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Abstract

Reset models are constrained switching latent
Markov models in which the dynamics either
continues according to a standard model, or
the latent variable is resampled. We consider
exact marginal inference in this class of mod-
els and their extension, the switch-reset mod-
els. A further convenient class of conjugate-
exponential reset models is also discussed. For
a length T time-series, exact filtering scales
with T 2 and smoothing T 3. We discuss ap-
proximate filtering and smoothing routines
that scale linearly with T . Applications are
given to change-point models and reset linear
dynamical systems.

1 LATENT MARKOV MODELS

For a time-series of observations y1:T and latent vari-
ables x1:T , a latent Markov model defines a joint dis-
tribution

p(y1:T , x1:T ) =
T∏
t=1

p(yt|xt)p(xt|xt−1)

where x0 = ∅. Due to the Markov structure, fig(1a),
marginal inference in these well known models can
be carried out using the classical p(xt, y1:t) ≡ α(xt),
p(yt+1:T |xt) ≡ β(xt), and p(xt|y1:T ) ≡ γ(xt) message
passing recursions (Barber, 2011)

α(xt+1) = p(yt+1|xt+1)

∫
xt

p(xt+1|xt)α(xt) (1.1)

β(xt−1) =

∫
xt

p(yt|xt)p(xt|xt−1)β(xt) (1.2)

γ(xt) =

∫
xt+1

p(xt|xt+1, y1:t)γ(xt+1) (1.3)
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where γ(xt) ∝ α(xt)β(xt) and γ(xT ) ∝ α(xT ). These
recursions hold more generally on replacing integration
over any discrete elements of x by summation.

Writing xt = (ht, st) for continuous ht and discrete st,
we identify a switching latent Markov model, fig(1b):

p(y1:T , h1:T , s1:T )

=

T∏
t=1

p(ht|ht−1, st)p(yt|ht, st)p(st|st−1) (1.4)

in which we can deal with discontinuous jumps in the
continuous latent state ht by using a discrete ‘switch’
variable st. These models are also called ‘conditional
Markov models’, ‘jump Markov models’, ‘switching
models’, and ‘changepoint models’.

Whilst these switching models are attractive and po-
tentially powerful, they suffer from a well known com-
putational difficulty: marginal inference of quantities
such as p(ht|y1:t) scales with O (St) due to the mes-
sages in the corresponding propagation algorithm (the
analogue of the α-β recursions equation (1.3) applied
to the variable xt ≡ (ht, st)) being mixtures with a
number of components that grows exponentially with
time t. A number of approximations to the exact
posterior have been proposed to overcome the compu-
tational expense, including Particle Filtering (Doucet
et al., 2000, 2001), Assumed Density Filtering (Alspach
and Sorenson, 1972; Boyen and Koller, 1998), Expecta-
tion Propagation (Minka, 2001), Kim’s Method (Kim,
1994; Kim and Nelson, 1999), Gibbs sampling (Carter
and Kohn, 1996), and Expectation Correction (Barber,
2006). Such approximations work largely by approx-
imating a mixture with fewer components, and were
shown by Minka (2005) to correspond to various ap-
proaches to divergence minimisation.

An alternative, computationally simpler model is ob-
tained by constraining the switch variable to have the
effect of cutting temporal dependence1. We define a

1Some refer to equation (1.6) as a ‘changepoint’ model
whilst others use this terminology for any switching latent
Markov model of the form equation (1.4). Others refer
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Figure 1: (a) Generic latent Markov model. (b) Conditional independence assumptions of a switching latent
Markov model. The discrete switch st ∈ {1, . . . , S} selects from a set of S distinct transition and emission
distributions. (c) Conditional independence assumptions of a reset latent Markov model. The binary reset variable
ct indicates whether the standard dynamics continues, p0(ht|ht−1) (ct = 0) or whether the latent variable ht is
redrawn from the reset distribution p1(ht) (ct = 1).

reset variable ct ∈ {0, 1} with Markov transition

p(ct = j|ct−1 = i) = τj|i, i, j ∈ {0, 1} (1.5)

The continuous latent variable then transitions as

p(ht|ht−1, ct) =

{
p0(ht|ht−1) ct = 0
p1(ht) ct = 1

(1.6)

In this model, the latent binary variable ct selects one
of only two possible dynamics: either a continuation
along the default dynamics p0(ht|ht−1), or a ‘reset’ of
the latent variable, drawing from the reset distribution
p1(ht). This reset process cuts the dependence on past
states, see fig(1c). Finally, the reset model is completed
by specifying an emission distribution2

p(yt|ht, ct) =

{
p0(yt|ht) ct = 0
p1(yt|ht) ct = 1

(1.7)

For the reset model, it is well appreciated that filtered
marginal inference p(ht, ct|y1:t) scales as O

(
t2
)

(see
for example Fearnhead and Liu (2007) and Barber
and Cemgil (2010)), and smoothed marginal inference
p(ht, ct|y1:T ) can be achieved in O

(
T 3
)

time. Whilst
this is a great saving from the exponential complex-
ity of the switching model, cubic complexity is still
prohibitive for large T and approximations may be
required.

Our contribution is to introduce an exact, numerically
stable correction smoothing method for reset models,
in addition to demonstrating a fast and accurate linear-
time approximation. We also consider an extension, the
switch-reset model, which is able to model switching
between a set of S continuous latent Markov models,
but for which inference remains tractable.

to the piecewise reset model, section(5) as a ‘changepoint’
model. For this reason, in an attempt to avoid confusion,
we refer to equation (1.6) as a reset model, a term which
we feel also better reflects the assumptions of the model.

2Note that it is straightforward to include dependence
on past observations p(yt|ht, ct, y1:t−1) if desired since these
do not change the structure of the recursions.

2 RESET MODEL INFERENCE

A classical approach to deriving smoothing for the
reset model is based on the α-β recursion. This has
the advantage of being straightforward. However, for
models such as the reset LDS, numerical stability issues
are known to arise. In addition, it is unclear how best
to form an approximation based on the α-β method.
We first review the α-β approach.

2.1 α-β Smoothing

By writing

p(ht, ct, y1:T ) = p(ht, ct, y1:t)︸ ︷︷ ︸
α(ht,ct)

p(yt+1:T |ht, ct,��y1:t)︸ ︷︷ ︸
β(ht,ct)

we consider calculating the two components. The for-
ward α message is standard and recursively calculated
using equation (1.1) for the variable xt = (ht, ct). By
defining3

α(ht, ct) =

{
α0(ht) ct = 0
α1(ht) ct = 1

and α(ct) =
∫
ht
α(ht, ct), we can identify two cases:

α0(ht+1) = τ0|0p
0(yt+1|ht+1)

∫
ht

p0(ht+1|ht)α0(ht)

+ τ0|1p
0(yt+1|ht+1)

∫
ht

p0(ht+1|ht)α1(ht)

α1(ht+1) = p1(yt+1|ht+1)p1(ht+1)
∑
ct

τ1|ctα(ct)

From these recursions, we see that the number of com-
ponents in α grows linearly with time, making for an
O
(
t2
)

computation for exact filtering.

3We will use component-conditional notation for these
messages α(ht, ct) = α(ht|ct)α(ct), which defines α(ht|ct) =
p(ht|ct, y1:t) and α(ct) = p(ct, y1:t).
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The backward β message β(ht, ct) = p(yt+1:T |ht, ct), is
also calculated recursively using equation (1.2) as

β(ht−1, ct−1)

=
∑
ct

τct|ct−1

∫
ht

p(yt|ht, ct)p(ht|ht−1, ct)β(ht, ct)

= τ0|ct−1

∫
ht

p0(yt|ht)p0(ht|ht−1)β(ht, ct = 0)︸ ︷︷ ︸
β0(ht−1)

+ τ1|ct−1

∫
ht

p1(yt|ht)p1(ht)β(ht, ct = 1)︸ ︷︷ ︸
β1
t−1

where we have written

β(ht−1, ct−1) = τ0|ct−1
β0(ht−1) + τ1|ct−1

β1
t−1

The recursions for these components are:

β0(ht−1)=

∫
ht

p0(yt|ht)p0(ht|ht−1)
[
τ0|0β

0(ht)+τ1|0β
1
t

]
β1
t−1 =

∫
ht

p1(yt|ht)p1(ht)
[
τ0|1β

0(ht) + τ1|1β
1
t

]
The posterior p(ht, ct|y1:T ) ∝ α(ht, ct)β(ht, ct) is then
a mixture of (t+ 1)× (T − t+ 1) components, and the
algorithm scales as O

(
T 3
)

to compute all the smoothed
marginal posteriors. For large T , this can be expensive.

An obvious way to form an approximation is to drop
components from either the α or β messages, or both.
Dropping components from α is natural (since α(ht, ct)
is a distribution in ht, ct). It is less natural to form
an approximation by dropping β components since
the β messages are not distributions—usually it is
only their interaction with the α message that is of
ultimate interest. We will discuss ways to achieve this in
section(4). Use of the β message approach is also known
to cause numerical instability in important models
of interest, in particular the linear dynamical system
(Verhaegen and Van Dooren, 2002). This motivates the
desire to find a γ, ‘correction smoother’ recursion.

2.2 α-γ Smoothing

Considering the standard γ correction smoother deriva-
tion, equation (1.3), we may begin

γ(ht−1, ct−1) = p(ht−1, ct−1|y1:T )

=
∑
ct

∫
ht

p(ht−1, ct−1|ht, ct, y1:t−1)γ(ht, ct)

The näıve approach is then to write

p(ht−1, ct−1|ht, ct, y1:t−1,��yt)=
p(ht, ct, ht−1, ct−1|y1:t)

p(ht, ct|y1:t)

However, the filtered distribution in the denominator
p(ht, ct|y1:t) is a mixture distribution. This is incon-
venient since we cannot represent in closed form the
result of the division of a mixture by another mixture.
This means that using a γ recursion is not directly
accessible for this model. However, by considering an
equivalent model, it is possible to perform γ smoothing.

2.3 α̃-γ̃ Run-Length Smoothing

We may define an equivalent reset model based on
the ‘run length’, ρt ≥ 0, which counts the number of
steps since the last reset (Adams and MacKay, 2007;
Fearnhead and Liu, 2007):

ρt =

{
0 ct = 1
ρt−1 + 1 ct = 0

(2.1)

and ct = I [ρt = 0]. Formally, one can write a Markov
transition on the run-length defined by

p(ρt|ρt−1) =


τ1|1 ρt−1 = 0, ρt = 0
τ1|0 ρt−1 > 0, ρt = 0
τ0|1 ρt−1 = 0, ρt = 1
τ0|0 ρt−1 > 0, ρt = ρt−1 + 1
0 otherwise

(2.2)

and a corresponding latent Markov model

p(ht|ht−1, ρt) =

{
p0(ht|ht−1) ρt > 0
p1(ht) ρt = 0

(2.3)

Finally

p(yt|ht, ρt) =

{
p0(yt|ht) ρt > 0
p1(yt|ht) ρt = 0

This model is then formally equivalent to the reset
model defined by equations (1.5, 1.6, 1.7). Since this
is a latent Markov model, we can apply the standard
filtering and smoothing recursions:

α̃(ht, ρt) = p(yt|ht, ρt)
∑
ρt−1

p(ρt|ρt−1)

×
∫
ht−1

p(ht|ht−1, ρt)α̃(ht−1, ρt−1)

We can again distinguish two cases:

α̃(ht, ρt = 0) = p1(yt|ht)p1(ht)

×
∑
ρt−1

p(ρt = 0|ρt−1)α̃(ρt−1) (2.4)

α̃(ht, ρt > 0) = p0(yt|ht)p(ρt|ρt−1 = ρt − 1)

×
∫
ht−1

p0(ht|ht−1)α̃(ht−1, ρt−1 = ρt − 1) (2.5)
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In this case the α̃ messages are therefore not mixtures,
but single-component distributions. The filtered poste-
rior in the original reset model is obtained from

α(ht, ct) =

{
α̃(ht, ρt = 0) ct = 1∑
ρt>0 α̃(ht, ρt) ct = 0

The run-length gives a natural interpretation of the
components in the α message, namely that the com-
ponents of the α(ht, ct) message are in fact simply the
run-length components themselves.

Since the α̃ messages are single components, one
may implement the standard correction approach for
smoothing on this redefined model:

γ̃(ht−1, ρt−1)=
∑
ρt

∫
ht

p(ht−1,ρt−1|ht,ρt,y1:t−1)γ̃(ht,ρt)

=
∑
ρt

p(ρt−1|ρt,y1:t−1)

∫
ht

p(ht|ht−1,ρt)α̃(ht−1|ρt−1)

p(ht|ρt,y1:t−1)︸ ︷︷ ︸
dynamics reversal

γ̃(ht,ρt)

where p(ρt−1|ρt, y1:t−1) ∝ p(ρt|ρt−1)α̃(ρt−1). Since
α̃(ht−1|ρt−1) is a single component, the ‘dynamics re-
versal’ is a single component, and no numerical diffi-
culties arise. Similarly to the above,

γ(ht, ct) =

{
γ̃(ht, ρt = 0) ct = 1∑
ρt>0 γ̃(ht, ρt) ct = 0

(2.6)

The resulting α̃-γ̃ recursion provides a numerically sta-
ble way to perform smoothed inference in reset models
since both the α̃ and γ̃ messages are distributions.

Furthermore, a simple approximate smoothing algo-
rithm is available based on dropping components from
α̃ and subsequently from γ̃. Simple schemes such as
dropping low weight components can be very effective
in this case since the weight of the component is directly
related to its contribution to the posterior distribution.

2.4 Bracket Smoothing

Insight into the above γ̃ recursion can be obtained
by introducing the index ς to correspond to the num-
ber of observation points until the next reset. We
will characterise this index as ςt ∈ {1, . . . , T − t+ 1},
where ςt = T − t + 1 corresponds to there being no
reset in the sequence after observation point t. The
forward run-length ρt ∈ {0, . . . , t} at observation t cor-
responds to the number of observation points since
the last reset. We then index the smoothed posterior4

p(ht, ρt, ςt|y1:T ) = p(ht|ρt, ςt, y1:T )p(ρt, ςt|y1:T ).

4The component p(ht|ρt, ςt, y1:T ) describes the distri-
bution of ht given that (i) the previous reset occurred ρt
time-steps ago (or there has not been a reset prior to time t
if ρt = t); and (ii) the next reset occurs ςt time-steps in the
future (or there is no reset after time t if ςt = T−t+1). This

The smoothed partition posterior p(ρt, ςt|y1:T ) can then
be calculated by a simple backward recursion, noting
that in the no-reset case ςt > 1,

p(ρt, ςt|y1:T )=p(ρt+1 =ρt+1, ςt+1 = ςt−1|y1:T ) (2.7)

In the reset case ςt = 1⇔ ρt+1 = 0, so

p(ρt, ςt = 1|y1:T ) = p(ρt, ρt+1 = 0|y1:T )

= p(ρt|ρt+1 =0, y1:t)
∑
ςt+1

p(ρt+1 =0, ςt+1|y1:T ) (2.8)

since ρt⊥⊥yt+1:T |ρt+1 = 0. Then

p(ρt|ρt+1 = 0, y1:t) ∝ p(ρt+1 = 0|ρt)p(ρt|y1:t)

and p(ρt|y1:t) ∝ α̃(ρt). These recursions enable one to
fully compute the discrete component p(ρt, ςt|y1:T ).

Reset points partition the sequence, so conditioning on
ρt, ςt simplifies the model to use only standard dynam-
ics p0 on the ‘bracket’ yρt,ςt ≡ yt−ρt:t+ςt−1. Smoothing
for the joint is then obtained using

p(ht, ρt, ςt|y1:T )︸ ︷︷ ︸
γ̃(ht,ρt,ςt)

= p(ht|ρt, ςt, yρt,ςt)︸ ︷︷ ︸
γ̃(ht|ρt,ςt)

p(ρt, ςt|y1:T )︸ ︷︷ ︸
γ̃(ρt,ςt)

For p(ht|ρt, ςt, yρt,ςt) we may run any smoothing rou-
tine with the dynamics p0 on the bracket yρt,ςt , with

γ̃(ht|ρt, ςt > 1) =

∫
ht+1

p(ht|ht+1, ct+1 = 0)

× γ̃(ht+1|ρt+1 = ρt + 1, ςt+1 = ςt − 1) (2.9)

noting that γ̃(ht|ρt, ςt = 1) = α̃(ht|ρt).

Finally, these messages enable us to perform smoothing
for the original reset model by appealing to equation
(2.6) after marginalising the future reset index ςt.

2.5 β̃ Recursion

It is also useful to index the β recursion with the ς
indexing variable, and the recursions become

β̃(ht−1,ct−1,ςt−1)=

{
τ1|ct−1

β̃1
t−1 ςt−1 = 1

τ0|ct−1
β̃0(ht−1,ςt−1) ςt−1 > 1

β̃1
t−1 =

∫
ht

p1(yt|ht)p1(ht)
∑
ςt

β̃(ht, ρt = 1, ςt)

β̃0(ht−1, ςt−1)=

∫
ht

p0(yt|ht)p0(ht|ht−1)

×β̃(ht, ρt = 0, ςt = ςt−1−1)

We can then combine any combination of α or α̃ with
β or β̃; since each such message features a single com-
ponent, this is useful for motivating approximations.

is equivalent to asserting that the previous reset occurred
at time t− ρt (or there was no previous reset if t− ρt < 1)
and that the next reset occurs at time t+ ςt (or there is no
future reset if t+ ςt > T ).
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3 THE RESET LDS

The latent linear dynamical system (LDS) is defined
by a latent Markov model on vectors which update
according to a linear Gaussian transition and emission.
For this model, the well known Kalman α filtering
(Kalman, 1960) and γ smoothing (Rauch, Tung, and
Striebel, 1965) are available. The corresponding α
update LDSForward and γ update LDSBackward
are provided in the supplementary material. The reset
LDS is defined by:

p(ht|ht−1, ct) =

{
N
(
ht A

0ht−1 + h̄0,Q0
)

N
(
ht h̄

1,Q1
) ct = 0

ct = 1

p(yt|ht, ct) =

{
N
(
yt B

0ht + ȳ0,R0
)

N
(
yt B

1ht + ȳ1,R1
) ct = 0

ct = 1

3.1 Marginal Inference

We explain briefly how to implement filtering based
on the run-length formalism for the reset LDS. In this
case the filtered distribution is represented by

α̃(ht|ρt) = N (ht ft(ρt),Ft(ρt))

and since α̃(ρt) = p(ρt|y1:t)p(y1:t), we take p(ρt|y1:t) ≡
wt(ρt) and p(y1:t) ≡ lt. Filtering then corresponds to
sequentially updating mean parameter ft(ρt), covari-
ance Ft(ρt), mixture weights wt(ρt), and likelihood
lt—see supplementary material for the algorithm. This
form of filtering is particularly useful since, as explained
in section(2.3), an exact correction smoother follows.

In order to compare approximate methods based on
neglecting message components, we also implement
the β(ht, ct) messages. Each β0(ht−1) is calculated in
canonical form using the standard information filter
(see for example Cappé et al. (2005)). Each β0 mes-
sage is of the form

∑
j ktj exp− 1

2

(
h>t Gtjht − 2h>t gtj

)
,

where the constant terms ktj are necessary to compute
the weights in the full posterior. The constant β1

t−1
is easily found using a similar calculation. Formally,
one carries out the β recursion under the assumption
of a mixture of canonical forms. The resulting lengthy
expressions are given in the supplementary material.

The result is that α(ht, ct) is represented as a mix-
ture of Gaussians in moment form, whereas β(ht, ct)
is a mixture of squared exponentials in canonical form.
To compute the smoothed posterior p(ht, ct|y1:T ) ∝
α(ht, ct)β(ht, ct), we need to multiply out both mix-
tures, converting the resulting mixture of moment-
canonical interactions to a mixture of moments. Note
that the frequent moment-to-canonical conversions re-
quired for the β message and forming the smoothed
posterior mean that this procedure is computationally
less stable and more expensive than correction based
smoothing (Verhaegen and Van Dooren, 2002).

Since numerical stability is of such concern in the LDS,
it is imperative to have a correction-based smoother
for the reset LDS. There are two routes to achieve
this: either we can use the run-length α̃-γ̃ formal-
ism, section(2.3), or apply the bracket smoother from
section(2.4). Both are essentially equivalent and require
that we have first computed the α̃ messages. Deriving
these smoothers is straightforward—the final bracket
smoother algorithm is in the supplementary material.

4 APPROXIMATE INFERENCE

Filtering has overall O
(
T 2
)

complexity, meanwhile

smoothing has O
(
T 3
)

complexity. For long time-series
T � 1, this can be prohibitively expensive, motivating
a consideration of approximations.

4.1 Approximate Filtering

The α message (or equivalently, the α̃ message) is con-
structed as a mixture of distributions; it is therefore
easy to motivate any reduced component mixture ap-
proximation technique (Titterington et al., 1985). Our
implementation uses the α̃ formalism, and to approxi-
mate we simply retain the M components with largest
weight, reducing the forward pass to O (MT ). That is,
we rank the α̃(ht, ρt) components by the weight α̃(ρt),
and retain only the ρt with largest weight.

4.2 Approximate α̃-β̃

A näıve approximate algorithm is to drop components
from the β message (or equivalently, the β̃ message)
according to the weights of the components in the β
message mixture. However, the β message components
in themselves are not of interest and dropping com-
ponents based on low β weight gives generally poor
performance. When the α (or α̃) and β (or β̃) messages
are combined, the result is the smoothed posterior. The
weights of these smoothed components are a function
not just of the weights in the α and β messages, but
of all parameters in the messages. The relationship
between those parameters and the resulting component
weights can be complex (see supplementary material
for the case of the reset LDS).

We can, however, motivate an approximation by ob-
serving the bracket smoothing results of section(2.4).
First, we note that whatever algorithm we choose to
implement (α-β, α̃-β̃, α-γ, or α̃-γ̃), the resulting ex-
act posterior has identical structure. In the bracket
smoother, the pair (ρt, ςt) specifies exactly when the
previous and next resets occur, so this intuition can be
applied to each smoothing algorithm. In equation (2.7),
we observed that the posterior mass transfers directly
through the backward recursion in the no-reset case.
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Figure 2: Comparison of approximation accuracy for
the reset LDS. 1000 time-series (T = 100) were ran-
domly generated using a single dimension for yt and
ht. We show the median error (compared with the
exact correction-smoothed posterior) of the linear-time
smoother based on approximate (blue) and exact filter-
ing (green), and the quadratic-complexity β̃ smoother
with approximate filtering (red), versus the mean run-
ning time. Error bars show max and min values.
In each case, the points on the curve correspond to
N = 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 com-
ponents in each approximate message. The error is
calculated as meant [(〈ht〉 − 〈h′t〉) / 〈ht〉]

2
.

After calculating a full (exact or approximate) α̃ re-
cursion, we can approximate the α̃-β̃ algorithm as
follows. First, calculate a full β̃ message. Second, cal-
culate the components corresponding to ςt = 1 given
as τ1|ct(ρt)β̃

1
t α̃(ht, ρt). Third, combine the α̃ and β̃

messages for those components we know to have signif-
icant mass according to equation(2.7), corresponding
to ςt > 1. Finally, renormalise the weights to form the
approximate posterior. In this way, we limit the num-
ber of posterior components to N . The requirement
of a full β̃ message, however, means the algorithm has
O
(
T 2
)

complexity.

4.3 Approximate α̃-γ̃

By doing something similar with the α̃-γ̃ recursion, we
derive a linear-time algorithm. First calculate a full
approximate α̃ message. Second, calculate the compo-
nents corresponding to ςt = 1: the weights are given
by equation (2.8), and the moments by the α̃ message.
Third, calculate the moments for those components
we know to have significant mass according to equa-
tion (2.7) corresponding to ςt > 1, with the correction
smoother update. Finally, renormalise the weights to
form the approximate posterior. This is equivalent to
dropping components from γ̃ and limits the number of
components calculated at each point to N .
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Figure 3: Median running time (10 iterations) for the
reset LDS with variable time-series length.

4.4 Example: Reset LDS

We implemented a linear-time algorithm by limiting the
number of α̃ and γ̃ components, dropping lowest-weight
components when the limit is exceeded, and compared
the results with the quadratic-complexity α̃-β̃ approxi-
mate implementation. To aid a direct comparison of
methods, we also ran approximate γ̃ smoothing based
on the exact filtered posterior since this has overall
quadratic complexity comparable with the β̃ routine.
Results are shown in fig(2), in which we show how the
runtimes and relative errors in the smoothed posteriors
compare for different numbers of components.

We demonstrate the run-time reduction for different
time-series lengths in fig(3).

4.5 Discussion

Various approximation schemes are available for Gaus-
sian mixtures. Here, we simply dropped posterior com-
ponents. This motivates a discussion of whether such
scheme provides a stable approximation, and how to
select the number of components to retain. Each re-
tained posterior component corresponds, according to
the bracket smoother, to a unique local partition of
the time-series; in the worst case, each of the posterior
components has equal mass. In this case, the discrete
components of the filtering and smoothing messages
correspond to little or no posterior belief about the
probability of a reset at each point. Hence it may be
fair to say that the model is not well suited to the
data: a reparameterisation or different model may be
appropriate. When considering the number of message
components to retain, however, the ‘cut-off’ weight
of the dropped components is known in each routine
and can be used to conclude whether retaining more
components may be worth the computational expense.

The approximation routines are structured in a flexible
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Figure 4: Switch-Reset model structure.

way so as to allow different schemes to that used in our
implementation. One example would be to only drop
posterior components from messages when the mass of
such components falls below a predetermined threshold,
though this has the effect of increasing worst-case com-
putational complexity. Finally, the smoothed posterior
weights, calculated according to the bracket smoother
and used in the γ̃ approximation, are calculated only
from the filtered weights; so it is possible to conclude
something about the number of smoothed components
that may be reasonably dropped by filtering only.

5 PIECEWISE RESET MODELS

The recursions for the reset LDS are straightforward
since the messages are closed within the space of the
mixture of Gaussians. Other classes of model admit
similar closure properties, and we briefly describe two
such here based on the piecewise-constant assumption:

p(ht|ht−1, ct) =

{
δ(ht − ht−1) ct = 0
p1(ht) ct = 1

for which equation (2.5) is trivially rewritten

α̃(ht, ρt > 0) = p0(yt|ht)p(ρt|ρt−1 = ρt − 1)

× α̃(ht−1 = ht, ρt−1 = ρt − 1) (5.1)

and similarly for equation (2.9)

γ̃(ht|ρt,ςt>1)= γ̃(ht+1 =ht|ρt+1 =ρt+1,ςt+1 = ςt−1)

Any model can be considered in which p(y|ht, ct)
and p1(ht) are conjugate-exponential pairs. For
example if we have an inverse Gamma reset dis-
tribution p1(ht) = Γ−1(ht) and a Gaussian emis-
sion p(yt|ht, ct) = N (yt 0, ht), then the filtered and
smoothed posteriors are mixtures of inverse Gamma
terms. Similarly, one can consider a piecewise-constant
Poisson reset model in which the rate ht is constant
until reset from a Gamma distribution. The resulting
posterior is a mixture of Gamma distributions (Bar-
ber and Cemgil, 2010). Bayesian priors over Gaussian

mean and precision (for conjugacy, usually Gaussian
and Gamma/Wishart respectively) fit readily into the
piecewise-constant framework.

Example problems are well known for piecewise reset
models, including the coal-mine disaster data of Jarrett
(1979) and the well-logging data of Ó Ruanaidh and
Fitzgerald (1996). We provide an example of the latter
in the supplementary material, using a Gaussian prior
over the piecewise-constant mean of Gaussian data.

6 SWITCH-RESET MODELS

The reset model defined above is limited to two kinds
of dynamics—either continuation along the standard
dynamics p0 or the reset p1. The switch-reset model
enriches this by defining a set of S dynamical models,

p(ht|ht−1, ct, st) =

{
p0(ht|ht−1, st)
p1(ht|st)

ct = 0
ct = 1

p(yt|ht, ct, st) =

{
p0(yt|ht, st)
p1(yt|ht, st)

ct = 0
ct = 1

with a Markov transition on the switch variables
p(st|st−1, ct−1). The reset is deterministically defined
by ct = I [st 6= st−1], see fig(4).

The intuition is that after a reset the model chooses
from an available set of S dynamical models p1. An-
other reset occurs if the state st changes from st−1.
At that point the latent variable is reset, after which
the dynamics continues. This is therefore a switch-
ing model, but with resets5. Inference in the class
of switch-reset models is straightforward—we give a
derivation in the supplementary material—however in
the LDS case, the näıve correction approach runs into
the same analytical difficulty as in section(2.2). The
intuitive interpretation of the posterior components
that we observed for the basic reset model transfers to
the switching model, and the approximation schemes
described herein can be easily applied.

6.1 Example

We implemented a switch-reset LDS using the linear-
time α̃-γ̃ smoother. In fig(5) we apply the model to a
short speech audio signal6 of 10, 000 observations. For
these data, the latent variable ht is used to model the
coefficients of the autoregressive lags, and we assume
each observation yt =

∑6
m=1 h

m
t yt−m + ε. Compared

with a standard hidden Markov model in which a set
of fixed autoregressive coefficients is used, this example
provides a rich model in which the coefficients are free
to evolve between state changes.

5Called a Reset-HMM in Barber and Cemgil (2010).
6These data are from the TIMIT database.
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Figure 5: Switch-Reset LDS example with a short speech signal. We assumed that the signal is autoregressive of
order 6, and used the switch-reset LDS to model the autoregressive coefficients with S = 10 different states, with
N = 10 components retained in each message. From top to bottom, we show (i) the audio signal; (ii) the filtered
posterior of each state; (iii)-(iv) the smoothed posterior state mass; (v) the main IPA phonemes comprising the
sound; (vi) the mean value of the inferred autoregressive coefficients; (vii) also with N = 5; and (viii) with N = 2.

Using our MATLAB code on a 2.4GHz machine, filter-
ing took less than 400 seconds and subsequent smooth-
ing less than 200 further; in the exact case, however,
the problem is intractable needing the moments of some
O
(
1011

)
Gaussian components (each of dimension 6)

for the smoothed posterior in total, for each state. The
model is highly sensitive to the state parameters, and
we performed a very simple manual search of the param-
eter space and considered the likelihood (lT ) surface7,
with states broadly corresponding to ‘growing’, ‘steady’,
and ‘reducing’ signal magnitudes by considering the
sum of the autoregressive coefficients. The results show
clear state switches between different phonemes, and
each phoneme corresponds to a different (combination
of) states in the smoothed posterior.

A further example of the switch-reset LDS is given in
the supplementary material.

7 SUMMARY AND CONCLUSION

We discussed probabilistic inference in reset models
and switch-reset models. Such models have been used
in the fields of bioinformatics (Boys and Henderson,
2004), finance (Davis et al., 2008) and signal processing
(Fearnhead, 2005). The well-known β message passing
algorithm is applicable and straightforward to derive
in respect of reset models, but suffers some drawbacks.
First, for certain classes of such model—notably the
linear dynamical system—numerical stability is a con-
cern. Second, it is difficult to contrive a linear-time

7It is possible to use maximum likelihood learning tech-
niques such as expectation maximisation.

algorithm for smoothed inference, due to the abstract
nature of the β components.

To address these issues we went on to derive a cor-
rection smoother, based on a redefinition of the reset
model in terms of run-length. We then contributed
an interpretation of smoothing in terms of messages
relating to future resets. The algorithms so defined
overcome the numerical difficulties of the β approach
and can be implemented with confidence using stan-
dard numerically-stable propagation routines in models
such as the linear dynamical system. Moreover, the
derivation is didactically useful when considering ap-
proximations to the smoothed posterior. The resulting
approximations based on dropping low weight com-
ponents in the filtered and smoothed posteriors give
a linear-time algorithm that exhibits excellent perfor-
mance, superior to previous approaches based on α-β
smoothing. Further applications include piecewise re-
set models (widely known as changepoint models), for
which the inference algorithms are readily transferred.

A switch-reset model was also discussed, motivated by
a desire for multiple generating processes; the reset na-
ture of the model significantly reduces the complexity
in comparison with other switching systems, and the
linear-time routines are applicable. The reset models
are highly practical and do not suffer from the numer-
ical difficulties apparent in the more general switch-
ing models. Furthermore, with robust and effective
linear-time smoothing and filtering algorithms, they
are inexpensive to deploy.

Demo code is available in the supplementary material.
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