems with imperfect feedback. Various problems of interest can be modeled as partial mon-
itoring instances, such as learning with expert advice (Littlestone and Warmuth, 1994), the
multi-armed bandit problem (Auer et al., 2002), dynamic pricing (Kleinberg and Leighton,
2003), the dark pool problem (Agarwal et al., 2010), label efficient prediction (Cesa-Bianchi
et al., 2005), and linear and convex optimization with full or bandit feedback (Zinkevich,
2003; Abernethy et al., 2008; Flaxman et al., 2005).

In this paper we restrict ourselves to finite games, i.e., games where both the set of ac-
tions available to the learner and the set of possible outcomes generated by the environment
are finite. A finite partial monitoring game G is described by a pair of N ×M matrices:
the loss matrix L and the feedback matrix H. The entries `i,j of L are real numbers lying
in, say, the interval [0, 1]. The entries hi,j of H belong to an alphabet Σ on which we do
not impose any structure and we only assume that learner is able to distinguish distinct
elements of the alphabet.

The game proceeds in T rounds according to the following protocol. First, G = (L,H) is
announced for both players. In each round t = 1, 2, . . . , T , the learner chooses an action It ∈
∗ This work was supported in part by AICML, AITF (formerly iCore and AIF), NSERC and the PASCAL2

Network of Excellence under EC grant no. 216886.

c© 2011 G. Bartók, D. Pál & C. Szepesvári.

Bartók Pál Szepesvári

{1, 2, . . . , N} and simultaneously, the environment chooses an outcome Jt ∈ {1, 2, . . . ,M}.
Then, the learner receives as a feedback the entry hIt,Jt . The learner incurs instantaneous
loss `It,Jt , which is not revealed to him. The feedback can be thought of as a masked
information about the outcome Jt. In some cases hIt,Jt might uniquely determine the
outcome, in other cases the feedback might give only partial or no information about the
outcome. In this paper, we shall assume that Jt is chosen randomly from a fixed multinomial
distribution.

The learner is scored according to the loss matrix L. In round t the learner incurs an
instantaneous loss of `It,Jt . The goal of the learner is to keep low his total loss

∑T
t=1 `It,Jt .

Equivalently, the learner’s performance can also be measured in terms of his regret, i.e.,
the total loss of the learner is compared with the loss of best fixed action in hindsight. The
regret is defined as the difference of these two losses.

In general, the regret grows with the number of rounds T . If the regret is sublinear in
T , the learner is said to be Hannan consistent, and this means that the learner’s average
per-round loss approaches the average per-round loss of the best action in hindsight.

Piccolboni and Schindelhauer (2001) were one of the first to study the regret of these
games. In fact, they have studied the problem without making any probabilistic assumptions
about the outcome sequence Jt. They proved that for any finite game (L,H), either for
any algorithm the regret can be Ω(T) in the worst case, or there exists an algorithm which
has regret Õ(T 3/4) on any outcome sequence1. This result was later improved by Cesa-
Bianchi et al. (2006) who showed that the algorithm of Piccolboni and Schindelhauer has
regret O(T 2/3). Furthermore, they provided an example of a finite game, a variant of
label-efficient prediction, for which any algorithm has regret Θ(T 2/3) in the worst case.

However, for many games O(T 2/3) is not optimal. For example, games with full feed-
back (i.e., when the feedback uniquely determines the outcome) can be viewed as a special
instance of the problem of learning with expert advice and in this case it is known that the
“EWA forecaster” has regret O(

√
T); see e.g., Lugosi and Cesa-Bianchi (2006, Chapter 3).

Similarly, for games with “bandit feedback” (i.e., when the feedback determines the instan-
taneous loss) the INF algorithm (Audibert and Bubeck, 2009) and the Exp3 algorithm (Auer
et al., 2002) achieve O(

√
T) regret as well.2

This leaves open the problem of determining the minimax regret (i.e., optimal worst-case
regret) of any given game (L,H). A partial progress was made in this direction by Bartók
et al. (2010) who characterized (almost) all finite games with M = 2 outcomes. They
showed that the minimax regret of any “non-degenerate” finite game with two outcomes
falls into one of four categories: zero, Θ̃(

√
T), Θ(T 2/3) or Θ(T). They gave a combinatoric-

geometric condition on the matrices L,H which determines the category a game belongs
to. Additionally, they constructed an efficient algorithm which, for any game, achieves the
minimax regret rate associated to the game within poly-logarithmic factor.

In this paper, we consider the same problem, with two exceptions. In pursuing a general
result, we will consider all finite games. However, at the same time, we will only deal
with stochastic environments, i.e., when the outcome sequences are generated from a fixed
probability distribution in an i.i.d. manner.

1. The notations Õ(·) and Θ̃(·) hide polylogarithmic factors.
2. We ignore the dependence of regret on the number of actions or any other parameters.

134

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

The regret against stochastic environments is defined as the difference between the
cumulative loss suffered by the algorithm and that of the action with the lowest expected
loss. That is, given an algorithm A and a time horizon T , if the outcomes are generated
from a probability distribution p, the regret is

RT (A, p) =
T∑
t=1

`It,Jt − min
1≤i≤N

Ep

[
T∑
t=1

`i,Jt

]
.

In this paper we analyze the minimax expected regret (in what follows, minimax regret)
of games, defined as

RT (G) = inf
A

sup
p∈∆M

Ep [RT (A, p)] .

We show that the minimax regret of any finite game falls into four categories: zero, Θ̃(
√
T),

Θ(T 2/3), or Θ(T). Accordingly, we call the games trivial, easy, hard, and hopeless. We
give a simple and efficiently computable characterization of these classes using a geometric
condition on (L,H). We provide lower-bounds and algorithms that achieve them within
poly-logarithmic factor. Our result is an extension of the result of Bartók et al. (2010) for
stochastic environments.

It is clear that any lower bound which holds for stochastic environments must hold for
adversarial environments too. On the other hand, algorithms and regret upper bounds for
stochastic environments, of course, do not transfer to algorithms and regret upper bounds
for the adversarial case. Our characterization is a stepping stone towards understanding
the minimax regret of partial monitoring games. In particular, we conjecture that our
characterization holds without any change for unrestricted environments.

2. Preliminaries

In this section, we introduce our conventions, along with some definitions. By default, all
vectors are column vectors. We denote by ‖v‖ =

√
v>v the Euclidean norm of a vector v.

For a vector v, the notation v ≥ 0 means that all entries of v are non-negative, and the
notation v > 0 means that all entries are positive. For a matrix A, ImA denotes its image
space, i.e., the vector space generated by its columns, and the notation KerA denotes its
kernel, i.e., the set {x : Ax = 0}.

Consider a game G = (L,H) with N actions and M outcomes. That is, L ∈ RN×M
and H ∈ ΣN×M . For the sake of simplicity and, without loss of generality, we assume that
no symbol σ ∈ Σ can be present in two different rows of H. The signal matrix of an action
is defined as follows:

Definition 1 (Signal matrix) Let {σ1, . . . , σsi} be the set of symbols listed in the ith row
of H. (Thus, si denotes the number of different symbols in row i of H). The signal matrix
Si of action i is defined as an si ×M matrix with entries ak,j = I(hi,j = σk) for 1 ≤ k ≤ si
and 1 ≤ j ≤ M . The signal matrix for a set of actions is defined as the signal matrices of
the actions in the set, stacked on top of one another, in the ordering of the actions.

135

Bartók Pál Szepesvári

For an example of a signal matrix, see Section 3.1. We identify the strategy of a stochastic
opponent with an element of the probability simplex ∆M = {p ∈ RM : p ≥ 0,

∑M
j=1 pj =

1}. Note that for any opponent strategy p, if the learner chooses action i then the vector
Sip ∈ Rsi is the probability distribution of the observed feedback: (Sip)k is the probability
of observing the kth symbol.

We denote by `>i the ith row of the loss matrix L and we call `i the loss vector of action
i. We say that action i is optimal under opponent strategy p ∈ ∆M if for any 1 ≤ j ≤ N ,
`>i p ≤ `>j p. Action i is said to be Pareto-optimal if there exists an opponent strategy p such
that action i is optimal under p. We now define the cell decomposition of ∆M induced by
L (for an example, see Figure 2):

Definition 2 (Cell decomposition) For an action i, the cell Ci associated with i is de-
fined as Ci = {p ∈ ∆M : action i is optimal under p}. The cell decomposition of ∆M is
defined as the multiset C = {Ci : 1 ≤ i ≤ N, Ci has positive (M − 1)-dimensional volume}.

Actions whose cell is of positive (M − 1)-dimensional volume are called strongly Pareto-
optimal. Actions that are Pareto-optimal but not strongly Pareto-optimal are called de-
generate. Note that the cells of the actions are defined with linear inequalities and thus
they are convex polytopes. It follows that strongly Pareto-optimal actions are the actions
whose cells are (M − 1)-dimensional polytopes. It is also important to note that the cell
decomposition is a multiset, since some actions can share the same cell. Nevertheless, if
two actions have the same cell of dimension (M − 1), their loss vectors will necessarily be
identical.3

We call two cells of C neighbors if their intersection is an (M −2)-dimensional polytope.
The actions corresponding to these cells will also be called neighbors. Neighborship is
not defined for cells outside of C. For two neighboring cells Ci, Cj ∈ C, we define the
neighborhood action set Ai,j = {1 ≤ k ≤ N : Ci ∩ Cj ⊆ Ck}. It follows from the definition
that actions i and j are in Ai,j and thus Ai,j is nonempty. However, one can have more
than two actions in the neighborhood action set.

When discussing lower bounds we will need the definition of algorithms. For us, an
algorithm A is a mapping A : Σ∗ → {1, 2, . . . , N} which maps past feedback sequences to
actions. That the algorithms are deterministic is assumed for convenience. In particular,
the lower bounds we prove can be extended to randomized algorithms by conditioning on the
internal randomization of the algorithm. Note that the algorithms we design are themselves
deterministic.

3. Classification of finite partial-monitoring games

In this section we present our main result: we state the theorem that classifies all finite
stochastic partial-monitoring games based on how their minimax regret scales with the time
horizon. Thanks to the previous section, we are now equipped to define a notion which will
play a key role in the classification theorem:

3. One could think that actions with identical loss vectors are redundant and that all but one of such
actions could be removed without loss of generality. However, since different actions can lead to different
observations and thus yield different information, removing the duplicates can be harmful.

136

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

Definition 3 (Observability) Let S be the signal matrix for the set of all actions in the
game. For actions i and j, we say that `i − `j is globally observable if `i − `j ∈ ImS>.
Furthermore, if i and j are two neighboring actions, then `i− `j is called locally observable
if `i − `j ∈ ImS>(i,j), where S(i,j) is the signal matrix for the neighborhood action set Ai,j.

As we will see, global observability implies that we can estimate the difference of the ex-
pected losses after choosing each action once. Local observability means we only need
actions from the neighborhood action set to estimate the difference.

The classification theorem, which is our main result, is the following:

Theorem 4 (Classification) Let G = (L,H) be a partial-monitoring game with N ac-
tions and M outcomes. Let C = {C1, . . . , Ck} be its cell decomposition, with corresponding
loss vectors `1, . . . , `k. The game G falls into one of the following four categories:

(a) RT (G) = 0 if there exists an action i with Ci = ∆M . This case is called trivial.

(b) RT (G) = Θ(T) if there exist two strongly Pareto-optimal actions i and j such that
`i − `j is not globally observable. This case is called hopeless.

(c) RT (G) = Θ̃(
√
T) if it is not trivial and for all pairs of (strongly Pareto-optimal) neigh-

boring actions i and j, `i − `j is locally observable. These games are called easy.

(d) RT (G) = Θ(T 2/3) if G is not hopeless and there exists a pair of neighboring actions i
and j such that `i − `j is not locally observable. These games are called hard.

Note that the conditions listed under (a)–(d) are mutually exclusive and cover all finite
partial-monitoring games. The only non-obvious implication is that if a game is easy then
it cannot be hopeless. The reason this holds is because for any pair of cells Ci, Cj in C,
the vector `i − `j can be expressed as a telescoping sum of the differences of loss vectors of
neighboring cells.

The remainder of the paper is dedicated to proving Theorem 4. We start with the
simple cases. If there exists an action whose cell covers the whole probability simplex
then choosing that action in every round will yield zero regret, proving case (a). The
condition in Case (b) is due to Piccolboni and Schindelhauer (2001), who showed that
under the condition mentioned there, there is no algorithm that achieves sublinear regret4.
The upper bound for case (d) is achieved by the FeedExp3 algorithm due to Piccolboni and
Schindelhauer (2001), for which a regret bound of O(T 2/3) was shown by Cesa-Bianchi et al.
(2006). The lower bound for case (c) was proved by Antos et al. (2011). For a visualization
of previous results, see Figure 1.

The above assertions help characterize trivial and hopeless games, and show that if
a game is not trivial and not hopeless then its minimax regret falls between Ω(

√
T) and

O(T 2/3). Our contribution in this paper is that we give exact minimax rates (up to log-
arithmic factors) for these games. To prove the upper bound for case (c), we introduce a
new algorithm, which we call Balaton, for “Bandit Algorithm for Loss Annihilation”5.
This algorithm is presented in Section 4, while its analysis is given in Section 5. The lower
bound for case (d) is presented in Section 6.

4. Although Piccolboni and Schindelhauer state their theorem for adversarial environments, their proof
applies to stochastic environments without any change (which is important for the lower bound part).

5. Balaton is a lake in Hungary. We thank Gergely Neu for suggesting the name.

137

Bartók Pál Szepesvári

hopelesstrivial
easy hard

dynamic pricing l.e.p.bandits

full-info

Figure 1: Partial monitoring games and their minimax regret as it was known previously.
The big rectangle denotes the set of all games. Inside the big rectangle, the games
are ordered from left to right based on their minimax regret. In the “hard” area,
l.e.p. denotes label-efficient prediction. The grey area contains games whose
minimax regret is between Ω(

√
T) and O(T 2/3) but their exact regret rate was

unknown. This area is now eliminated, and the dynamic pricing problem is proven
to be hard.

3.1. Example

In this section, as a corollary of Theorem 4 we show that the discretized dynamic pricing
game (see, e.g., Cesa-Bianchi et al. (2006)) is hard. Dynamic pricing is a game between a
vendor (learner) and a customer (environment). In each round, the vendor sets a price he
wants to sell his product at (action), and the costumer sets a maximum price he is willing
to buy the product (outcome). If the product is not sold, the vendor suffers some constant
loss, otherwise his loss is the difference between the customer’s maximum and his price. The
customer never reveals the maximum price and thus the vendor’s only feedback is whether
he sold the product or not.

The discretized version of the game with N actions (and outcomes) is defined by the
matrices

L =


0 1 2 · · · N − 1
c 0 1 · · · N − 2
...

. . .
...

c · · · c 0 1
c · · · · · · c 0

 H =


1 · · · · · · 1

0
. . .

...
...

. . .
. . .

...
0 · · · 0 1

 ,

where c is a positive constant (see Figure 2 for the cell-decomposition for N = 3). It is easy
to see that all the actions are strongly Pareto-optimal. Also, after some linear algebra it
turns out that the cells underlying the actions have a single common vertex in the interior
of the probability simplex. It follows that any two actions are neighbors. On the other
hand, if we take two non-consecutive actions i and i′, `i − `i′ is not locally observable. For
example, the signal matrix for action 1 and action N is

S(1,N) =

1 . . . 1 1
1 . . . 1 0
0 . . . 0 1

 ,

whereas `N − `1 = (c, c − 1, . . . , c − N + 2,−N + 1)>. It is obvious that `N − `1 is not in
the row space of S(1,N).

138

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

p∗

1

2

3

Figure 2: The cell decomposition of the discretized dynamic pricing game with 3 actions.
If the opponent strategy is p∗, then action 2 is the optimal action.

4. Balaton: An algorithm for easy games

In this section we present our algorithm that achieves Õ(
√
T) expected regret for easy games

(case (c) of Theorem 4). The input of the algorithm is the loss matrix L, the feedback matrix
H, the time horizon T and an error probability δ, to be chosen later. Before describing
the algorithm, we introduce some notation. We define a graph G associated with game G
the following way. Let the vertex set be the set of cells of the cell decomposition C of the
probability simplex such that cells Ci, Cj ∈ C share the same vertex when Ci = Cj . The
graph has an edge between vertices whose corresponding cells are neighbors. This graph
is connected, since the probability simplex is convex and the cell decomposition covers the
simplex.

Recall that for neighboring cells Ci, Cj , the signal matrix S(i,j) is defined as the signal
matrix for the neighborhood action set Ai,j of cells i, j. Assuming that the game satisfies
the condition of case (c) of Theorem 4, we have that for all neighboring cells Ci and Cj ,
`i− `j ∈ ImS>(i,j). This means that there exists a coefficient vector v(i,j) such that `i− `j =

S>(i,j)v(i,j). We define the kth segment of v(i,j), denoted by v(i,j),k, as the vector of components

of v(i,j) that correspond to the kth action in the neighborhood action set. That is, if

S>(i,j) =
(
S>1 · · · S>r

)
, then `i − `j = S>(i,j)v(i,j) =

∑r
s=1 S

>
s v(i,j),s, where S1, . . . , Sr are

the signal matrices of the individual actions in Ai,j .
Let Jt ∈ {1, . . . ,M} denote the outcome at time step t. For 1 ≤ k ≤M , let ek ∈ RM be

the kth unit vector. For an action i, let Oi(t) = SieJt be the observation vector of action i at
time step t. If the rows of the signal matrix Si correspond to symbols σ1, . . . , σsi and action
i is chosen at time step t then the unit vector Oi(t) indicates which symbol was observed
in that time step. Thus, OIt(t) holds the same information as the feedback at time t (recall
that It is the action chosen by the learner at time step t). From now on, for simplicity, we
will assume that the feedback at time step t is the observation vector OIt(t) itself.

The main idea of the algorithm is to successively eliminate actions in an efficient, yet
safe manner. When all remaining strongly Pareto optimal actions share the same cell,
the elimination phase finishes and from this point, one of the remaining actions is played.
During the elimination phase, the algorithm works in rounds. In each round each ‘alive’
Pareto optimal action is played once. The resulting observations are used to estimate the
loss-difference between the alive actions. If some estimate becomes sufficiently precise, the
action of the pair deemed to be suboptimal is eliminated (possibly together with other

139

Bartók Pál Szepesvári

Algorithm 1 Balaton

Input: L,H, T, δ
Initialization:
[G, C, {v(i,j),k}, {path(i,j)}, {(LB(i,j), UB(i,j), σ(i,j), R(i,j))}]← Initialize(L,H)
t← 0, n← 0
aliveActions← {1 ≤ i ≤ N : Ci ∩ interior(∆M) 6= ∅}
main loop
while |VG | > 1 and t < T do
n← n+ 1
for each i ∈ aliveActions do
Oi ← ExecuteAction(i)
t← t+ 1

end for
for each edge (i, j) in G: µ(i,j) ←

∑
k∈Ai,j

O>k v(i,j),k end for

for each non-adjacent vertex pair (i, j) in G: µ(i,j) ←
∑

(k,l)∈path(i,j) µ(k,l) end for

haveEliminated← false
for each vertex pair (i, j) in G do
µ̂(i,j) ←

(
1− 1

n

)
µ̂(i,j) + 1

nµ(i,j)

if BStopStep(µ̂(i,j), LB(i,j), UB(i,j), σ(i,j), R(i,j), n, 1/2, δ) then
[aliveActions, C,G]← eliminate(i, j, sgn(µ̂(i,j)))
haveEliminated← true

end if
end for
if haveEliminated then
{path(i,j)} ← regeneratePaths(G)

end if
end while
Let i be a strongly Pareto-optimal action in aliveActions
while t < T do

ExecuteAction(i)
t← t+ 1

end while

actions). To determine if an estimate is sufficiently precise, we will use an appropriate
stopping rule. A small regret will be achieved by tuning the error probability of the stopping
rule appropriately.

The details of the algorithm are as follows: In the preprocessing phase, the algorithm
constructs the neigbourhood graph, the signal matrices S(i,j) assigned to the edges of the
graph, the coefficient vectors v(i,j) and their segment vectors v(i,j),k. In addition, it con-
structs a path in the graph connecting any pairs of nodes, and initializes some variables
used by the stopping rule.

In the elimination phase, the algorithm runs a loop. In each round of the loop, the
algorithm chooses each of the alive actions once and, based on the observations, the esti-
mates µ̂(i,j) of the loss-differences (`i− `j)>p∗ are updated, where p∗ is the actual opponent

140

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

strategy. The algorithm maintains the set C of cells of alive actions and their neighborship
graph G.

The estimates are calculated as follows. First we calculate estimates for neighboring
actions (i, j). In round6 n, for every action k in Ai,j let Ok be the observation vector for
action k. Let µ(i,j) =

∑
k∈Ai,j

O>k v(i,j),k. From the local observability condition and the
construction of v(i,j),k, with simple algebram it follows that µ(i,j) are unbiased estimates

of (`i − `j)>p∗ (see Lemma 5). For non-neighboring action pairs, we use telescoping sums:
since the graph G (induced by the alive actions) stays connected, we can take a path
i = i0, i1, . . . , ir = j in the graph, and the estimate µ(i,j)(n) will be the sum of the estimates
along the path:

∑r
l=1 µ(il−1,il). The estimate of the difference of the expected losses after

round n will be the average µ̂(i,j) = (1/n)
∑n

l=1 µ(i,j)(s), where µ(i,j)(s) denotes the estimate
for pair (i, j) computed in round s.

After updating the estimates, the algorithm decides which actions to eliminate. For
each pair of vertices i, j of the graph, the expected difference of their loss is tested for its
sign by the BStopStep subroutine, based on the estimate µ̂(i,j) and its relative error. This
subroutine uses a stopping rule based on Bernstein’s inequality.

The subroutine’s pseudocode is shown as Algorithm 2 and is essentially based on the
work by Mnih et al. (2008). The algorithm maintains two values, LB, UB, computed from
the supplied sequence of sample means (µ̂) and the deviation bounds

c(σ,R, n, δ) = σ

√
2L(δ, n)

n
+
RL(δ, n)

3n
, where L(δ, n) = log

(
3

p

p− 1

np

δ

)
. (1)

Here p > 1 is an arbitrarily chosen parameter of the algorithm, σ is a (deterministic) upper
bound on the (conditional) variance of the random variables whose common mean µ we
wish to estimate, while R is a (deterministic) upper bound on their range. This is a general
stopping rule method, which stops when it produced an ε-relative accurate estimate of the
unknown mean. The algorithm is guaranteed to be correct outside of a failure event whose
probability is bounded by δ.

Algorithm Balaton calls this method with ε = 1/2. As a result, when BStopStep
returns true, outside of the failure event the sign of the estimate µ̂ supplied to Balaton
will match the sign of the mean to be estimated. The conditions under which the algorithm
indeed produces ε-accurate estimates (with high probability) are given in Lemma 11 (see
Appendix), which also states that also with high probability, the time when the algorithm
stops is bounded by

C ·max

(
σ2

ε2µ2
,
R

ε|µ|

)(
log

1

δ
+ log

R

ε|µ|

)
,

where µ 6= 0 is the true mean. Note that the choice of p in (1) influences only C.
If BStopStep returns true for an estimate µ(i,j), function eliminate is called. If,

say, µ(i,j) > 0, this function takes the closed half space {q ∈ ∆M : (`i − `j)>q ≤ 0} and
eliminates all actions whose cell lies completely in the half space. The function also drops
the vertices from the graph that correspond to eliminated cells. The elimination necessarily

6. Note that a round of the algorithm is not the same as the time step t. In a round, the algorithm chooses
each of the alive actions once.

141

Bartók Pál Szepesvári

Algorithm 2 Algorithm BStopStep. Note that, somewhat unusually at least in pseu-
docodes, the arguments LB, UB are passed by reference, i.e., the algorithm rewrites the
values of these arguments (which are thus returned back to the caller).

Input: µ̂,LB,UB, σ, R, n, ε, δ
LB← max(LB, |µ̂| − c(δ, σ,R, n))
UB← min(UB, |µ̂|+ c(δ, σ,R, n))
return (1 + ε)LB < (1− ε)UB

concerns all actions with corresponding cell Ci, and possibly other actions as well. The
remaining cells are redefined by taking their intersection with the complement half space
{q ∈ ∆M : (`i − `j)>q ≥ 0}.

By construction, after the elimination phase, the remaining graph is still connected, but
some paths used in the round may have lost vertices or edges. For this reason, in the last
phase of the round, new paths are constructed for vertex pairs with broken paths.

The main loop of the algorithm continues until either one vertex remains in the graph
or the time horizon T is reached. In the former case, one of the actions corresponding to
that vertex is chosen until the time horizon is reached.

5. Analysis of the algorithm

In this section we prove that the algorithm described in the previous section achieves Õ(
√
T)

expected regret.
Let us assume that the outcomes are generated following the probability vector p∗ ∈ ∆M .

Let j∗ denote an optimal action, that is, for every 1 ≤ i ≤ N , `>j∗p
∗ ≤ `>i p∗. For every pair

of actions i, j, let αi,j = (`i − `j)>p∗ be the expected difference of their instantaneous loss.
The expected regret of the algorithm can be rewritten as

E

[
T∑
t=1

`It,Jt − min
1≤i≤N

E

[
T∑
t=1

`i,Jt

]]
=

N∑
i=1

E [τi]αi,j∗ , (2)

where τi is the number of times action i is chosen by the algorithm.
Throughout the proof, the value that Balaton assigns to a variable x in round n will

be denoted by x(n). Further, for 1 ≤ k ≤ N , we introduce the i.i.d. random sequence
(Jk(n))n≥1, taking values on {1, . . . ,M}, with common multinomial distribution satisfying,
P [Jk(n) = j] = p∗j . Clearly, a statistically equivalent model to the one where (Jt) is an i.i.d.
sequence with multinomial p∗ is when (Jt) is defined through

Jt = JIt
(∑t

s=1 I(Is = It)
)
. (3)

Note that this claim holds, independently of the algorithm generating the actions, It. There-
fore, in what follows, we assume that the outcome sequence is generated through (3). As
we will see, this construction significantly simplifies subsequent steps of the proof. In
particular, the construction will be very convenient since if action k is selected by our al-
gorithm in the nth elimination round then the outcome obtained in response is going to be

142

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

Ok(n) = Skuk(n), where uk(n) = eJk(n). (This holds because in the elimination rounds all
alive actions are tried exactly once by Balaton.)

Let (Fn)n be the filtration defined as Fn = σ(uk(m); 1 ≤ k ≤ N, 1 ≤ m ≤ n). We
also introduce the notations En[·] = E[·|Fn] and Varn(·) = Var(·|Fn), the conditional ex-
pectation and conditional variance operators corresponding to Fn. Note that Fn contains
the information known to Balaton (and more) at the end of the elimination round n.
Our first (trivial) observation is that µ(i,j)(n), the estimate of αi,j obtained in round n
is Fn-measurable. The next lemma establishes that, furthermore, µ(i,j)(n) is an unbiased
estimate of αi,j :

Lemma 5 For any n ≥ 1 and i, j such that Ci, Cj ∈ C, En−1[µ(i,j)(n)] = αi,j.

Proof Consider first the case when actions i and j are neighbors. In this case,

µ(i,j)(n) =
∑
k∈Ai,j

Ok(n)>v(i,j),k =
∑
k∈Ai,j

(Skuk(n))>v(i,j),k =
∑
k∈Ai,j

uk(n)>S>k v(i,j),k ,

and thus

En−1

[
µ(i,j)(n)

]
=
∑
k∈Ai,j

En−1

[
uk(n)>

]
S>k v(i,j),k = p∗>

∑
k∈Ai,j

S>k v(i,j),k = p∗>S>(i,j)v(i,j)

= p∗>(`i − `j) = αi,j .

For non-adjacent i and j, we have a telescoping sum:

En−1

[
µ(i,j)(n)

]
=

r∑
k=1

En−1[µ(ik−1,ik)(n)]

= p∗>
(
`i0 − `i1 + `i1 − `i2 + · · ·+ `ir−1 − `ir

)
= αi,j ,

where i = i0, i1, . . . , ir = j is the path the algorithm uses in round n, known at the end of
round n− 1.

Lemma 6 The conditional variance of µ(i,j)(n), Varn−1(µ(i,j)(n)), is upper bounded by
V = 2

∑
{i,j neighbors} ‖v(i,j)‖22.

Proof For neighboring cells i, j, we write

µ(i,j)(n) =
∑
k∈Ai,j

Ok(n)>v(i,j),k and thus

Varn−1(µ(i,j)(n)) = Varn−1

 ∑
k∈Ai,j

Ok(n)>v(i,j),k


=
∑
k∈Ai,j

En−1

[
v>(i,j),k(Ok(n)− En−1[Ok(n)])(Ok(n)− En−1[Ok(n)])>v(i,j),k

]
≤
∑
k∈Ai,j

‖v(i,j),k‖22 En−1

[
‖Ok(n)− En−1[Ok(n)]‖22

]
≤
∑
k∈Ai,j

‖v(i,j),k‖22 = ‖v(i,j)‖22 , (4)

143

Bartók Pál Szepesvári

where in (4) we used that Ok(n) is a unit vector and En−1[Ok(n)] is a probability vector.
For i, j non-neighboring cells, let i = i0, i1, . . . , ir = j the path used for the estimate in

round n. Then µ(i,j)(n) can be written as

µ(i,j)(n) =
r∑
s=1

µ(is−1,is)(n) =
r∑
s=1

∑
k∈Ais−1,is

Ok(n)>v(is−1,is),k .

It is not hard to see that an action can only be in at most two neighborhood action sets in
the path and so the double sum can be rearranged as∑

k∈
⋃
Ais−1,is

Ok(n)>(v(isk−1,isk),k + v(isk isk+1),k) ,

and thus Varn−1

(
µ(i,j)(n)

)
≤ 2

∑r
s=1 ‖v(is−1,is)‖22 ≤ 2

∑
{i,j neighbors} ‖v(i,j)‖22.

Lemma 7 The range of the estimates µ(i,j)(n) is upper bounded
by R =

∑
{i,j neighbors} ‖v(i,j)‖1.

Proof The bound trivially follows from the definition of the estimates.

Let δ be the confidence parameter used in BStopStep. Since, according to Lemmas 5,
6 and 7, (µ(i,j)) is a “shifted” martingale difference sequence with conditional mean αi,j ,
bounded conditional variance and range, we can apply Lemma 11 stated in the Appendix.
By the union bound, the probability that any of the confidence bounds fails during the game
is at most N2δ. Thus, with probability at least 1 − N2δ, if BStopStep returns true for
a pair (i, j) then sgn(αi,j) = sgn(µ(i,j)) and the algorithm eliminates all the actions whose

cell is contained in the closed half space defined by H = {p : sgn(αi,j)p
>(`i − `j) ≤ 0}.

By definition αi,j = (`i − `j)>p∗. Thus p∗ /∈ H and none of the eliminated actions can be
optimal under p∗.

From Lemma 11 we also see that, with probability at least 1−N2δ, the number of times
τ∗i the algorithm experiments with a suboptimal action i during the elimination phase is
bounded by

τ∗i ≤
c(G)

α2
i,j∗

log
R

δαi,j∗
= Ti , (5)

where c(G) = C(V +R) is a problem dependent constant.
The following lemma, the proof of which can be found in the Appendix, shows that

degenerate actions will be eliminated in time.

Lemma 8 Let action i be a degenerate action. Let Ai = {j : Cj ∈ C, Ci ⊂ Cj}. The
following two statements hold:

1. If any of the actions in Ai is eliminated, then action i is eliminated as well.

2. There exists an action ki ∈ Ai such that αki,j∗ ≥ αi,j∗.

144

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

An immediate implication of the first claim of the lemma is that if action ki gets eliminated
then action i gets eliminated as well, that is, the number of times action i is chosen cannot
be greater then that of action ki. Hence, τ∗i ≤ τ∗ki .

Let E be the complement of the failure event underlying the stopping rules. As discussed
earlier, P(Ec) ≤ N2δ. Note that on E , i.e., when the stopping rules do not fail, no suboptimal
action can remain for the final phase. Hence, τiI(E) ≤ τ∗i I(E), where τi is the number of
times action i is chosen by the algorithm. To upper bound the expected regret we continue
from (2) as

N∑
i=1

E [τi]αi,j∗ =

N∑
i=1

E [I(E)τi]αi,j∗ + P(Ec)T (because
∑N

i=1 τi = T and 0 ≤ αi,j∗ ≤ 1)

≤
N∑
i=1

E [I(E)τ∗i]αi,j∗ +N2δT

≤
∑

i: Ci∈C
E [I(E)τ∗i]αi,j∗ +

∑
i: Ci 6∈C

E [I(E)τ∗i]αi,j∗ +N2δT

≤
∑

i: Ci∈C
E [I(E)τ∗i]αi,j∗ +

∑
i: Ci 6∈C

E
[
I(E)τ∗ki

]
αki,j∗ +N2δT (by Lemma 8)

≤
∑

i: Ci∈C
Tiαi,j∗ +

∑
i: Ci 6∈C

Tkiαki,j∗ +N2δT

≤
∑

i: Ci∈C
αi,j∗≥α0

Tiαi,j∗ +
∑

i: Ci 6∈C
αki,j

∗≥α0

Tkiαki,j∗ +
(
α0 +N2δ

)
T

≤ c(G)

 ∑
i: Ci∈C
αi,j∗≥α0

log R
δαi,j∗

αi,j∗
+

∑
i: Ci 6∈C
αki,j

∗≥α0

log R
δαki,j

∗

αki,j∗

+
(
α0 +N2δ

)
T

≤ c(G)N
log R

δα0

α0
+
(
α0 +N2δ

)
T ,

The above calculation holds for any value of α0 > 0. Setting

α0 =

√
c(G)N

T
and δ =

√
c(G)

TN3
, we get

E [RT] ≤
√
c(G)NT log

(
RTN2

c(G)

)
.

In conclusion, if we run Balaton with parameter δ =
√

c(G)
TN3 , the algorithm suffers regret

of Õ(
√
T), finishing the proof.

6. A lower bound for hard games

In this section we prove that for any game that satisfies the condition of Case (d) of Theo-
rem 4, the minimax regret is of Ω(T 2/3).

145

Bartók Pál Szepesvári

Theorem 9 Let G = (L,H) be an N by M partial-monitoring game. Assume that there
exist two neighboring actions i and j such that `i − `j 6∈ ImS>(i,j). Then there exists a

problem dependent constant c(G) such that for any algorithm A and time horizon T there
exists an opponent strategy p such that the expected regret satisfies

E[RT (A, p)] ≥ c(G)T 2/3 .

Proof Without loss of generality we can assume that the two neighbor cells in the condition
are C1 and C2. Let C3 = C1∩C2. For i = 1, 2, 3, let Ai be the set of actions associated with
cell Ci. Note that A3 may be the empty set. Let A4 = A\(A1∪A2∪A3). By our convention
for naming loss vectors, `1 and `2 are the loss vectors for C1 and C2, respectively. Let L3

collect the loss vectors of actions which lie on the open segment connecting `1 and `2. It is
easy to see that L3 is the set of loss vectors that correspond to the cell C3. We define L4

as the set of all the other loss vectors. For i = 1, 2, 3, 4, let ki = |Ai|.
Let S = Si,j the signal matrix of the neighborhood action set of C1 and C2. It follows

from the assumption of the theorem that `2 − `1 6∈ Im(S>). Thus, {ρ(`2 − `1) : ρ ∈ R} 6⊂
Im(S>), or equivalently, (`2 − `1)⊥ 6⊃ KerS, where we used that (ImM)⊥ = Ker(M>).
Thus, there exists a vector v such that v ∈ KerS and (`2 − `1)>v 6= 0. By scaling we can
assume that (`2− `1)>v = 1. Note that since v ∈ KerS and the rowspace of S contains the
vector (1, 1, . . . , 1), the coordinates of v sum up to zero.

Let p0 be an arbitrary probability vector in the relative interior of C3. It is easy to see
that for any ε > 0 small enough, p1 = p0 + εv ∈ C1 \ C2 and p2 = p0 − εv ∈ C2 \ C1.

Let us fix a deterministic algorithm A and a time horizon T . For i = 1, 2, let R
(i)
T

denote the expected regret of the algorithm under opponent strategy pi. For i = 1, 2 and
j = 1, . . . , 4, let N i

j denote the expected number of times the algorithm chooses an action
from Aj , assuming the opponent plays strategy pi.

From the definition of L3 we know that for any ` ∈ L3, ` − `1 = η`(`2 − `1) and
`− `2 = (1−η`)(`1− `2) for some 0 < η` < 1. Let λ1 = min`∈L3 η` and λ2 = min`∈L3(1−η`)
and λ = min(λ1, λ2) if L3 6= ∅ and let λ = 1/2, otherwise. Finally, let βi = min`∈L4(`−`i)>pi
and β = min(β1, β2). Note that λ, β > 0.

As the first step of the proof, we lower bound the expected regret R
(1)
T and R

(2)
T in terms

of the values N i
j , ε, λ and β:

R
(1)
T ≥ N

1
2

ε︷ ︸︸ ︷
(`2 − `1)>p1 +N1

3λ(`2 − `1)>p1 +N1
4β ≥ λ(N1

2 +N1
3)ε+N1

4β ,

R
(2)
T ≥ N

2
1 (`1 − `2)>p2︸ ︷︷ ︸

ε

+N2
3λ(`1 − `2)>p2 +N2

4β ≥ λ(N2
1 +N2

3)ε+N2
4β .

(6)

For the next step, we need the following lemma.

Lemma 10 There exists a (problem dependent) constant c such that the following inequal-
ities hold:

N2
1 ≥ N1

1 − cTε
√
N1

4 , N2
3 ≥ N1

3 − cTε
√
N1

4 ,

N1
2 ≥ N2

2 − cTε
√
N2

4 , N1
3 ≥ N2

3 − cTε
√
N2

4 .

146

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

Proof (Lemma 10) For any 1 ≤ t ≤ T , let f t = (f1, . . . , ft) ∈ Σt be a feedback sequence
up to time step t. For i = 1, 2, let p∗i be the probability mass function of feedback sequences
of length T − 1 under opponent strategy pi and algorithm A. We start by upper bounding
the difference between values under the two opponent strategies. For i 6= j ∈ {1, 2} and
k ∈ {1, 2, 3},

N i
k −N

j
k =

∑
fT−1

(
p∗i (f

T−1)− p∗j (fT−1)
) T−1∑
t=0

I(A(f t) ∈ Ak)

≤
∑
fT−1:

p∗i (fT−1)−p∗j (fT−1)≥0

(
p∗i (f

T−1)− p∗j (fT−1)
) T−1∑
t=0

I(A(f t) ∈ Ak)

≤ T
∑
fT−1:

p∗i (fT−1)−p∗j (fT−1)≥0

p∗i (f
T−1)− p∗j (fT−1) =

T

2
‖p∗1 − p∗2‖1

≤ T
√

KL(p∗1||p∗2)/2 , (7)

where KL(·||·) denotes the Kullback-Leibler divergence and ‖ · ‖1 is the L1-norm. The last
inequality follows from Pinsker’s inequality (Cover and Thomas, 2006). To upper bound
KL(p∗1||p∗2) we use the chain rule for KL-divergence. By overloading p∗i so that p∗i (f

t−1)
denotes the probability of feedback sequence f t−1 under opponent strategy pi and algorithm
A, and p∗i (ft|f t−1) denotes the conditional probability of feedback ft ∈ Σ given that the
past feedback sequence was f t−1, again under pi and A. With this notation we have

KL(p∗1||p∗2) =
T−1∑
t=1

∑
f t−1

p∗1(f t−1)
∑
ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

=
T−1∑
t=1

∑
f t−1

p∗1(f t−1)
4∑
i=1

I(A(f t−1) ∈ Ai)
∑
ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)
(8)

Let a>ft be the row of S that corresponds to the feedback symbol ft.
7 Assume k = A(f t−1).

If the feedback set of action k does not contain ft then trivially p∗i (ft|f t−1) = 0 for i = 1, 2.
Otherwise p∗i (ft|f t−1) = a>ftpi. Since p1 − p2 = 2εv and v ∈ KerS, we have a>ftv = 0 and

thus, if the choice of the algorithm is in either A1, A2 or A3, then p∗1(ft|f t−1) = p∗2(ft|f t−1).
It follows that the inequality chain can be continued from (8) by writing

KL(p∗1||p∗2) ≤
T−1∑
t=1

∑
f t−1

p∗1(f t−1)I(A(f t−1) ∈ A4)
∑
ft

p∗1(ft|f t−1) log
p∗1(ft|f t−1)

p∗2(ft|f t−1)

≤ c1ε
2
T−1∑
t=1

∑
f t−1

p∗1(f t−1)I(A(f t−1) ∈ A4) (9)

≤ c1ε
2N1

4 .

7. Recall that we assumed that different actions have difference feedback symbols, and thus a row of S
corresponding to a symbol is unique.

147

Bartók Pál Szepesvári

In (9) we used Lemma 12 (see Appendix) to upper bound the KL-divergence of p1 and p2.
Flipping p∗1 and p∗2 in (7) we get the same result with N2

4 . Reading together with the bound
in (7) we get all the desired inequalities.

Now we can continue lower bounding the expected regret. Let r = argmini∈{1,2}N
i
4. It

is easy to see that for i = 1, 2 and j = 1, 2, 3,

N i
j ≥ N r

j − c2Tε
√
N r

4 .

If i 6= r then this inequality is one of the inequalities from Lemma 10. If i = r then it is a
trivial lower bounding by subtracting a positive value. From (6) we have

R
(i)
T ≥ λ(N i

3−i +N i
3)ε+N i

4β

≥ λ(N r
3−i − c2Tε

√
N r

4 +N r
3 − c2Tε

√
N r

4)ε+N r
4β

= λ(N r
3−i +N r

3 − 2c2Tε
√
N r

4)ε+N r
4β .

Now assume that, at the beginning of the game, the opponent randomly chooses between
strategies p1 and p2 with equal probability. The the expected regret of the algorithm is
lower bounded by

RT =
1

2

(
R

(1)
T +R

(2)
T

)
≥ 1

2
λ(N r

1 +N r
2 + 2N r

3 − 4c2Tε
√
N r

4)ε+N r
4β

≥ 1

2
λ(N r

1 +N r
2 +N r

3 − 4c2Tε
√
N r

4)ε+N r
4β

=
1

2
λ(T −N r

4 − 4c2Tε
√
N r

4)ε+N r
4β .

Choosing ε = c3T
−1/3 we get

RT ≥
1

2
λc3T

2/3 − 1

2
λN r

4 c3T
−1/3 − 2λc2c

2
3T

1/3
√
N r

4 +N r
4β

≥ T 2/3

((
β − 1

2
λc3

)
N r

4

T 2/3
− 2λc2c

2
3

√
N r

4

T 2/3
+

1

2
λc3

)

= T 2/3

((
β − 1

2
λc3

)
x2 − 2λc2c

2
3x+

1

2
λc3

)
,

where x =
√
N r

4/T
2/3. Now we see that c3 > 0 can be chosen to be small enough, in-

dependently of T so that, for any choice of x, the quadratic expression in the parenthesis
is bounded away from zero, and simultaneously, ε is small enough so that the threshold
condition in Lemma 12 is satisfied, completing the proof of Theorem 9.

148

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

7. Discussion

In this we paper we classified all finite partial-monitoring games under stochastic envi-
ronments, based on their minimax regret. We conjecture that our results extend to non-
stochastic environments. This is the major open question that remains to be answered.

One question which we did not discuss so far is the computational efficiency of our
algorithm. The issue is twofold. The first computational question is how to efficiently
decide which of the four classes a given game (L,H) belongs to. The second question is
the computational efficiency of Balaton for a fixed easy game. Fortunately, in both cases
an efficient implementation is possible, i.e., in polynomial time by using a linear program
solver (e.g., the ellipsoid method (Papadimitriou and Steiglitz, 1998)).

Another interesting open question is to investigate the dependence of regret on quantities
other than T such as the number of actions, the number of outcomes, and more generally
the structure of the loss and feedback matrices.

Finally, let us note that our results can be extended to a more general framework, similar
to that of Pallavi et al. (2011), in which a game with N actions and M -dimensional outcome
space is defined as a tuple G = (L, S1, . . . , SN). The loss matrix is L ∈ RN×M as before,
but the outcome and the feedback are defined differently. The outcome y is an arbitrary
vector from a bounded subset of RM and the feedback received by the learner upon choosing
action i is Oi = Siy.

References

Jacob Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. In Proceedings of the 21st Annual Conference
on Learning Theory (COLT 2008), pages 263–273. Citeseer, 2008.

Alekh Agarwal, Peter Bartlett, and Max Dama. Optimal allocation strategies for the dark
pool problem. In 13th International Conference on Artificial Intelligence and Statistics
(AISTATS 2010), May 12-15, 2010, Chia Laguna Resort, Sardinia, Italy, 2010.

András Antos, Gábor Bartók, Dávid Pál, and Csaba Szepesvári. Toward a classification of
finite partial-monitoring games, 2011. http://arxiv.org/abs/1102.2041.

Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic
bandits. In Proceedings of the 22nd Annual Conference on Learning Theory, 2009.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

Gábor Bartók, Dávid Pál, and Csaba Szepesvári. Toward a Classification of Finite Partial-
Monitoring Games. In Proceedings of the 21st international conference on Algorithmic
Learning Theory (ALT 2010), pages 224–238. Springer, 2010.

Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient
prediction. IEEE Transactions on Information Theory, 51(6):2152–2162, June 2005.

Nicoló Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret minimization under partial
monitoring. Mathematics of Operations Research, 31(3):562–580, 2006.

149

http://arxiv.org/abs/1102.2041

Bartók Pál Szepesvári

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, New York,
second edition, 2006.

Abraham D. Flaxman, Adam Tauman Kalai, and H. Brendan McMahan. Online convex
optimization in the bandit setting: gradient descent without a gradient. In Proceedings
of the 16th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), page
394. Society for Industrial and Applied Mathematics, 2005.

Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds on
regret for online posted-price auctions. In Proceedings of 44th Annual IEEE Symposium
on Foundations of Computer Science 2003 (FOCS 2003), pages 594–605. IEEE, 2003.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information
and Computation, 108:212–261, 1994.

Gábor Lugosi and Nicolò Cesa-Bianchi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

V. Mnih. Efficient stopping rules. Master’s thesis, Department of Computing Science,
University of Alberta, 2008.

V. Mnih, Cs. Szepesvári, and J.-Y. Audibert. Empirical Bernstein stopping. In W. W.
Cohen, A. McCallum, and S. T. Roweis, editors, ICML 2008, pages 672–679. ACM, 2008.

A. Pallavi, R. Zheng, and Cs. Szepesvári. Sequential learning for optimal monitoring of
multi-channel wireless networks. In INFOCOMM, 2011.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial optimization: algorithms
and complexity. Courier Dover Publications, New York, 1998.

Antonio Piccolboni and Christian Schindelhauer. Discrete prediction games with arbitrary
feedback and loss. In Proceedings of the 14th Annual Conference on Computational Learn-
ing Theory (COLT 2001), pages 208–223. Springer-Verlag, 2001.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.
In Proceedings of Twentieth International Conference on Machine Learning (ICML 2003),
2003.

150

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

Appendix

Proof (Lemma 8)

1. In an elimination set, we eliminate every action whose cell is contained in a closed
half space. Let us assume that j ∈ Ai is being eliminated. According to the definition
of Ai, Ci ⊂ Cj and thus Ci is also contained in the half space.

2. First let us assume that p∗ is not in the affine subspace spanned by Ci. Let p be an
arbitrary point in the relative interior of Ci. We define the point p′ = p + ε(p − p∗).
For a small enough ε > 0, p′ ∈ Ck ∈ Ai, and at the same time, p′ 6∈ Ci. Thus we have

`>k (p+ ε (p− p∗)) ≤ `>i (p+ ε (p− p∗))
(1 + ε)`>k p− ε`>k p∗ ≤ (1 + ε)`>i p− ε`>i p∗

−ε`>k p∗ ≤ −ε`>i p∗

`>k p
∗ ≥ `>i p∗

αk,j∗ ≥ αi,j∗ ,

where we used that `>k p = `>i p.

For the case when p∗ lies in the affine subspace spanned by Ci, We take a hyperplane
that contains the affine subspace. Then we take an infinite sequence (pn)n such that
every element of the sequence is in the same side of the hyperplane, pn 6= p∗ and the
sequence converges to p∗. Then the statement is true for every element pn and, since
the value αr,s is continuous in p, the limit has the desired property as well.

The following lemma concerns the problem of producing an estimate of an unknown
mean of some stochastic process with a given relative error bound and with high probability
in a sample-efficient manner. The procedure is a simple variation of the one proposed by
Mnih et al. (2008). The main differences are that here we deal with martingale difference
sequences shifted by an unknown constant, which becomes the common mean, whereas
Mnih et al. (2008) considered an i.i.d. sequence. On the other hand, we consider the case
when we have a known upper bound on the predictable variance of the process, whereas
one of the main contributions of Mnih et al. (2008) was the lifting of this assumption. The
proof of the lemma is omitted, as it follows the same lines as the proof of results of Mnih
et al. (2008) (the details of these proofs are found in the thesis of (Mnih, 2008)), the only
difference being, that here we would need to use Bernstein’s inequality for martingales, in
place of the empirical Bernstein inequality, which was used by Mnih et al. (2008).

Lemma 11 Let (Ft) be a filtration on some probability space, and let (Xt) be an Ft-adapted
sequence of random variables. Assume that (Xt) is such that, almost surely, the range of
each random variable Xt is bounded by R > 0, E[Xt|Ft−1] = µ, and Var[Xt|Ft−1] ≤ σ2

a.s., where R, µ 6= 0 and σ2 are non-random constants. Let p > 1, ε > 0, 0 < δ < 1 and let

Ln = (1 + ε) max
1≤t≤n

{
|Xt| − ct

}
, and Un = (1− ε) min

1≤t≤n

{
|Xt|+ ct

}
,

151

Bartók Pál Szepesvári

where ct = c(σ,R, t, δ), and c(·) is defined in (1). Define the estimate µ̂n of µ as follows:

µ̂n = sgn(Xn)
(1 + ε)Ln + (1− ε)Un

2
.

Denote the stopping time τ = min{n : Ln ≥ Un}. Then, with probability at least 1− δ,

|µ̂τ − µ| ≤ ε |µ| and τ ≤ C ·max

(
σ2

ε2µ2
,
R

ε|µ|

)(
log

1

δ
+ log

R

ε|µ|

)
,

where C > 0 is a universal constant.

Lemma 12 Fix a probability vector p ∈ ∆M , and let ε ∈ RM such that p − ε, p + ε ∈ ∆M

also holds. Then
KL(p− ε||p+ ε) = O(‖ε‖22) as ε→ 0.

The constant and the threshold in the O(·) notation depends on p.

Proof Since p, p + ε, and p − ε are all probability vectors, notice that |ε(i)| ≤ p(i) for
1 ≤ i ≤M . So if a coordinate of p is zero then the corresponding coordinate of ε has to be
zero as well. As zero coordinates do not modify the KL divergence, we can assume without
loss of generality that all coordinates of p are positive. Since we are interested only in the
case when ε → 0, we can also assume without loss of generality that |ε(i)| ≤ p(i)/2. Also
note that the coordinates of ε = (p+ ε)− ε have to sum up to zero. By definition,

KL(p− ε||p+ ε) =
M∑
i=1

(p(i)− ε(i)) log
p(i)− ε(i)
p(i) + ε(i)

.

We write the term with the logarithm

log
p(i)− ε(i)
p(i) + ε(i)

= log

(
1− ε(i)

p(i)

)
− log

(
1 +

ε(i)

p(i)

)
,

so that we can use that, by second order Taylor expansion around 0, log(1−x)−log(1+x) =
−2x+ r(x), where |r(x)| ≤ c|x|3 for |x| ≤ 1/2 and some c > 0. Combining these equations,
we get

KL(p− ε||p+ ε) =
M∑
i=1

(p(i)− ε(i))
[
−2

ε(i)

p(i)
+ r

(
ε(i)

p(i)

)]

=

M∑
i=1

−2ε(i) +

M∑
i=1

2
ε2(i)

p(i)
+

M∑
i=1

(p(i)− ε(i))r
(
ε(i)

p(i)

)
.

152

Minimax Regret of Finite Partial-Monitoring Games in Stochastic Environments

Here the first term is 0, letting p = mini∈{1,...,M} p(i) the second term is bounded by

2
∑M

i=1 ε
2(i)/p = (2/p)‖ε‖22, and the third term is bounded by

M∑
i=1

(p(i)− ε(i))
∣∣∣∣r(ε(i)p(i)

)∣∣∣∣ ≤ c M∑
i=1

p(i)− ε(i)
p3(i)

|ε(i)|3

≤ c
M∑
i=1

|ε(i)|
p2(i)

ε2(i)

≤ c

2

M∑
i=1

1

p
ε2(i) =

c

2p
‖ε‖22.

Hence, KL(p− ε||p+ ε) ≤ 4+c
2p ‖ε‖

2
2 = O(‖ε‖22).

153

Bartók Pál Szepesvári

154

	Introduction
	Preliminaries
	Classification of finite partial-monitoring games
	Example

	Balaton: An algorithm for easy games
	Analysis of the algorithm
	A lower bound for hard games
	Discussion

