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Abstract

Model-based algorithms—algorithms that explore
the environment through building and utilizing an
estimated model—are widely used in reinforce-
ment learning practice and theoretically shown
to achieve optimal sample efficiency for single-
agent reinforcement learning in Markov Decision
Processes (MDPs). However, for multi-agent rein-
forcement learning in Markov games, the current
best known sample complexity for model-based
algorithms is rather suboptimal and compares un-
favorably against recent model-free approaches.

In this paper, we present a sharp analysis of
model-based self-play algorithms for multi-agent
Markov games. We design an algorithm Opti-
mistic Nash Value Iteration (Nash-VI) for two-
player zero-sum Markov games that is able
to output an e-approximate Nash policy in
O(H?®SAB/€?) episodes of game playing, where
S is the number of states, A, B are the number
of actions for the two players respectively, and
H is the horizon length. This significantly im-
proves over the best known model-based guar-
antee of O(H*S?AB/¢?), and is the first that
matches the information-theoretic lower bound
Q(H3S(A + B)/e?) except for a min {A, B}
factor. In addition, our guarantee compares fa-
vorably against the best known model-free algo-
rithm if min { A, B} = o(H?), and outputs a sin-
gle Markov policy while existing sample-efficient
model-free algorithms output a nested mixture of
Markov policies that is in general non-Markov
and rather inconvenient to store and execute. We
further adapt our analysis to designing a prov-
ably efficient task-agnostic algorithm for zero-
sum Markov games, and designing the first line
of provably sample-efficient algorithms for multi-
player general-sum Markov games.
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1. Introduction

This paper is concerned with the problem of multi-agent
reinforcement learning (multi-agent RL), in which multiple
agents learn to make decisions in an unknown environment
in order to maximize their (own) cumulative rewards. Multi-
agent RL has achieved significant recent success in tradition-
ally hard AT challenges including large-scale strategy games
(such as GO) (Silver et al., 2016; 2017), real-time video
games involving team play such as Starcraft and Dota2 (Ope-
nAl, 2018; Vinyals et al., 2019), as well as behavior learning
in complex social scenarios (Baker et al., 2020). Achieving
human-like (or super-human) performance in these games
using multi-agent RL typically requires a large number of
samples (steps of game playing) due to the necessity of
exploration, and how to improve the sample complexity of
multi-agent RL has been an important research question.

One prevalent approach towards solving multi-agent RL
is model-based methods, that is, to use the existing visita-
tion data to build an estimate of the model (i.e. transition
dynamics and rewards), run an offline planning algorithm
on the estimated model to obtain the policy, and play the
policy in the environment. Such a principle underlies some
of the earliest single-agent online RL algorithms such as
E3 (Kearns & Singh, 2002) and RMax (Brafman & Tennen-
holtz, 2002), and is conceptually appealing for multi-agent
RL too since the multi-agent structure does not add com-
plexity onto the model estimation part and only requires an
appropriate multi-agent planning algorithm (such as value
iteration for games (Shapley, 1953)) in a black-box fash-
ion. On the other hand, model-free methods do not directly
build estimates of the model, but instead directly estimate
the value functions or action-value (Q) functions of the
problem at the optimal/equilibrium policies, and play the
greedy policies with respect to the estimated value functions.
Model-free algorithms have also been well developed for
multi-agent RL such as friend-or-foe Q-Learning (Littman,
2001) and Nash Q-Learning (Hu & Wellman, 2003).

While both model-based and model-free algorithms have
been shown to be provably efficient in multi-agent RL in a re-
cent line of work (Bai & Jin, 2020; Xie et al., 2020; Bai et al.,
2020), a more precise understanding of the optimal sample
complexities within these two types of algorithms (respec-
tively) is still lacking. In the specific setting of two-player
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zero-sum Markov games, the current best sample complex-
ity for model-based algorithms is achieved by the VI-ULCB
(Value Iteration with Upper/Lower Confidence Bounds) al-
gorithm (Bai & Jin, 2020; Xie et al., 2020): In a tabular
Markov game with S states, {A, B} actions for the two
players, and horizon length I, VI-ULCB is able to find an
e-approximate Nash equilibrium policy in O(H*S? AB/€?)
episodes of game playing. However, compared with the
information-theoretic lower bound Q(H3S(A + B)/€?),
this rate has suboptimal dependencies on all of H, .S, and
A, B. In contrast, the current best sample complexity for
model-free algorithms is achieved by Nash V-Learning (Bai
et al., 2020), which finds an e-approximate Nash policy in
O(H®S(A + B)/e?) episodes. Compared with the lower
bound, this is tight except for a poly(H) factor, which may
seemingly suggest that model-free algorithms could be su-
perior to model-based ones in multi-agent RL. However,
such a conclusion would be in stark contrast to the single-
agent MDP setting, where it is known that model-based
algorithms are able to achieve minimax optimal sample com-
plexities (Jaksch et al., 2010; Azar et al., 2017). It naturally
arises whether model-free algorithms are indeed superior
in multi-agent settings, or whether the existing analyses of
model-based algorithms are not tight. This motivates us to
ask the following question:

How sample-efficient are model-based
algorithms in multi-agent RL?

In this paper, we advance the theoretical understandings of
multi-agent RL by presenting a sharp analysis of model-
based algorithms on Markov games. Our core contribution
is the design of a new model-based algorithm Optimistic
Nash Value Iteration (Nash-VI) that achieves an almost
optimal sample complexity for zero-sum Markov games
and improves significantly over existing model-based ap-
proaches. We summarize our main contributions as follows.
A comparison between our and prior results can be found in
Table 1.

e We design a new model-based algorithm Optimistic
Nash Value Iteration (Nash-VI) that provably finds
e-approximate Nash equilibria for Markov games in
O(H®SAB/€?) episodes of game playing (Section 3).
This improves over the best existing model-based al-
gorithm by O(HS) and is the first algorithm that
matches the sample complexity lower bound except for
a O(min { A, B}) factor, showing that model-based al-
gorithms can indeed achieve an almost optimal sample
complexity. Further, unlike state-of-the-art model-free
algorithms such as Nash V-Learning (Bai et al., 2020),
this algorithm achieves in addition a O(v/T) regret
bound, and outputs a simple Markov policy (instead

of a nested mixture of Markov policies as returned by
Nash V-Learning).

e We design an alternative algorithm Optimistic Value
Iteration with Zero Reward (VI-Zero) that is able to
perform task-agnostic (reward-free) learning for multi-
ple Markov games sharing the same transitions (Sec-
tion 4). For N > 1 games with the same transition
and different (known) rewards, VI-Zero can find e-
approximate Nash policy for all games simultaneously
in O(H*SABlog N/€?) episodes of game playing,
which scales logarithmically in the number of games.

e We design the first line of sample-efficient algorithms
for multi-player general-sum Markov games. In a
multi-player game with M players and A; actions per
player, we show that an e near-optimal policy can be
found in O(H*S? [Lician Ai/€?) episodes, where the
desired optimality can be either one of Nash equilib-
rium, correlated equilibrium (CE), or coarse correlated
equilibrium (CCE). We achieve this guarantee by ei-
ther a multi-player version of Nash-VI or a multi-player
version of reward-free value iteration (Section 5 & Ap-
pendix A).

1.1. Related work

Markov games. Markov games (or stochastic games) are
proposed in the early 1950s (Shapley, 1953). They are
widely used to model multi-agent RL. Learning the Nash
equilibria of Markov games has been studied in Littman
(1994, 2001); Hu & Wellman (2003); Hansen et al. (2013);
Lee et al. (2020), where the transition matrix and reward are
assumed to be known, or in the asymptotic setting where the
number of data goes to infinity. These results do not directly
apply to the non-asymptotic setting where the transition and
reward are unknown and only a limited amount of data are
available for estimating them.

Another line of works make certain strong reachability as-
sumptions under which sophisticated exploration strategies
are not required. A prevalent approach is to assume access
to simulators (generative models) that enable the agent to
directly sample transition and reward information for any
state-action pair. In this setting, Jia et al. (2019); Sidford
et al. (2019); Zhang et al. (2020a) provide non-asymptotic
bounds on the number of calls to the simulator for finding
an e-approximate Nash equilibrium. Wei et al. (2017) study
Markov games under an alternative assumption that no mat-
ter what strategy one agent sticks to, the other agent can
always reach all states by playing a certain policy.

Non-asymptotic guarantees without reachability as-
sumptions. Recent works of Bai & Jin (2020); Xie et al.
(2020) provide the first line of non-asymptotic sample com-
plexity guarantees for learning Markov games without reach-
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Table 1. Sample complexity (the required number of episodes) for algorithms to find e-approximate Nash equlibrium policies in zero-sum
Markov games: VI-explore and VI-UCLB (Bai & Jin, 2020), OMVI-SM (Xie et al., 2020), and Nash Q/V-learning (Bai et al., 2020). The

lower bound is proved by Jin et al. (2018); Domingues et al. (2020).

Algorithm Task-Agnostic | \/7T-Regret Sample Complexity Output Policy
VlI-explore Yes O(H®S?AB/e?)
VI-ULCB Yes O(H*S?AB/e?) .
~ a single
Model-based OMVI-SM Yes O(H*S*A>B3/e?) Markov policy
Algorithm 2 Yes O(H*SAB/€)
Algorithm 1 Yes O(H?*SAB/€)
Modelfree Nash Q-learning O(HSAB/e?) nested mixture of!
Nash V-learning O(H®S(A+B)/e?) Markov policies
Lower Bound - - Q(H3S(A+ B)/€?) -

ability assumptions. More recently, Bai et al. (2020) propose
two model-free algorithms—Nash Q-Learning and Nash V-
Learning with better sample complexity guarantees. In par-
ticular, the Nash V-learning algorithm achieves near-optimal
dependence on S, A and B. However, the dependence on
H is worse than our results and the output policy is a nested
mixture, which is hard to implement. We compare our
results with existing non-asymptotic guarantees in Table 1.

We remark that the classic R-max algorithm (Brafman &
Tennenholtz, 2002) also provides provable guarantees for
learning Markov games. However, Brafman & Tennenholtz
(2002) use a weaker definition of regret (similar to the online
setting in Xie et al. (2020)), and consequently their result
does not imply any sample complexity guarantee for finding
Nash equilibrium policies.

Adversarial MDPs. Another way to model the multi-
player behavior is to use adversarial MDPs. Most works in
this line consider the setting with adversarial reward (Zimin
& Neu, 2013; Rosenberg & Mansour, 2019; Jin et al., 2019),
where the reward can be manipulated by an adversary ar-
bitrarily and the goal is to compete with the optimal (sta-
tionary) policy in hindsight. Learning adversarial MDPs
with changing dynamics is computationally hard even under
full-information feedback (Yadkori et al., 2013). Notice
these results also do not imply provable algorithms in our
setting, because the opponent in Markov games can affect
both the reward and the transition.

Single-agent RL. There is a rich literature on reinforce-
ment learning in MDPs (see e.g., Jaksch et al., 2010; Os-
band et al., 2014; Azar et al., 2017; Dann et al., 2017; Strehl
et al., 2006; Jin et al., 2018). MDPs are special cases of
Markov games, where only a single agent interacts with a
stochastic environment. For the tabular episodic setting with
nonstationary dynamics and no simulators, the best sample

complexity is O(H3SA/e?), achieved by the model-based
algorithm in Azar et al. (2017) and the model-free algorithm
in Zhang et al. (2020c). Both of them match the lower bound
Q(H3SA/€?) (Jin et al., 2018).

Reward-free learning. Jin et al. (2020) study a new
paradigm of learning MDPs called reward-free learning,
which is also known as the task-agnostic (Zhang et al.,
2020b) or reward-agnostic setting. In this setting, the agent
goes through a two-stage process. In the exploration phase
the agent interacts with the environment without the guid-
ance of any reward information, and in the planning phase
the reward information is revealed and the agent computes
a policy based on the transition information collected in the
exploration phase and the reward information revealed in
the planning phase.

2. Preliminaries

In this paper, we consider Markov Games (MGs, Shapley,
1953; Littman, 1994), which are also known as stochastic
games in the literature. Markov games are the generalization
of standard Markov Decision Processes (MDPs) into the
multi-player setting, where each player seeks to maximize
her own utility. For simplicity, in this section we describe
the important special case of two-player zero-sum games,
and return to the general formulation in Appendix A.

Formally, we consider the tabular episodic version of
two-player zero-sum Markov game, which we denote as
MG(H,S, A,B,P,r). Here H is the number of steps in
each episode, S is the set of states with |S| < S, (A, B)
are the sets of actions of the max-player and the min-player
respectively with [A| < A and [B| < B, P = {Pp, }5e[p) is
a collection of transition matrices, so that Py, (+|s, a, b) gives
the distribution of the next state if action pair (a, b) is taken
at state s at step h, and 7 = {rp, }ne[z is a collection of
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reward functions, where 7,: S x A x B — [0,1] is the
deterministic reward function at step h.! This reward rep-
resents both the gain of the max-player and the loss of the
min-player, making the problem a zero-sum Markov game.

In each episode of this MG, we start with a fixed initial state
s1. Ateach step h € [H|, both players observe state s;, € S,
and pick their own actions aj, € A and by, € B simultane-
ously. Then, both players observe the actions of their op-
ponent, receive reward 7, (Sp, ar, by), and then the environ-
ment transitions to the next state sp11 ~ Pr(:|sp, an, br).
The episode ends when s 41 is reached.

Policy, value function. A (Markov) policy u of the max-
player is a collection of H functions {up, : S = Aatne[nls
each mapping from a state to a distribution over actions.
(Here A 4 is the probability simplex over action set .4.)
Similarly, a policy v of the min-player is a collection of
H functions {vy, : S — Ap}nem). We use the notation
un(als) and v, (b|s) to represent the probability of taking
action a or b for state s at step h under Markov policy p or
v respectively.

We use V/*”: § — R to denote the value function at step
h under policy p and v, so that V" (s) gives the expected
cumulative rewards received under policy p and v, starting
from s at step h:

H

V}ft’u(s) = E,u,u |: Z Th/(Sh/, ap’, bh’)
h'=h

Sp = s} (D

We also define Q1" : S x A x B — R to be the Q-value
function at step h so that Q}" (s, a, b) gives the cumulative
rewards received under policy p and v, starting from (s, a, b)
at step h:

QZ’U(Sv a, b)
H

=E,, [ > rwe (s ans, bi)

h'=h

sh:s,ah:a,bh:b].

(2)
For simplicity, we define operator P, as [P, V](s, a,b) :=
Eg b, (-|s,a,0)V (s") for any value function V. We also
use notation [D;Q](s) = E(q p)~r(.,.]s)@(S, a, b) for any
action-value function ). By definition of value functions,
we have the Bellman equation

Qlif’u(sﬂ a, b) = (rh + th}ﬁ-ﬁ)(sa a, b),
Vi () = Dy Q) (5),

for all (s,a,b,h) € S x A x B x [H], and at the (H + 1)
step we have V' (s) = O forall s € S.

"We assume the rewards in [0, 1] for normalization. Our results
directly generalize to randomized reward functions, since learning
the transition is more difficult than learning the reward.

Best response and Nash equilibrium. For any policy of
the max-player pu, there exists a best response of the min-
Ut
player, which is a policy vf(u) satisfying V" W) (s) =
inf, V}}"¥(s) for any (s, h) € S x [H|. We denote V}i"T =
Vh’“’I () By symmetry, we can also define pf (v) and V,"".
It is further known (cf. Filar & Vrieze (2012)) that there exist
policies p*, v* that are optimal against the best responses
of the opponents, in the sense that

VI (s) = sup VST (s),
1
VI (s) = inf Vi (s),

for all (s,h) € S x [H]. We call these optimal strategies
(u*, v*) the Nash equilibrium of the Markov game, which
satisfies the following minimax equation *:

sup,, inf, V}/""(s) = V}f‘*’”* (s) = inf, sup, V;/"" (s).

Intuitively, a Nash equilibrium gives a solution in which no
player has anything to gain by changing only her own policy.
We further abbreviate the values of Nash equilibrium V}/* v
and QY T as Vy¥ and Q5. We refer readers to Appendix B
for Bellman optimality equations for (the value functions
of) the best responses and the Nash equilibrium.

Learning Objective. We measure the suboptimality of
any pair of general policies (fi, ) using the gap between
their performance and the performance of the optimal strat-
egy (i.e., Nash equilibrium) when playing against the best
responses respectively:

Vi (s1) = Vi (s1)
= [V (s0) = Vi (s0)] + [ (s0) = VT (s1)

Definition 1 (e-approximate Nash equilibrium). A pair of
general policies (i, V) is an e-approximate Nash equilib-
rium, if V;7 (s1) — VT (s1) < e.

Definition 2 (Regret). Let (1*, v*) denote the policies de-
ployed by the algorithm in the ™ episode. After a total of
K episodes, the regret is defined as

K

k k

Regret(K) = § :(vl YV (sy).
k=1

One goal of reinforcement learning is to design algorithms
for Markov games that can find an e-approximate Nash
equilibrium using a number of episodes that is small in its

The minimax theorem here is different from the one for matrix
games, i.e. maxyming ¢' Ay = min, maxy ¢ ' Ay for any
matrix A, since here V" (s) is in general not bilinear in y, v.
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dependency on S, A, B, H as well as 1/¢ (PAC sample com-
plexity bound). An alternative goal is to design algorithms
for Markov games that achieves regret that is sublinear in K,
and polynomial in S| A, B, H (regret bound). We remark
that any sublinear regret algorithm can be directly converted
to a polynomial-sample PAC algorithm via the standard
online-to-batch conversion (see e.g., Jin et al., 2018).

3. Optimistic Nash Value Iteration

In this section, we present our main algorithm—Optimistic
Nash Value Iteration (Nash-VI), and provide its theoretical
guarantee.

3.1. Algorithm description

We describe our Nash-VI Algorithm 1. In each episode, the
algorithm can be decomposed into two parts.

e Line 3-15 (Optimistic planning from the estimated
model): Performs value iteration with bonus using the
empirical estimate of the transition PP, and computes a
new (joint) policy 7 which is “greedy” with respect to
the estimated value functions;

e Line 18-21 (Play the policy and update the model es-
timate): Executes the policy m, collects samples, and
updates the estimate of the transition P.

At a high-level, this two-phase strategy is standard in the
majority of model-based RL algorithms, and also underlies
provably efficient model-based algorithms such as UCBVI
for single-agent (MDP) setting (Azar et al., 2017) and VI-
ULCB for the two-player Markov game setting (Bai & Jin,
2020). However, VI-ULCB has two undesirable drawbacks:
the sample complexity is not tight in any of H, S, and A, B
dependency, and its computational complexity is PPAD-
complete (a complexity class conjectured to be computa-
tionally hard (Daskalakis, 2013)).

As we elaborate in the following, our Nash-VI algorithm
differs from VI-ULCB in a few important technical aspects,
which allows it to significantly improve the sample com-
plexity over VI-ULCB, and ensures that our algorithm ter-
minates in polynomial time.

Before digging into explanations of techniques, we remark
that line 16-17 is only used for computing the output policies.
It chooses policy 7" to be the policy in the episode with
minimum gap (V; — V;)(s1). Our final output policies
(uo™, v°") are simply the marginal policies of ™. That
is, for all (s,h) € S x [H], 3" (-[s) := > e (-, b|s),
and V" ([s) = 3,4 7 (a,5).

3.1.1. OVERVIEW OF TECHNIQUES

Auxiliary bonus «. The major improvement over VI-
ULCB (Bai & Jin, 2020) comes from the use of a different
style of bonus term v (line 9), in addition to the standard
bonus S (line 8), in value iteration steps (line 10-11). This
is also the main technical contribution of our Nash-VT al-
gorithm. This auxiliary bonus ~ is computed by applying
the empirical transition matrix [P}, to the gap at the next step
Vhﬂ — V11, This is very different from standard bonus /3,
which is typically designed according to the concentration
inequalities.

The main purpose of these value iteration steps (line 10-11)
is to ensure that the estimated values @;, and Q, are with
high probability the upper bound and the lower bound of the
@-value of the current policy when facing best responses
(see Lemma 20 and 22 for more details) 3. To do so, prior
work (Bai & Jin, 2020) only adds bonus 3, which needs to
be as large as ©(+/S/t). In contrast, the inclusion of auxil-
iary bonus -y in our algorithm allows a much smaller choice
for bonus B—which scales only as O(+/1/t)—while still
maintaining valid confidence bounds. This technique alone
brings down the sample complexity to O(H*SAB/€?), re-
moving an entire S factor compared to VI-ULCB. Further-
more, the coefficient in + is only ¢/H for some absolute
constant ¢, which ensures that the introduction of error term
~ would hurt the overall sample complexity only up to a
constant factor.

Bernstein concentration. Our Nash-VI allows two
choices of the bonus function 3 = BONUS(¢, 62):

Hoeffding type: c(y/H2u/t + H?Su/t),
Bernstein type: c(y/62u/t + H2S1/t),

where &2 is the estimated variance, ¢ is the logarithmic fac-
tors and c is absolute constant. The \Y% in line 8 is the empiri-
cal variance operator defined as V,V = P, V2 — (P, V)? for
any V € [0, H]®. The design of both bonuses stem from the
Hoeffding and Bernstein concentration inequalities. Further,
the Bernstein bonus uses a sharper concentration, which
saves an H factor in sample complexity compared to the
Hoeffding bonus (similar to the single-agent setting (Azar
et al., 2017)). This further reduces the sample complexity
to O(H3SAB/e?) which matches the lower bound in all
H, S, e factors.

Coarse Correlated Equilibrium (CCE). The prior algo-
rithm VI-ULCB (Bai & Jin, 2020) computes the “greedy”

3We remark that the current policy is stochastic. This is dif-
ferent from the single-agent setting, where the algorithm only
seeks to provide an upper bound of the value of the optimal policy
where the optimal policy is not random. Due to this difference, the
techniques of Azar et al. (2017) cannot be directly applied here.
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Algorithm 1 Optimistic Nash Value Iteration (Nash-VI)

1: Initialize: for any (s, a, b, h), Q,(s,a,b) < H,
Q,(s,a,b) = 0, A < H, Nip(s,a,b) < 0.

2: forepisode k =1,..., K do

3: forsteph=H,H—1,...,1do

4 for (s,a,b) € S x Ax Bdo

5: t + Np(s,a,b).

6 if £ > 0 then

7 Unv1 ¢ (Vi1 + V5 14)/2.

8 B « BONUS(t, V;,[Uns1](s, a, b)).

9: v (¢/H)Pr(Vpy1 — K’LH)(S’Q’ b).

10: Q,(s,a,b) < min{(rp, + PrVp4+1)(s,a,b)

+~v+p5,H}.
11: Qh(s, a,b) « max{(ry + @hzhﬂ)(s, a,b)
-7 - Ba O}

12: for s € S do

13: mh(,+|s) « CCE(Qy(s, -, ~),Qh(s,~,~)).

14: Vi(s) < (Dg, Q) (s).

15: Z}L(s) — (DW;LQ,L)(S)

16: if (V1 —V,)(s1) < A then

17: A+ (Vi —V,)(s1) and 7 < 7.

18: forsteph=1,...,H do

19: take action (ap, bp) ~ 7+, -|sn), observe reward

r1, and next state sj,1.
20: add 1 to Ny (sp,an,bp) and Ny (sp, an, b, Spr1).
21: I?Ph(-|sh,ah,bh) —
Nh(sh, Qp, bh, -)/Nh(sh, ap, bh).

22: Output the marginal policies of 7" (p%, "),

policy with respect to the estimated value functions by di-
rectly computing the Nash equilibrium for the ()-value at
each step h. However, since the algorithm maintains both
the upper confidence bound and lower confidence bound of
the (-value, this leads to the requirement to compute the
Nash equilibrium for a two-player general-sum matrix game,
which is in general PPAD-complete (Daskalakis, 2013).

To overcome this computational challenge, we compute
a relaxation of the Nash equilibrium—Coarse Correlated
Equalibirum (CCE)—instead, a technique first introduced
by Xie et al. (2020) to address reinforcement learning prob-
lems in Markov Games. Formally, for any pair of matri-
ces Q,Q € [0, H|**E, CCE(Q, Q) returns a distribution
7 € A sy such that B

E(a,b)'\/ﬂ'@(a7 b) > H}ﬁ‘x E(a,b)wﬂ@(a*a b)v

. “4)

E(a,b)~7rg(a7 b) < Hgln E(a,b)wﬂg(aa b*)
Intuitively, in a CCE the players choose their actions in a
potentially correlated way such that no one can benefit from
unilateral unconditional deviation. A CCE always exists,
since Nash equilibrium is also a CCE and a Nash equilib-

rium always exists. Furthermore, a CCE can be computed
by linear programming in polynomial time. We remark that
different from Nash equilibrium where the policies of each
player are independent, the policies given by CCE are in gen-
eral correlated for each player. Therefore, executing such a
policy (line 19) requires the cooperation of two players.

3.2. Theoretical guarantees

Now we are ready to present the theoretical guarantees for
Algorithm 1. We let 7% denote the policy computed in line
13 in the k' episode, and x*, ¥ denote the marginal policy
of 7% for each player.

Theorem 3 (Nash-VI with Hoeffding bonus). For any p €
(0,1], letting v = log(SABT/p), then with probability at
least 1 — p, Algorithm 1 with Hoeffding type bonus (3) (with
some absolute ¢ > 0) achieves:

(a) The output policies (p',v°") satisfy (Vf’”w -
VT (s1) < € if we choose

4 3q2 2
K>Q(HS;4BL+HSABL)'

€ €

(b) The algorithm has regret bound

K

l/k k
Regret(K) = > (V" 1¢"1)(s1)
k=1

< O(VH3SABT.+ H*S?AB./?),

where T' = K H is the total number of steps played
within K episodes.

Theorem 3 provides both a sample complexity bound and
a regret bound for Nash-VI to find an e-approximate Nash
equilibrium. For small ¢ < H/(St), the sample com-
plexity scales as O(H*SAB/e®). Similarly, for large
T > H®S3AB.3, the regret scales as O(vV H3SABT).
Theorem 3 is significant in that it improves the sample com-
plexity of the model-based algorithm in Markov games from
52 to S (and the regret from S to v/S). This is achieved by
adding the new auxiliary bonus + in value iteration steps as
explained in Section 3.1. The proof of Theorem 3 can be
found in Appendix D.1.

Our next theorem states that when using Bernstein bonus
instead of Hoeffding bonus as in (3), the sample complexity
of Nash-VI algorithm can be further improved by a H factor
in the leading order term (and the regret improved by a v/ H
factor).

Theorem 4 (Nash-VI with the Bernstein bonus). For any
p € (0, 1], letting v = log(SABT /p), then with probability
at least 1 — p, Algorithm 1 with Bernstein type bonus (3)
(with some absolute ¢ > 0) achieves:
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out

e The output policies (p",v°") satisfy (VIT’V -
Vl“w T(s1) < € if we choose

H3SAB.
5 +

32 2
KZQ( HSABL).

€ €

o The algorithm has regret bound

K
Regret(K) = Y (V" =V 1)(s1)
k=1
< O(VH2SABT. + H?S?AB/?),

where T' = K H is the total number of steps played
within K episodes.

Compared with the information-theoretic sample complex-
ity lower bound Q(H3S(A + B)t/€?) and regret lower
bound Q(y/H2S(A+ B)T) (Bai & Jin, 2020), when ¢ is
small, Nash-VI with Bernstein bonus achieves the optimal
dependency on all of H, S, e up to logarithmic factors in
both the sample complexity and the regret, and the only gap
that remains openis a AB/(A + B) < min {A, B} factor.
The proof of Theorem 4 can be found in Appendix D.2.

Comparison with model-free approaches. Different
from our model-based approach, a recently proposed model-
free algorithm Nash V-Learning (Bai et al., 2020) achieves
sample complexity O(H®S(A + B)i/€*), which has a tight
(A + B) dependency on A, B. However, our Nash-VI has
the following important advantages over Nash V-Learning:
1. Our sample complexity has a better dependency on hori-
zon H; 2. Our algorithm outputs a single pair of Markov
policies (p°", v°") while their algorithm outputs a generic
history-dependent policy that can be only written as a nested
mixture of Markov policies; 3. The model-free algorithms
in Bai et al. (2020) cannot be directly modified to obtain a
V/T-regret (so that the exploration policies can be arbitrarily
poor), while our model-based algorithm has the /T -regret
guarantee. We comment that although both Nash-VI and
Nash V-Learning have polynomial running time, the latter
enjoys a better computational complexity because Nash-VI
requires to solve LPs for computing CCEs in each episode.

4. Reward-free Learning

In this section, we modify our model-based algorithm
Nash-VI for the reward-free exploration setting. Formally,
reward-free learning has two phases: In the exploration
phase, the agent collects a dataset of transitions D =
{(8k,n> Ok 1y Ok o1y Skht1) F(koh)e[r) <[] from a Markov
game M without the guidance of reward information. After
the exploration, in the planning phase, for each task ¢ € [N],
D is augmented with stochastic reward information to be-

come D' = {(Sk,h, Ak, h, Ok ,hs Sk,ht 1 Thok) } (k) €[ K] x [H]»

Algorithm 2 Optimistic Value Iteration with Zero Reward
(VI-Zero)
Require: Bonus j3;. _
1: Initialize: for any (s,a,b,h), Vi (s,a,b) < H, A +
H, Ni(s,a,b) < 0.

2: forepisode k =1,..., K do
3 forsteph=H,H—-1,...,1do
4: for (s,a,b) € S x A x Bdo
5 t + Np(s,a,b).
6 ift > 0 then o
7 Qn(s,a,b) < min{(P,Vh4+1)(s,a,b)
H}.
8: for s € S do P }~
9: 71;1(5) 4 ArgMAX(q,p)c AxB Qn(s,a,b).
10: N Vi(s) < (Dr, Qr)(s).
11:  if Vi(s1) < A then
12: A < Vi(s1) and P « P,
13: forsteph=1,...,H do
14: take action (ap,bn) ~ (-, +|sn), observe next
state sp4-1.
15: add 1 to Nh(Sh,a}“bh) and Nh(sh,ah,bh,sh+1).
16: @h(~|sh,ah,bh) —

R Ni(Sh;an,bn, ) /Nu(Sh, an, bp).
17: Output P,

where 7, 5, is sampled from some unknown reward distribu-
tion with expectation equal to 7% (k. 1, @k n, bx,n ). Here, r’
denotes the unknown reward function of the i*" task. The
goal is to compute nearly-optimal policies for N tasks under
M simultaneously given the augmented datasets {D"} ;¢ ().

There are strong practical motivations for considering the
reward-free setting. First, in applications such as robotics,
we face multiple tasks in sequential systems with shared
transition dynamics (i.e. the world) but very different re-
wards. There, we prefer to learn the underlying transition
independent of reward information. Second, from the algo-
rithm design perspective, decoupling exploration and plan-
ning (i.e. performing exploration without reward informa-
tion) can be valuable for designing new algorithms in more
challenging settings (e.g., with function approximation).

4.1. Algorithm description

We now describe our algorithm for reward-free learning in
zero-sum Markov games.

Exploration phase. In the first phase of reward-free learn-
ing, we deploy algorithm Optimistic Value Iteration with
Zero Reward (VI-Zero, Algorithm 2). This algorithm differs
from the reward-aware Nash-VI (Algorithm 1) in two im-
portant aspects. First, we use zero reward in the exploration
phase (Line 7), and only maintain an upper bound of the
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(reward-free) value function instead of both upper and lower
bounds. Second, our exploration policy is the maximizing
(instead of CCE) policy of the value function (Line 9). We
remark that the Q,(s, a,b) maintained in the algorithm 2
is no longer an upper bound for any actual value function
(as it has no reward), but rather a measure of uncertainty or
suboptimality that the agent may suffer—if she takes action
(a,b) at state s and step h, and makes decisions by utilizing
the empirical estimate P in the remaining steps (see a rig-
orous version of thls statement in Lemma 27). Flnally, the
empirical transition P of the episode that minimizes V; (s1)
is outputted and passed to the planning phase.

Planning phase. After obtaining the estimate of tranisi—
ton IP’ our planning algorithm is rather simple. For the *0
task, let 7 be the empirical estimate of r* computed using
the i*" augmented dataset D°. Then we compute the Nash
equilibrium of the Markov game M(IP’ 7) with estimated
transition P and reward 7. Since both PP and 7 are known
exactly, this is a pure computation problem without any sam-
pling error and can be efficiently solved by simple planning
algorithms such as the vanilla Nash value iteration without
optimism (see Appendix E.2 for more details).

4.2. Theoretical guarantee

Now we are ready to state our theoretical guarantee for
reward-free learning. It claims that the empirical transition
pout output by VI-Zero is close to the true transition P,
in the sense that any Nash equilibrium of the M(P,7)
(i € [N]) is also an approximate Nash equilibrium of the
true underlying Markov game M(P, r %), where 7 is the
empirical estimate of r* computed using D?.

Theorem 5 (Sample complexity of VI-Zero). There exists
an absolute constant ¢, for any p € (0,1], € € (0, H],
N € N, if we choose bonus 3; = c(\/H2./t + H?Su/t)
with © = log(NSABT/p) and K > c(H*SAB./e?
H3S52AB.?/e), then with probability at least 1 — p, the
output pout of Algorithm 2 satisfies: For any N fixed reward
Junctions r', ..., rN, a Nash equilibrium of Markov game
M(P°ut 7Y is also an e-approximate Nash equilibrium of
the true Markov game M(P,r%) for all i € [N].

Theorem 5 shows that, when e is small, VI-Zero only needs
O(H*SAB/€*) samples to learn an estimate of the transi-
tion @"m, which is accurate enough to learn the approximate
Nash equilibrium for any N fixed rewards. The most im-
portant advantage of reward-free learning comes from the
sample complexity only scaling polylogarithmically with re-
spect to the number of tasks or reward functions /N. This is
in sharp contrast to the reward-aware algorithms (e.g. Nash-
VI), where the algorithm has to be rerun for each different
task, and the total sample complexity must scale linearly
in N. In exchange for this benefit, compared to Nash-VI,

VI-Zero loses a factor of H in the leading term of sample
complexity since we cannot use Bernstein bonus anymore
due to the lack of reward information. VI-Zero also does not
have a regret guarantee, since again without reward infor-
mation, the exploration policies are naturally sub-optimal.
The proof of Theorem 5 can be found in Appendix E.1.

Connections with reward-free learning in MDPs.
Since MDPs are special cases of Markov games, our al-
gorithm VI-Zero directly applies to the single-agent set-
ting, and yields a sample complexity similar to existing
results (Zhang et al., 2020b; Wang et al., 2020). However,
distinct from existing results which require both the explo-
ration algorithm and the planning algorithm to be specially
designed to work together, our algorithm allows an arbitrary
planning algorithm as long as it computes the Nash equilib-
rium of a Markov game with known transition and reward.
Therefore, our results completely decouple the exploration
and the planning.

Lower bound for reward-free learning. Finally, we
comment that despite the sample complexity in Theorem 5
scaling as AB instead of A 4+ B, our next theorem states
that unlike the general reward-aware setting, this AB scal-
ing is unavoidable in the reward-free setting. This reveals
an intrinsic gap between the reward-free and reward-aware
learning: An A + B dependency is only achievable via sam-
pling schemes that are reward-aware. A similar lower bound
is also presented in Zhang et al. (2020a) for the discounted
setting with a different hard instance construction.

Theorem 6 (Lower bound for reward-free learning of
Markov games). There exists an absolute constant ¢ > 0
such that for any € € (0, c|, there exists a family of Markov
games M(e) satisfying that: for any reward-free algorithm
A using K < cH>SAB/€? episodes, there exists a Markov
game M € M(e€) such that if we run A on M and output
policies (fi, ), then with probability at least 1/4, we have
(VP =V (s1) > e

This lower bound shows that the sample complexity in Theo-
rem 5 is optimal in S, A, B, and €. The proof of Theorem 6
can be found in Appendix E.3.

S. Multi-player general-sum games

We adapt our analysis to multi-player general-sum games
and present the first lines of provably efficient algorithms.
Concretely, we design two model-based algorithms Multi-
Nash-VI and Multi-VI-Zero (Algorithm 3 and Algorithm
4) that can find an (e-approximate) {NAsH, CE, CCE}
equilibrium for any multi-player general-sum Markov game
in O(H*S? [, Ai/€?) episodes of game playing, where
A; is the number of actions for player i € {1,...,m}
(Theorem 15 and Theorem 16). Due to space limit, we defer
the detailed setups, algorithms and results to Appendix A.
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6. Conclusion

In this paper, we provided a sharp analysis of model-based
algorithms for Markov games. Our new algorithm Nash-VI
can find an e-approximate Nash equilibrium of a zero-sum
Markov game in O(H?S AB/€?) episodes of game playing,
which almost matches the sample complexity lower bound
except for the AB vs. A + B dependency. We also applied
our analysis to derive new efficient algorithms for task-
agnostic game playing, as well as the first line of multi-
player general-sum Markov games. There are a number
of compelling future directions to this work. For example,
can we achieve A + B instead of AB sample complexity
for zero-sum games using model-based approaches (thus
closing the gap between lower and upper bounds)? How
can we design more efficient algorithms for general-sum
games with better sample complexity (e.g., O(5) instead of
O(5?%))? We leave these problems as future work.
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