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Abstract

A dependent hierarchical beta process
(dHBP) is developed as a prior for data that
may be represented in terms of a sparse set
of latent features, with covariate-dependent
feature usage. The dHBP is applicable to
general covariates and data models, imposing
that signals with similar covariates are likely
to be manifested in terms of similar features.
Coupling the dHBP with the Bernoulli pro-
cess, and upon marginalizing out the dHBP,
the model may be interpreted as a covariate-
dependent hierarchical Indian buffet process.
As applications, we consider interpolation
and denoising of an image, with covariates
defined by the location of image patches
within an image. Two types of noise mod-
els are considered: (i) typical white Gaus-
sian noise; and (ii) spiky noise of arbitrary
amplitude, distributed uniformly at random.
In these examples, the features correspond
to the atoms of a dictionary, learned based
upon the data under test (without a priori
training data). State-of-the-art performance
is demonstrated, with efficient inference us-
ing hybrid Gibbs, Metropolis-Hastings and
slice sampling.

1 INTRODUCTION

There has been significant recent interest in the Indian
buffet process (IBP) (Griffiths and Ghahramani, 2005;
Knowles and Ghahramani, 2007; Miller et al., 2008;
Rai and Daumé, 2008; Williamson et al., 2010) and in
the related beta process (BP) (Paisley and Carin, 2009;
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Teh and Gorur, 2009; Thibaux and Jordan, 2007; Zhou
et al., 2009). These models have been applied to factor
analysis to infer a set of factors (features/dictionary
atoms) with which data may be sparsely represented.
In many applications the signal (and hence features)
are dependent on observable covariates. For example,
in image-processing applications (Mairal et al., 2009,
2008; Zhou et al., 2009) one often represents an image
in terms of a set of local patches (each composed of
a contiguous subset of pixels), and the objective is to
represent each patch as a sparse linear combination of
dictionary atoms (features). All patches are processed
jointly, and it is desirable to account for their spa-
tial locations (the covariates in this application) when
learning the underlying dictionary.

For sparse image analysis, xi ∈ RP represents the
ith image and {xi}i=1,N represents the set of im-
ages under analysis. The xi may represent the ith
of N patches from a single image, or it may repre-
sent the ith entire image in a set of N ; in both cases,
all N images {xi}i=1,N are analyzed jointly (“collab-
oratively”). Each xi is assumed to be represented as
a linear combination of a sparse set of atoms from a
dictionary D ∈ RP×K , where the columns of D repre-
sent dictionary atoms. A prior is placed on D, and
a posterior density function on D is to be learned
in situ, based on {xi}i=1,N (no additional training
data). Further, the size of the dictionary (total num-
ber of active atoms across all xi) is unknown, and to
be inferred. Specifically, xi = Dαi + εi, where αi
is sparse and εi represents noise or residual. A prior
is placed on {εi}i=1,N , and the statistics of the resid-
ual/noise are also to be inferred. In recent research, it
has been demonstrated that the beta process (BP) and
Bernoulli process (BeP) may be coupled to constitute
a prior on {αi}i=1,N and D (Zhou et al., 2009), to im-
pose the desired sparseness and to infer the dictionary
size and composition.

One may wish to impose a prior belief that samples
(here {xi}i=1,N ) with similar covariates are likely to
employ the same or similar factors; this is related to
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previous work on joint sparse analysis of multiple data
vectors, but in that work (Chen and Huo, 2006; Mishali
and Eldar, 2008; Tropp, 2006) covariates were not ex-
plicitly employed. To address this challenge, we de-
velop a new model, termed the dependent hierarchical
beta process (dHBP), and relate it (via the Bernoulli
process) to a dependent hierarchical IBP.

Using the IBP metaphor, the proposed model imposes
that data (“customers”) that are far away from each
other in covariate space interact and possibly share
atoms/parameters (“dishes”) via a “global buffet”;
this global buffet is manifested as in a conventional
IBP, and reflects dish popularity across all data. How-
ever, customers that are closer to each other in co-
variate space tend to have more sharing, manifested
by “local buffets” that reflect popularity of dishes in
local neighborhoods of covariate space.

1.1 Related Models

The phylogenetic IBP removes the assumption of sam-
ple exchangeability by imposing prior knowledge on
inter-sample relationships via a tree structure (Miller
et al., 2008). The form of the tree may be constituted
as a result of covariates that are available with the
samples, but the tree is not necessarily unique, and
therefore it may be desirable in some applications to
design a model based on the covariates directly. To-
ward this end, a dependent IBP (dIBP) model has
been introduced recently, with a hierarchical Gaussian
process (GP) used to account for covariate dependence
(Williamson et al., 2010), with the covariates embed-
ded into the covariance matrix through a kernel. For
the problem of interest here, when considering a poten-
tial set of K features and N samples, one need perform
K N -dimensional GP draws, which may be expensive
for the large N and K of interest in large-scale applica-
tions. The proposed model is most related to Bayesian
density regression (BDR) (Dunson et al., 2007). The
original BDR construction was developed for models
based on the Dirichlet process (DP), and here we ex-
tend it to a beta-Bernoulli process construction. Ad-
ditionally, we here develop a covariate-dependent hier-
archical beta process, related to the work in (Thibaux
and Jordan, 2007), while (Dunson et al., 2007) did not
consider a hierarchical DP.

1.2 Contributions

In this paper a new dependent hierarchical beta pro-
cess is developed, its properties analyzed, and an ef-
ficient framework is constituted for analysis of large-
scale problems. Efficient inference is performed by in-
tegrating Gibbs, Metropolis-Hastings and slice sam-
pling. The model is applied to image interpolation
and denoising, where in this case the samples corre-

spond to patches of pixels within the image, and the
covariates are linked to the position of the patches
within the overall image. For the denoising applica-
tions we jointly consider two types of noise: (i) tradi-
tional white Gaussian noise; and (ii) sparse spiky noise
of arbitrary amplitude, situated uniformly at random
within the image. The noise considered in (ii) gener-
alizes ideas from robust principal components analysis
(PCA) (Candès et al., 2011; Chandrasekaran et al.,
2009; Wright et al., 2009) to a new class of problems.

2 PRELIMINARIES

We review the BP, BeP and IBP, to set notation and
to motivate the need to account for covariates; we
follow (Thibaux and Jordan, 2007). A beta process
B ∼ BP(c,B0) is a positive random measure on a
space Ω, where c is a positive function over Ω, and B0

is a fixed measure on Ω, called the base measure; we as-
sume c is a constant. If B0 is non-atomic, then a draw
B may be represented as B =

∑∞
k=1 pkδωk , where ωk

are i.i.d. draws from B/B(Ω) and pk are i.i.d. draws
from a degenerate beta distribution with parameter
c. If B0 is discrete and of the form B0 =

∑
k qkδωk ,

then B =
∑
k pkδωk , with pk ∼ Beta(cqk, c(1 − qk)).

If B0 is mixed discrete-continuous, B is the sum of
the two independent contributions. We now con-
sider a draw X ∼ BeP(B) from a Bernoulli pro-
cess, for measure B on Ω. If B is continuous, then
X =

∑K
k=1 δωk , where K ∼ Poisson(B(Ω)), and ωk

are i.i.d. draws from B0/B0(Ω). If B is discrete and
of the form B =

∑
k pkδωk , then X =

∑
k bkδωk , where

the bk ∼ Bernoulli(pk) independently.

If we consider B ∼ BP(c,B0) and Xi ∼ BeP(B), for
i = 1, . . . , n, then the posterior distribution of B is

B|{Xi}i=1,n ∼ BP

(
c+ n,

c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi

)
Hence, the BP is the conjugate prior for the BeP. Fur-
ther, by integrating out B

Xn+1|{Xi}i=1,n ∼ BeP

(
c

c+ n
B0 +

1

c+ n

n∑
i=1

Xi

)
.

Note that 1
c+n

∑n
i=1Xi =

∑
k
mn,k
c+n δωk , where ωk rep-

resent the unique dishes/atoms selected by the first
n “customers” and mn,k represents the number of
customers selecting the kth dish ωk. Additionally,
Xn+1|{Xi}i=1,n = U + V , where U ∼ BeP( c

c+nB0)

and V ∼ BeP( 1
c+n

∑n
i=1Xi). Thibaux and Jordan

(Thibaux and Jordan, 2007) explicitly relate the above
construction to the Indian buffet process (Griffiths and
Ghahramani, 2005).

Note that the posteriors p(B|{Xi}i=1,n) and
p(Xn+1|{Xi}i=1,n) are only dependent on the
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count of atom usage among {Xi}i=1,n, and therefore
the order of the {Xi}i=1,n may be interchanged
with no change in the posterior probabilities. This
exchangeability assumption is inappropriate in many
applications, and motivates the proposed model.

3 DEPENDENT HIERARCHICAL
BETA PROCESS

3.1 Model Constructon

We consider data {xi}i=1,N with xi ∈ RP , and our
objective is again to associate a set of features repre-
sented by Xi =

∑
k δωk with sample xi. We also now

introduce a corresponding set of covariates {`i}i=1,N .
The form of the covariates is general, but to be ex-
plicit, we here assume `i ∈ RL. The covariates are
used to impose relationships between the N samples,
summarized by a matrix A ∈ RN×N , where each row
of A sums to one, and its (i, j)th component is

aij = K(`i, `j)

/ N∑
j′=1

K(`i, `j′) (1)

where K(`i, `j) is a kernel which diminishes with in-
creasing distance between `i and `j and has the prop-
erties 0 ≤ K(`i, `j) ≤ 1 and K(`i, `i) = 1. The matrix
A is analogous to the random-walk matrix associated
with diffusion analysis methods (Nadler et al., 2005).

A measure Bi is associated with each sample i:

Bi =

N∑
j=1

aijB
∗
j , B∗j ∼ BP(c1, B) , B ∼ BP(c0, B0)

(2)
where c0 and c1 are positive constants, and B0 is a
base measure on Ω. The latent feature vector Xi ∼
BeP(Bi) is associated with each sample i. The rela-
tionship between the B∗j and B is analogous to the hi-
erarchical BP in (Thibaux and Jordan, 2007), but now
the covariate-dependent sample inter-relationships are
accounted for via the aij . To help elucidate its prop-
erties, we express the dHBP in an alternative manner,
introducing the latent indicator Zi, as

Xi ∼ BeP(B∗Zi) , Zi ∼
∑N
j=1 aijδj ,

B∗j ∼ BP(c1, B) , B ∼ BP(c0, B0). (3)

If we marginalize out {B∗i }i=1,N and B, the {Xi}i=1,N
may be generated as follows, as a covariate-dependent
generalization of the Indian buffet process (IBP).

ForX1, which is associated with x1, we first draw Z1 ∼∑N
j=1 a1jδj ; X1 is drawn from BeP(B∗Z1

), meaning

M1 ∼ Poisson(B0(Ω)) atoms {ωk}k=1,M1
are drawn

from the base measure B0, and X1 =
∑M1

k=1 δωk . We
now have

B∗i |i 6= Z1 ∼ BP(c1, B)

B∗Z1
|X1 ∼ BP

(
c1 + 1,

c1
c1 + 1

B +
1

c1 + 1
X1

)
B|Xg1 ∼ BP

(
c0 + 1,

c0
c0 + 1

B0 +
1

c0 + 1
Xg1

)
,

where X1 = Xg1. For X2, we draw Z2 ∼
∑N
j=1 a2jδj .

If Z2 6= Z1, then X2 ∼ BeP( c0
c0+1B0 + 1

c0+1Xg1). In
this case the M1 atoms in Xg1 are selected for inclu-
sion in X2 via i.i.d. sampling from Bernoulli( 1

c0+1 ).
Further, M2 ∼ Poisson( c0

c0+1B0(Ω)) new atoms are
drawn i.i.d. from B0; X2 is a sum of the selected
atoms from Xg1 as well as the new draw of M2 atoms,
and in this case again X2 = Xg2. On the other hand,
if Z2 = Z1, we need to distinguish dishes selected off
the “local” buffet from those selected off the “global”
buffet. Since X2 ∼ BeP( c1

c1+1B+ 1
c1+1X1), in this case

X2 selects from among the M1 atoms of X1 on the
“local” buffet, these drawn i.i.d. as Bernoulli( 1

c1+1 ); it
also selects M2 ∼ Poisson( c1

c1+1
c0
c0+1B0(Ω)) new atoms

drawn i.i.d. from B0; finally, it selects from among
the atoms in Xg1 on the “global” buffet, drawn i.i.d.
Bernoulli( c1

c1+1
1

c0+1 ). The vector X2 is represented as
a sum of all selected atoms, as well as the new set
of M2 atoms; Xg2 corresponds only to the new atoms
and the ones selected from among the atoms in Xg1.
After doing this N times, we have

B∗i |XN ,XgN ,ZN ∼

BP
(
c1 + ni,

c1
c1+ni

B + 1
c1+ni

∑N
j=1 1(Zj = i)Xj

)
B|XgN ∼ BP

(
c0 +N,

c0
c0 +N

B0 +
1

c0 +N

N∑
j=1

Xgj

)
where XN = {X1, . . . , XN}, XgN = {Xg1, . . . , XgN},
ZN = {Z1, . . . , ZN}, ni =

∑N
j=1 1(Zj = i), and 1(·)

is equal to one if the expression inside the brackets is
true, and it is zero otherwise. The 1

c1+ni

∑N
j=1 1(Zj =

i)Xj defines the “local” buffet of atoms at node i, and

the probability of selecting each atom; 1
c0+N

∑N
j=1Xgj

similarly defines the “global” buffet, constituted as all
N local buffets are formed. The global buffet is still
exchangeable, as in the original IBP, but the local buf-
fets change with index i, removing exchangeability.

3.2 Handling New Samples

Assume we employ the dHBP to analyze data
{xi}i=1,N , and we now wish to use this model to infer
the appropriate set of features/atoms for new sam-
ple xN+1, with associated covariate `N+1. We wish
to do this without having to go back and analyze
{xi}i=1,N+1, as before, but rather we wish to directly
use the result from the previous analysis of {xi}i=1,N .
For the specific examples we consider below all the
{xi}i=1,N are known a priori and therefore this issue
of handling new samples does not occur. However, the
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subsequent analysis nevertheless provides insight into
the model, and there are other applications for which
one may wish to add a new sample xN+1.

Based upon the previous analysis of {xi}i=1,N , as-
sume access to the atoms used by each sample, this
denoted XN = {Xi}i=1,N , as well as the set of atoms
XgN = {Xgi}i=1,N associated with the “global” buf-
fet. Further, we initially assume access to ZN+1 =
{Zi}i=1,N+1. Then XN+1, associated with xN+1, is
drawn

XN+1|XN ,XgN ,ZN+1 ∼

BeP

(
c1BN

c1+
∑N
i=1 1(Zi=ZN+1)

+
∑N
i=1 1(Zi=ZN+1)Xi

c1+
∑N
i=1 1(Zi=ZN+1)

)
(4)

where BN = c0
c0+NB0 + 1

c0+N

∑N
i=1Xgi.

Assume N � c0, such that c0
c0+NB0(Ω) ≈ 0, and there-

fore the probability of drawing new atoms for repre-
sentation of xN+1 is negligibly small. Assuming we
know ZN+1 and assuming c0

c0+NB0(Ω) = 0, we there-
fore have

XN+1|XN ,XgN ,ZN+1 = U + V

U ∼ BeP

(
c1

c1+
∑N
i=1 1(Zi=ZN+1)

1
c0+N

∑N
i=1Xgi

)
V ∼ BeP

( ∑N
i=1 1(Zi=ZN+1)Xi

c1+
∑N
i=1 1(Zi=ZN+1)

)
(5)

Equation (5) provides further insight into the model.
Specifically, if xN+1 is in a neighborhood of many
members of {xi}i=1,N (i.e., if c1 is small relative to∑N
i=1 1(Zi = ZN+1)), then c1

c1+
∑N
i=1 1(Zi=ZN+1)

is likely

to be small, and therefore U is unlikely to contribute
atoms for XN+1. In this case V will dominate, it
corresponding to a buffet of atoms that are popular
within a neighborhood of xN+1, and these atoms are
more probable to be selected by xN+1 if they are pop-
ular within the neighborhood. By contrast, if xN+1 is
isolated from the samples in {xi}i=1,N , then it is ex-

pected that
∑N
i=1 1(Zi = ZN+1) will be small or zero,

in which case the atoms associated with xN+1 will be
constituted primarily from U , which corresponds to
the global buffet.

Using (1), we may compute aN+1,j for all j ∈
{1, . . . , N + 1}, with

∑N+1
j=1 aN+1,j = 1. Doing this,

we may now marginalize out ZN+1 in (5). However,
we are not interested explicitly in what the values of
{Zi}i=1,N are, only in whether Zi = ZN+1. We there-
fore marginalize out Zi, and consider all possible out-
comes for 1(Zi = ZN+1). Toward this end, let mi = 1
if Zi = ZN+1, while mi = 0 otherwise. Then upon
marginalizing out ZN+1, we have

XN+1|XN ,XgN ∼∑N+1
j=1

∑1
m1=0 · · ·

∑1
mN=0 p(j,m1, . . . ,mN )

BeP

(
c1

c1+
∑N
i=1mi

1
c0+N

∑N
i=1Xgi +

∑N
i=1miXi

c1+
∑N
i=1mi

)
where

p(j,m1, . . . ,mN ) =

aN+1,ja
m1
1j (1− a1j)

1−m1 · · · amNNj (1− aNj)1−mN (6)

Note that the expression for XN+1|XN ,XgN involves
2N summation terms for each j ∈ {1, . . . , N+1}. How-
ever, typically only a small number of terms need actu-
ally be computed, as aN+1,j will only be non-negligible
for j for which the associated xj are within a neighbor-
hood of xN+1. Further, it is only probable that mi 6= 0
when xi is within a neighborhood of xN+1, and there-
fore one only need consider sums over mi for i associ-
ated with xi in a neighborhood of xN+1. Therefore, in
practice only a small set of the sums need actually be
computed, this constituting an efficient prior for the
atoms needed to model the new sample xN+1.

3.3 Covariate-Dependent Correlations

Theorem 1: For any measurable subset S and
xi,xi′ ∈ RP , Bi and Bi′ are dependent random prob-
ability measures, with

corr{Bi(S), Bi′(S)} =
< ai,ai′ >

‖ai‖ · ‖ai′‖
(7)

where ai = [ai1, . . . , aiN ]T . �

Proof : The correlation between Bi(S) and Bi′(S) can
be expressed as

corr{Bi(S),Bi′(S)}= E{Bi(S)Bi′ (S)}−E{Bi(S)}E{Bi′ (S)}
[V {Bi(S)}V {Bi′ (S)}]1/2 .

Following (Dunson et al., 2007), the numerator

can be simplified as
∑N
j=1 aijai′jV {B∗j (S)}. Since

V {B∗i (S)} = V {B∗j (S)} for i 6= j, V {Bi(S)} can

be expressed as V {Bi(S)} = ‖ai‖2V {B∗j (S)}. Hence,
corr{Bi(S), Bi′(S)} may be expressed as∑N

j=1 aijai′jV {B
∗
j (S)}[

‖ai‖2V {B∗i (S)}‖ai′‖2V {B′∗i (S)}
]1/2 =

< ai,ai′ >

‖ai‖ · ‖ai′‖
. �

4 DICTIONARY LEARNING FOR
INTERPOLATION & DENOISING

4.1 Dictionary Learning with Beta Process

When not considering the covariate dependence (as-
suming {xi}i=1,N are exchangeable), we draw the dic-
tionary atoms and the associated atom usage proba-
bilities from a (truncated) beta process (BP) and link
them to a sample’s atom usage via a Bernoulli process
(BeP). The data xi is represented as
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xi = D(si � zi) + εi (8)

where � represents the Hadamard prod-
uct, D = [d1, · · · ,dK ], si = [si1, · · · , siK ]T ,
zi = [zi1, · · · , ziK ]T , sik ∈ R, zik ∈ {0, 1} indicates
whether the kth atom is active within sample i, and
εi is the residual error; the truncation level K is set
large enough such that not all K atoms are actually
used in the representation of the data {xi}i=1,N , and
in this sense the size of active dictionary elements is
inferred. The binary indicator zik = Xi(dk) is drawn
as zik ∼ Bernoulli(πk) with πk = B(dk).

The hierarchical form of the model is

xi ∼ N (D(si � zi), γ−1
ε IP ) (9)

dk ∼ N (0, P−1IP ), si ∼ N (0, γ−1
s IK) (10)

zik ∼ Bernoulli(πk), πk ∼ Beta(cη, c(1− η)) (11)

where gamma hyper-priors are placed on both γε and
γs. The probability distribution N (0, P−1IP ) plays
the role of the base measure B0; we set η = 1/K, and
for large K Beta(c/K, c(1 − 1/K)) approximates the
improper beta distribution with parameter c.

4.2 Dictionary Learning with dHBP

When employing the hierarchical construction in (2),
equation (11) generalizes as

zik ∼ Bernoulli(πik), πik =
∑
j∈Qi

aijπ
∗
jk

π∗jk ∼ Beta(c1ηk, c1(1− ηk))

ηk ∼ Beta(c0η0, c0(1− η0)). (12)

where zik = Xi(dk), πik = Bi(dk), π∗jk = B∗j (dk) and
ηk = B(dk).

4.3 Implementation

In the application of image interpolation and denois-
ing, we are given an incomplete and noisy image of
size Mx×My, which is partitioned into N overlapping
W ×W patches {xi}i=1,N , with xi ∈ RP , P = W 2

and N = (Mx −W + 1)× (My −W + 1); we typically
set W = 8. In this case the ith patch is assumed to
have an associated covariate vector `i = [ix, iy]T , rep-
resenting its spatial location in the original image. We
consider the kernel function

K(`i, `j) = δ(j ∈ Qi) exp(−‖`i − `j‖2/σ) (13)

whereQi = {j : ‖`i−`j‖2 ≤ L} is a pre-defined spatial
neighborhood of i, δ(·) = 1 if the argument is true and
it is zero elsewise, and σ is the kernel width. We can
calculate aij by (1) and we have aij 6= 0 if and only if
j ∈ Qi. This way of defining neighborhoods is similar
to that used in Isomap (Tenenbaum et al., 2000).

4.3.1 Missing Pixels

With missing pixels, we observe yi = Σixi, where Σi

is the sampling matrix, constructed by selecting a sub-
set of rows from the identity matrix IP . The matrix Σi

is a function of the patch index i, and ΣiΣ
T
i = I‖Σi‖0 .

With ΣT
i ΣiΣ̄

T
i Σ̄i = 0P , where Σ̄i is the sampling

matrix for missing pixels in patch i (it identifies the
missing-pixel locations), the likelihood term can be ex-
pressed as

N (xi; D(si � zi), γ−1
ε IP ) =

N (ΣT
i yi; Σ

T
i ΣiD(si � zi),ΣT

i Σiγ
−1
ε IP )

N (Σ̄
T
i Σ̄ixi; Σ̄

T
i Σ̄iD(si � zi), Σ̄

T
i Σ̄iγ

−1
ε IP ). (14)

Thus the missing-pixel values can be integrated out
analytically, and one may only consider the observed
yi when performing inference.

4.3.2 Sparse Spiky Noise

The sparse spiky noise may exist at any pixel, uni-
formly at random, and the spike amplitude may be
large. The presence of a spike at a given pixel, par-
ticularly when the spike amplitude is large, is similar
to the case of missing pixels discussed above, as the
original pixel value is essentially lost. The complexity
of this problem is that the location of the spike is as-
sumed unknown, and must be inferred by the model.
We add a sparse noise term vi �mi to the model as

xi = D(si � zi) + εi + vi �mi (15)

where vi = [vi1, · · · , viP ]T and mi = [mi1, · · · ,miP ]T ,
vip ∈ R and mip ∈ {0, 1} is the binary indicator. A
beta-Bernoulli prior is constituted on mi as

mip ∼ Bernoulli(π′ip), π′ip ∼ Beta(a0, b0). (16)

Additionally, we impose vi ∼ N (0, γ−1
v IP ) with a

gamma hyper-prior on γv, allowing inference of the
spike level. After performing analysis with this model,
the noise free data is estimated as x̂i = D(si�zi). In
the experiments a0 = 1 and b0 = 100.

The model developed here, with a usually over-
complete dictionary, generalizes the assumptions of ro-
bust PCA (Wright et al., 2009) (which assumes low-
rank), widening the class of problems for which sparse
spiky noise models are appropriate.

4.4 Inference

The inference is performed using MCMC analysis. Up-
date equations not associated with the BP model dis-
cussed in Zhou et al. (2009), are summarized below.

Sample π∗jk. Denote π−jik =
∑
6̀=j ai`π

∗
`k = πik −

aijπ
∗
jk, the posterior of π∗jk can be expressed as

p(π∗jk|−) ∝ Beta
(
π∗jk; c1ηk, c1(1− ηk)

)∏
i:{j∈Qi}

Bernoulli(zik; aijπ
∗
jk + π−jik ) (17)

which cannot be directly sampled from. However, we
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can connect π∗jk with the popularity of the kth atom
dk in the neighborhood of patch j by assuming

π∗jk ∼ Beta

(
c1ηk +

∑
i:{j∈Qi}

zik, c1(1− ηk) +
∑

i:{j∈Qi}

(1− zik)

)
.

(18)

We use this as the proposal distribution Q in a
Metropolis-Hastings (M-H) independence chain (Hast-
ings, 1970) and accept π∗jk

t+1 = π∗jk
′ with probability

min{pjk, 1}, where

pjk =
p(π∗jk

′)

p(π∗jk
t)

Q(π∗jk
t)

Q(π∗jk
′)

=
(π∗jkt
π∗jk
′

)∑
i:{j∈Qi}

zik(1− π∗jk
t

1− π∗jk
′

)∑
i:{j∈Qi}

(1−zik)

∏
i:{j∈Qi}

(
1 +

∆jk

πikt

)zik(
1− ∆jk

1− πikt
)1−zik

(19)

where ∆jk = aij(π
∗
jk
′ − π∗jk

t).

Sample ηk. The posterior of ηk can be expressed as

p(ηk|−) ∝ Beta
(
ηk; c0η0, c0(1− η0)

)
N∏
j=1

Beta
(
π∗jk; c1ηk, c1(1− ηk)

)
. (20)

Considering the special case of c1 = 1 and with the
Euler’s reflection formula Γ(1 − x)Γ(x) = π/sin(πx),
we have

p(ηk|−) ∝ ηc0η0−1
k (1− ηk)c0(1−η0)−1 sinN (πηk)

exp

(
c1ηk

N∑
j=1

log
( π∗jk

1− π∗jk

))
. (21)

With slice sampling (Damlen et al., 1999), we let

uk ∼ Unif
(
0, ηc0η0−1

k

)
, wk ∼ Unif

(
0, sinN (πηk)

)
vk ∼ Unif

(
0, (1− ηk)c0(1−η0)−1

)
(22)

and then draw ηk from the truncated exponential dis-
tribution as

ηk ∼ Exp

(
− c1

N∑
j=1

log
( π∗jk

1− π∗jk

))
I(ηk). (23)

where I(ηk) represents the range of ηk derived
from (22). We use a default value c1 = 1 in this paper
which gives a flexible prior for π∗jk and also obtains
efficient computation. Other values of c1 can also be
used and the random walk M-H can be applied.

Sample vip and mip. It is easy to show that vip and
mip can be sampled as

vip ∼ N
(
γεmipx̄ip(γv + γεm

2
ip)
−1, (γv + γεm

2
ip)
−1
)

mip ∼ Bernoulli

(
π′
ip exp[− γε2 (−2x̄ipvip+v2ip)]

1−π′
ip+π′

ip exp[− γε2 (−2x̄ipvip+v2ip)]

)
where x̄i = xi−D(si� zi) and x̄ip is its pth element.

5 EXPERIMENTAL RESULTS

In the analysis that follows, 2500 MCMC iterations
are used (2000 burn-in and 500 collection, from a ran-
dom start). Each MCMC sample produces an image
estimate. The results reported here are based on an
average of the collection samples. Additionally, the
pixel value for each MCMC sample is the average
across 64 patches, from the 64 overlapping patches in
which each pixel resides (except for near the image
edges). Similar image-analysis results were found us-
ing as few as 250 MCMC iterations, and using just the
last MCMC sample (again averaging patches to con-
stitute the value of each pixel). A quantitative com-
parison between using 2500 and 250 MCMC iterations
is discussed at the end of this section. For dHBP, the
M-H acceptance rates were found to be greater than
90%. Finally, in all examples no parameter tuning has
been performed; the gamma hyper-priors placed on
all precision terms throughout the models were set as
Gamma(10−6, 10−6).

Before proceeding, we note that most nonparametric
Bayesian models are under-identified in a frequentist
sense, as we have more parameters than data points
and certainly cannot obtain unique maximum likeli-
hood estimates of these parameters. Many of the non-
parametric and rich parametric models in the litera-
ture are over-parameterized in this sense (e.g., (Dun-
son et al., 2007)), and there are many different regions
of the parameter space corresponding to similar like-
lihoods on observables. For this reason, if we monitor
latent quantities not on the observed data level, we
may obtain poor mixing. However, this is not a prob-
lem in conducting inferences on identifiable quantities
(e.g., the observed data density, at the layer of the im-
age in our studies) and indeed for over-parameterized
hierarchical models one often obtains excellent mixing
for identifiable quantities (see (Bhattacharya and Dun-
son, 2011) for a discussion); we observed this behavior
in the proposed model.

5.1 Images with Missing Pixels and WGN

We assume {xi}i=1,N represent data from (overlap-
ping) patches from a single image, with a subset of
pixels missing uniformly at random. The interpolation
objective is to recover the missing pixels, with this also
to be performed in the presence of additive noise (for
this problem the noise is assumed to not be spiky).
For this application, the model parameters are set as
L = 3 (i.e., 28 spatial neighbors), c0 = 10, c1 = 1,
σ = 5, and η0 = 0.5. The dictionary size K is set as
256 or 512, depending on the size of the image. The
dictionary atoms are initialized at random.

We compare dHBP results with those of BP (Zhou
et al., 2009) (which assumes exchangeability of the
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Figure 1: Comparison of interpolation results, considering BP (PSNR 26.90 dB) and dHBP (PSNR 29.92 dB) on the
Barbara256 image, with 80% of its pixels missing uniformly at random. In the first row, the left two images show the
spatially-dependent number of atoms ‖Xi‖0 used for representation of the patches throughout the image, as computed
by BP and dHBP, respectively, the third is the dHBP reconstruction, and the fourth and fifth images show two different
enlarged regions (top left, top right, bottom left and bottom right quarters corresponding to the original image under
test, the BP reconstruction, the dHBP reconstruction, and the original versions, respectively). In the second row, the first
two images show the dictionaries (the atoms are ordered based on their probabilities to be selected) inferred by BP and
dHBP, respectively, and the third to sixth images show four dictionary atoms (resized from the size of 8 × 8 to 80 × 80
for visualization) and the associated atom activation probabilities across the image (each patch has a corresponding πik).
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Figure 2: Comparison of interpolation results, considering BP and dHBP on the 512 × 512 Boat and Hill images, with
80% of their pixels missing uniformly at random. The left-most and third images show the dHBP reconstructions of Boat
and Hill, respectively. The second and fourth images show two enlarged regions as in Figure 1.

Table 1: Gray-scale image interpolation results (PSNR) for BP and dHBP, both using patch size 8 × 8. The top and
bottom rows of each cell show the results of BP and dHBP, respectively.

ratio C.man House Peppers Lena Barbara Boats F.print Man Couple Hill

20%
24.11 30.12 25.92 31.00 24.80 27.81 26.03 28.24 27.72 29.33
24.43 32.23 27.06 32.00 29.51 28.66 26.80 28.86 28.55 29.94

30%
25.71 33.14 28.19 33.31 27.52 30.00 29.01 30.06 30.00 31.21
26.50 35.64 29.30 34.23 32.29 30.90 29.23 30.76 30.65 31.67

50%
28.90 38.02 32.58 36.94 33.17 33.78 33.53 33.29 35.56 34.23
29.89 38.83 32.90 37.14 36.03 33.92 32.70 33.72 33.54 34.14

Table 2: Joint image interpolation and denoising results (PSNR) for BP and dHBP, considering the Barbara256 image
and patch size 8 × 8. The observed data ratio ranges from 20% to 50% and the noise standard deviation ranges from 0
to 25. The top and bottom rows of each cell show the results of BP and dHBP, respectively.

0 5 10 15 20 25

20%
26.90 26.81 26.25 25.30 24.44 23.74
29.92 29.22 27.90 26.65 25.63 24.73

30%
30.01 29.73 28.38 27.00 25.94 25.00
32.49 31.43 29.71 28.20 27.01 26.02

50%
35.41 33.59 31.16 29.31 27.89 26.80
36.83 34.42 31.94 30.20 28.77 27.77

patches). The BP results are similar to those produced
by KSVD (Aharon et al., 2006; Elad and Aharon,
2006). In Fig. 1 we consider the 256×256 Barbara256
image, with 80% of its pixels missing uniformly at
random. In Fig. 2 we show the comparison on the
512 × 512 Boat and Hill images. The dHBP yields
sharp dictionary atoms, and the atom usage frequency
map (spatial dependence of ‖Xi‖0) reflects the local

complexity of the image. Note from Fig. 1 that the
dHBP yields substantially more structured dictionary
elements than BP, implying that dHBP better tailors
dictionary elements to local structure in the image.

Quantitative comparisons between BP and dHBP on
image interpolation are shown in Table 1. Quanti-
tative comparisons for joint image interpolation and
denoising on the Barbara256 image are shown in Ta-
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Figure 3: Left: Denoising results for BP (PSNR 18.53 dB) and dHBP (PSNR 29.69 dB) on the Peppers256 image, with
15% of its pixels corrupted by spiky noise situated uniformly at random. The spike amplitudes are uniformly distributed
between -255 and 255. WGN with the standard deviation of 15 is also added to the image. Right: Denoising results for
BP (PSNR 21.63 dB) and dHBP (PSNR 35.32 dB) on the House image with 10% of its pixels corrupted by spiky noise
situated uniformly at random. The spike amplitudes are uniformly distributed between -255 and 255 at random. WGN
with the standard deviation of 10 is also added to the image. In both the left and right parts, in the first column, the top
and bottom images are the original and corrupted images, respectively. The second and third columns show the learned
dictionaries (the atoms are ordered based on their probabilities to be selected) and the recovered images, respectively,
with the top and bottom rows showing the results of dBHP and BP, respectively.

ble 2. The noise level is automatically estimated dur-
ing the learning (in terms of the inverse precision of
the noise εi). For example, the noise standard devia-
tions are estimated by dHBP to be 11.91, 16.47, and
21.25 when the percentage of observed data and and
the true noise standard deviation are respectively 20%
and 10, 30% and 15, and 50% and 20 (similarly accu-
rate estimates were found in all cases, and were also
inferred via the BP model in (Zhou et al., 2009)). In
the case for which 80% pixels of the pixels are miss-
ing at random, across the 10 test images considered
here, the PSNR improvements range from about 0.3
dB to 4.7 dB, with the improvements mainly coming
from regions of an image with detailed local structure,
such as edges and striped patterns, as demonstrated
in Figs. 1 and 2.

5.2 Images with Spiky and WGN Noise

We consider denoising an image corrupted simultane-
ously by additive noise of two types: (i) sparse spiky
noise situated uniformly at random within the im-
age, with amplitude distributed uniformly at random
between −255 and 255; and (ii) WGN (with results
shown with standard deviation 10 and 15). Compar-
ison between BP and dHBP on the Peppers256 and
House images under these two noise settings are shown
in Fig. 3. The dHBP successfully separates out the
sparse spiky noise, leading to a clean dictionary and
an excellent restoration of the original image, while
BP fails to do so, with BP yielding dictionary atoms
that are severely corrupted by sparse spiky noise. We
further tested the dHBP algorithm using joint priors
for WGN and spiky noise, considering images only cor-
rupted by sparse spiky noise or only WGN; we found
that the algorithm performs well in both of these cases.

We have also considered using a heavy-tailed resid-

ual distribution for this spiky noise. Specifically,
we considered εi ∼ N (0,Γ−1

i γ−1
s ), with Γi =

diag(γi1, . . . , γiP ) and γij ∼ gamma(ν/2, ν/2) with ν
the degrees of freedom in the induced t-distribution for
the residuals (one may place a prior on ν). The main
point of this work is not which of these spiky noise
models is selected, since both work well. The key is
that we need to use spatial structure (covariates) when
learning the model, otherwise it will learn spikes in the
dictionary elements.

All algorithms have been implemented in non-
optimized Matlab. As an example, when considering
denoising a 256×256 image with 62, 001 8×8 patches,
considering joint WGN and spiky noise, BP required
24 seconds per Gibbs iteration, while dHBP required
55 seconds per MCMC iteration using a PC with 2.4
GHz CPU. As a representative example, for 20%, 30%
and 50% observations in the image interpolation ex-
periments of Table 1 , the average PSNRs are increased
by about 0.4, 0.6 and 1.1 dB when considering 2500
MCMC iterations, as opposed to only 250.

6 CONCLUSIONS

A dependent hierarchical beta process (dHBP) is pro-
posed and its properties are analyzed. Efficient hy-
brid MCMC inference including Gibbs, Metropolis-
Hastings and slice sampling are presented. Encourag-
ing performance is demonstrated on image-processing
applications including interpolation, denoising and
sparse spiky noise removal.
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